Ma

 Mathematics tests
Mark scheme for Paper 1

Tiers 3-5, 4-6, 5-7 and 6-8
2003

KEY STAG
department for
education and skills
creating opportunity, releasing potential, achieving excellence

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 1 at all tiers. The paper 2 mark scheme is printed in a separate booklet. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 10 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The Correct response column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative;
- examples of some different types of correct response, including the most common.

The Additional guidance column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

Questions with a $U A M$ element are identified in the mark scheme by an encircled U with a number that indicates the significance of using and applying mathematics in answering the question. The U number can be any whole number from 1 to the number of marks in the question.

The 2003 key stage 3 mathematics tests and mark schemes were developed by the Mathematics Test Development Team at QCA.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance relating to marking of questions that involve money, time, coordinates, algebra or probability. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

What if ...
$\left.\begin{array}{|r|l|}\hline \begin{array}{r}\text { The pupil's response } \\ \text { does not match } \\ \text { closely any of the } \\ \text { examples given. }\end{array} & \begin{array}{l}\text { Markers should use their judgement in deciding whether the response } \\ \text { corresponds with the statement of requirements given in the Correct response } \\ \text { column. Refer also to the Additional guidance. }\end{array} \\ \hline \begin{array}{r}\text { The pupil has } \\ \text { responded in a } \\ \text { non-standard way. }\end{array} & \begin{array}{l}\text { Calculations, formulae and written responses do not have to be set out in any } \\ \text { particular format. Pupils may provide evidence in any form as long as its } \\ \text { meaning can be understood. Diagrams, symbols or words are acceptable for } \\ \text { explanations or for indicating a response. Any correct method of setting out } \\ \text { working, however idiosyncratic, is acceptable. Provided there is no ambiguity, } \\ \text { condone the continental practice of using a comma for a decimal point. }\end{array} \\ \hline \text { The pupil has made a } \\ \text { conceptual error. }\end{array} \begin{array}{l}\text { In some questions, a method mark is available provided the pupil has made } \\ \text { a computational, rather than conceptual, error. A computational error is } \\ \text { a slip such as writing } 4 \times 6=18 \text { in an otherwise correct long multiplication. } \\ \text { A conceptual error is a more serious misunderstanding of the relevant } \\ \text { mathematics; when such an error is seen no method marks may be awarded. } \\ \text { Examples of conceptual errors are: misunderstanding of place value, such as } \\ \text { multiplying by 2 rather than 20 when calculating 35 } \times 27 \text {; subtracting the }\end{array}\right\}$

What if ...

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed or rubbed out and not replaced.	Mark, according to the mark scheme, any legible crossed or rubbed out work that has not been replaced.	
More than one answer is given.	If all answers given are correct or a range of answers is given, all of which are correct, the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

Marking specific types of question

Responses involving money For example: $£ 3.20$ £7	
Accept \downarrow	Do not accept \times
\checkmark Any unambiguous indication of the correct amount eg $£ 3.20$ (p), $£ 320, £ 3,20$, 3 pounds 20, f3-20, £3 20 pence, $£ 3: 20$, £7.00 \checkmark The $£$ sign is usually already printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the f sign, accept an answer with correct units in pounds and/or pence eg 320 p , 700p	* Incorrect or ambiguous use of pounds or pence eg $£ 320, £ 320$ p or $£ 700$ p, or 3.20 or 3.20 p not in the answer space. x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 $\begin{aligned} \text { eg } & £ 3.2, £ 3 \text { 200, } £ 320, \\ & £ 3-2-0, \\ & £ 7.0 \end{aligned}$

Responses involving time A time interval For example: 2 hours 30 mins	
Accept $\sqrt{ }$	Take care ! Do not accept \times
\checkmark Any unambiguous indication eg 2.5 (hours), 2h 30 \checkmark Digital electronic time ie 2:30	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30 min ! The time unit, hours or minutes, is usually printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the given unit, accept an answer with correct units in hours or minutes, unless the question has asked for a specific unit to be used.
A specific time For example: 8.40am, 17:20	
Accept $\sqrt{ }$	Do not accept \times
\checkmark Any unambiguous, correct indication eg $08.40,8.40,8: 40,0840,840$, 8 -40, twenty to nine, $8,40$ \checkmark Unambiguous change to 12 or 24 hour clock eg 17:20 as $5: 20 \mathrm{pm}, 17: 20 \mathrm{pm}$	x Incorrect time eg $8.4 \mathrm{am}, 8.40 \mathrm{pm}$ x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving coordinates

For example: $(5,7)$

Accept \checkmark	Do not accept \times
```\checkmark ~ U n a m b i g u o u s ~ b u t ~ u n c o n v e n t i o n a l ~ notation eg (05,07) ( five, seven ) (\begin{array}{l}{x}\\{5,}\end{array}>\mp@code{7}) (x=5, y=7)```	x Incorrect or ambiguous notation   eg $(7,5)$   (5x, 7y)   $(x 5, y 7)$   $\left(5^{x}, 7^{y}\right)$

Responses involving the use of algebra
For example: $2+n \quad n+2 \quad 2 n$

Accept $\checkmark$	Take care ! Do not accept $\times$
$\checkmark$ The unambiguous use of a different case   eg $N$ used for $n$   $\checkmark$ Unconventional notation for multiplication   eg $n \times 2$ or $2 \times n$ or $n 2$ $\text { or } n+n \text { for } 2 n$ $n \times n \text { for } n^{2}$   $\checkmark$ Multiplication by 1 or 0   eg $\quad 2+1 n$ for $2+n$ $2+0 n \text { for } 2$   $\checkmark$ Words used to precede or follow equations or expressions   eg $t=n+2$ tiles or $\text { tiles }=t=n+2$ $\text { for } t=n+2$   $\checkmark$ Unambiguous letters used to indicate expressions $\text { eg } \quad t=n+2 \text { for } n+2$   $\checkmark$ Embedded values given when solving equations   eg $3 \times 10+2=32$ $\text { for } 3 x+2=32$	! Words or units used within equations or expressions should be ignored if accompanied by an acceptable response, but should not be accepted on their own   eg do not accept $n \text { tiles }+2$ $n \mathrm{~cm}+2$   $\times$ Change of variable   eg $x$ used for $n$   x Ambiguous letters used to indicate expressions $\text { eg } n=n+2$   However, to avoid penalising any of the three types of error above more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.   $\times$ Embedded values that are then contradicted $\begin{array}{ll} \text { eg } \quad \text { for } 3 x+2=32, \\ & 3 \times 10+2=32, x=5 \end{array}$

## Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.

For example: 0.7

Accept $\checkmark$	Take care ! Do not accept $\times$
$\checkmark$ A correct probability that is correctly expressed as a decimal, fraction or percentage.   $\checkmark$ Equivalent decimals, fractions or percentages $\text { eg } \quad 0.700, \frac{70}{100}, \frac{35}{50}, 70.0 \%$   $\checkmark$ A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0 $\text { eg } \quad \frac{70}{100}=\frac{18}{25}$	The following four categories of error should be ignored if accompanied by an acceptable response, but should not be accepted on their own.   ! A probability that is incorrectly expressed   eg 7 in 10,   7 out of 10,   7 from 10   ! A probability expressed as a percentage without a percentage sign.   ! A fraction with other than integers in the numerator and/or denominator.   However, each of the three types of error above should not be penalised more than once within each question. Do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld.   ! A probability expressed as a ratio eg $7: 10,7: 3,7$ to 10   * A probability greater than 1 or less than 0

## Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in tiers $3-5,4-6$ and $6-8$.
A total of 122 marks is available in tier 5-7.

## Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental mathematics paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the QCA website www.qca.org.uk from Monday, 23 June 2003. QCA will also send a copy to each school in July.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the external marking agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.

Tier \& Question						Pictogram
3-5	4-6 5	5-7 6	6-8			
1					Correct response	Additional guidance
a				1m	Draws two circles	$\checkmark$ Circles not shaded   ! Circles inaccurate in size and/or shape Accept provided the pupil's intention is clear
b				1m	2	


Tier \& Question					Missing numbers
3-5	4-6 5	5-7 6-8			
2				Correct response	Additional guidance
			1m   1m   1m   1m	Gives any three numbers that add to 15 eg   - $5+6+4$   - $5+5+5$   Gives any two numbers that multiply to 15 eg   - $3 \times 5$   - $1 \times 15$   Gives any two numbers that divide to give 15 eg   - $30 \div 2$   - $15 \div 1$   Gives any three numbers that combine as shown to give 15   eg   - $2 \times 6+3$	$\checkmark$ Throughout the question, use of fractions, decimals, negatives or zeros   $\mathbf{x}$ Incorrect order   eg   - $2 \div 30$   $\checkmark$ Brackets inserted to change order of operations   eg   - $3 \times(1+4)$   $\times$ Incorrect order of operations   eg   - $3 \times 1+4$


Tier \& Question						Scales
3-5	4-6 5	5-7 6	6-8			
3					Correct response	Additional guidance
a				1m	60	$\checkmark$ Value between 59 and 61 inclusive   ! Units given Ignore
b				1 m	Indicates the correct position	$\checkmark$ Unambiguous indication eg   ! Follow through   Accept follow through from part (a), provided their (a) is not 0,50 or 100   ! Position not indicated accurately Accept within 2 mm



Tier \& Question					Clock
3-5	4-6	5-7 6-8			
5				Correct response	Additional guidance
a			1 m	Indicates only the two correct clocks eg   $\checkmark$ $\qquad$ $\qquad$   $\checkmark$	! Indication other than ticks eg   - $\boldsymbol{x}$ used   Accept provided unambiguous
b			1m	5:15 or 05:15	$\checkmark$ Superfluous indication of morning eg   - 5:15 am   $\mathbf{x}$ Time incorrect   eg   - 5:15 pm   - 17:15
c			1m	17:15	! Follow through   Accept follow through as 12 hours later than their (b), even if their (b) was 17:15, provided this is written as a possible time   eg, from part (b) as 03:26, accept   - 15:26   $\checkmark$ Superfluous indication of evening eg   - 17:15 pm   $\times$ Time incorrect or not using 24 hour clock eg   - 17:15 am   - 5:15 pm



Tier \& Question							Chains
3-5	4-6	5-7	6-8				
7	1				Correct response		
a	a			1m	Gives both correct values correctly positioned, ie 20 and 320		
b	b			1m	Gives both correct values correctly positioned, ie 5 and $2 \frac{1}{2}$ or equivalent	$\checkmark \text { For } 2 \frac{1}{2}, \frac{5}{2}$	



Tier \& Question
3

Wind chill

3-5	4-6	5-7	6-8			-ind chil
9	4				Correct response	Additional guidance
				1m   1m   1m	$-19$ $16$ $-22$	! Incorrect notation for negative numbers eg - 19-   Penalise only the first occurrence   $x-16$ given for 16

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Tier \& Question} \& \& \& \multirow[t]{2}{*}{Throwing dice} \\
\hline 3-5 \& 4-6 5 \& 5-7 6-8 \& \& \& \\
\hline 10 \& 5 \& \& \& Correct response \& Additional guidance \\
\hline a \& a \& \& \begin{tabular}{l}
\[
2 \mathrm{~m}
\] \\
or
1m
\end{tabular} \& \begin{tabular}{l}
Indicates only the five points with positive integer coordinates whose sum is 6 eg \\
Indicates at least four correct points with no incorrect points \\
or \\
Indicates all five correct points with not more than one incorrect point
\end{tabular} \& \begin{tabular}{l}
! Point(s) not indicated accurately Accept in parts (a) and (b) provided the pupil's intention is clear \\
! Additional points indicated that assume zero to be on the dice \\
eg \\
- \((0,6)\) and/or \((6,0)\) indicated \\
If this is the only error, mark as 1,0 \\
! Additional points with non-integer coordinates whose sum is 6 indicated eg \\
If this is the only error, mark as 1,0
\end{tabular} \\
\hline b \& b \& \& \(2 m\)

or

$1 m$ \& | Indicates only the six points with positive integer coordinates such that $y=x$ eg |
| :--- |
| Indicates at least five correct points with no incorrect points |
| or |
| Indicates all six correct points with not more than one incorrect point | \& | ! Additional point indicated that assumes zero to be on the dice eg |
| :--- |
| $(0,0)$ indicated |
| If this error has been penalised in part (a), condone |
| If this is the only error and it has not been penalised in part (a), mark as 1,0 |
| ! Additional points with non-integer coordinates such that $y=x$ indicated eg |
| If this error has been penalised in part (a), condone |
| If this is the only error and it has not been penalised in part (a), mark as 1,0 | <br>

\hline
\end{tabular}

Tier \& Question			Throwing dice (cont)		
3-5 4	4-6 5	5-7 6-8			
10	5			Correct response	Additional guidance
c	c		1m	Completes the sentence to give a correct rule eg   - One less than the number on the red dice   - Red - 1   - Needing 1 added to get the number on the red dice	$\checkmark$ Minimally acceptable rule   eg   - 1 below the other dice   - The number below the red dice   $\checkmark$ Rule expressed algebraically   eg   - $b=r-1$   - $r-1$   $!$ Rule that does not use the given starting phrase   Accept only if unambiguous   eg, accept   - Red = blue + 1   eg, do not accept   - 1 more on the red   $\times$ Ambiguous rule   eg   - -1   - 1 below   - A number below the red dice   - The number lower than the red dice   - Followed by the number on the red dice   $\mathbf{x}$ Incomplete rule   eg   - Less than the number on the red dice   $\times$ Rule not generalised   Do not accept rules only shown through particular numerical examples   eg   - $2-1=1,3-2=1,4-3=1$ etc






Tier \& Question						Simplifying
3-5	4-6	5-7	6-8			
14	9	3			Correct response	Additional guidance
				$1 \mathrm{~m}$ $1 \mathrm{~m}$	$8 k+7$ $2 k+5$	$\times$ Use of multiplication sign in simplified expressions eg, for the first mark   - $8 \times k+7$   $\times$ Partially simplified expressions



Tier \& Question							Thinking fractions
3-5	4-6 5	5-7 6	6-8				
16	11	4				Correct response	Additional guidance
				1m	40		
				1m	150		
				1m	30		


Tier \& Question				Marking overlay available		Moving C
3-5	4-6	5-7	6-8			
17	12	5			Correct response	Additional guidance
a	a	a		1 m	Gives correct coordinates eg   - (6, any value except 6 or 1$)$   - $(4,5)$   - $(8,5)$   - $(4,-3)$   - $(8,-3)$	! Use of overlay   As there is an infinite number of correct coordinates, a marking overlay is available for use if pupils give non-integer coordinates. Accept coordinates of any point that lies exactly on the straight line or on one of the circles, provided their point is neither $(6,6)$ nor on the same straight line as A and B
b	b	b		1 m	Gives correct coordinates, ie $(4,5)$ or $(8,5)$ or $(6,3)$ or $(4,-3)$ or $(8,-3)$ or $(6,-1)$	$\checkmark$ Same correct position used for part (b) as for part (a)


Tier \& Question						Shoe sizes
3-5	4-6	5-7	6-8			
18	13	6			Correct response	Additional guidance
a	a	a		1 m	6	
b	b	b		$\begin{gathered} 1 \mathrm{~m} \\ \mathrm{U} 1 \end{gathered}$	2	



Tier \& Question						Travel to work
3-5	4-6	5-7	6-8			
20	15	8			Correct response	Additional guidance
a	a	a		$\begin{gathered} 2 \mathrm{~m} \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	£ 729(.00)   Shows the digits 729   eg   - 72900   - 72.90   or   Shows a complete correct method with not more than one computational error, but with the decimal point correctly positioned eg   - $20 \times 45=900$   $16 \times 45=8 \times 90=720$   $720+9$   - 1620 $\begin{aligned} & \frac{45}{64800} \\ & \frac{8100}{73900} \text { (error) } \quad \text { so } £ 739 \end{aligned}$   (error) 1   So $£ 719$	$\times$ Conceptual error   eg $\begin{array}{r} 1620 \\ \begin{array}{r} 45 \\ 6480 \\ 8100 \\ \hline 14580 \end{array} \text { so } £ 145.80 \end{array}$
b	b	b		1 m	£ 14	


Tier \& Question						Solving
3-5	4-6	5-7	6-8			
21	16	9	1		Correct response	Additional guidance
				1m   1m	2 $2 \frac{1}{2}$ or equivalent	! Throughout the question, incorrect notation eg, as an answer for the first mark $\text { - } k=\times 2$   Withhold one mark only for the first occurrence
				2 m   or   1m	$4 \frac{1}{2}$ or equivalent   Shows or implies a correct first step of algebraic manipulation that either reduces the number of terms or collects variables on one side of the equation and numbers on the other eg   - $2 t+4=13$   - $3 t=t+9$   - $3 t-t=13-4$   - $2 t=9$	! Method used is trial and improvement Note that no partial credit can be given
				1 m	-1	


Tier \& Question				Shapes		
3-5	4-6 5		6-8			
	171	10	2		Correct response	Additional guidance
				3 m   or 2m   or   1m	All four angles correct and correctly positioned, ie   At least three angles correct and correctly positioned   or   All four correct angles shown but identification of which angle is which size is not clear   At least two angles correct and correctly positioned	$\checkmark$ Units omitted   ! Units incorrect   eg   - $50 \%$   Withhold one mark only for the first occurrence   $\checkmark$ Follow through   For 2 m or 1 m , follow through for $47^{\circ}$ as 360 - sum of their other three angles or 97 - their 50


Tier \& Question						Mixed numbers
3-5	4-6	5-7	6-8			
	18	11	3		Correct response	Additional guidance
	a	a	a	$\begin{gathered} 1 \mathrm{~m} \\ \\ 1 \mathrm{~m} \end{gathered}$	Gives the value $1 \frac{4}{5}$ or $\frac{9}{5}$ or equivalent fraction or decimal   Indicates the correct position on the number line, ie	! Indication inaccurate   Accept provided the pupil's intention is clear   ! Follow through   Accept provided their incorrect value for the addition is between 0 and 2 , but is not an integer   eg, from $\frac{12}{15}$ for the first mark, accept
	b	b	b	1 m	20	$\checkmark$ Answer given as a fraction eg   - $\frac{60}{3}$   $\checkmark$ Answer repeats sixths eg   - $\frac{20}{6}$


Tier \& Question						Mixed numbers (cont)
3-5	4-6	5-7	6-8			
	18	11	3		Correct response	Additional guidance
	c	c	c	$2 \mathrm{~m}$   or 1m	Shows a complete correct method with not more than one computational error eg   - $20 \div 5$   - $\frac{10}{3} \times \frac{6}{5}=\frac{60}{15}=3$ (error)   - $3 \frac{1}{3}=\frac{7}{3}$ (error), $\frac{7}{3} \times \frac{6}{5}=\frac{42}{15}$	$\checkmark$ Answer given as a fraction eg   - $\frac{4}{1}$   - $\frac{60}{15}$   ! Follow through   For 2 m or 1 m , accept their (b) $\div 5$ provided their (b) is a positive integer   x Conceptual error   eg   - $20 \div 5=\frac{4}{6}$   - $\frac{20}{6} \div \frac{5}{6}=\frac{4}{6}$   - $\frac{10}{3} \times \frac{6}{5}=\frac{16}{15}$   - $\frac{1}{10} \times \frac{6}{5}=\frac{6}{50}$   - $3 \frac{1}{3} \times \frac{6}{5}=3 \frac{6}{15}$


Tier \& Question						Areas algebraically
3-5	4-6	5-7	6-8			
	19	12	4		Correct response	Additional guidance
	a	a	a	1 m   1m	Gives a correct simplified expression for the area eg   - $15 a b$   - $15 \times a \times b$   Gives a correct simplified expression for the perimeter   eg   - $6 a+10 b$   - $2(3 a+5 b)$   - $6 \times a+10 \times b$   - $2 \times(3 a+5 b)$	! Partially simplified or unsimplified expressions   eg, for the area   - $3 a 5 b$   eg, for the perimeter   - $2(3 a)+2(5 b)$   - $2 \times(3 \times a+5 \times b)$   If both expressions are correct but are partially simplified or unsimplified, mark as 0,1 , provided neither has subsequently been incorrectly simplified   ! Expressions transposed but otherwise correct and simplified Mark as 0,1
	b	b	b	1 m	Gives both correct dimensions in either order, ie $4 a$ and $3 a$	! Correct dimensions embedded   Accept provided both the area and perimeter have been considered   eg, accept $\begin{aligned} -12 a^{2}=3 a \times 4 a \\ 14 a=2(3 a+4 a) \end{aligned}$   ! Dimensions labelled as length or width Ignore


Tier \& Question						Arranging
3-5	4-6	5-7	6-8			
	20	13	5		Correct response	Additional guidance
	a	a	a	1m   U1	Gives a correct arrangement using each of the numbers 1 to 6 once only, ie for each 3 digit number:   eg   - $543+621$   - $641+523$   Gives a correct arrangement using each of the numbers 1 to 6 once only, ie for each 3 digit number:   eg   - $514+236$   - $216+534$	
	b	b	b		$536-421 \text { or } 356-241$	$\times$ Incorrect order of subtraction eg   - 421 - 536


Tier \& Question						Lines on a square
3-5	4-6		6-8			
	21	14	6		Correct response	Additional guidance
		a	a	2 m   or 1m	Matches all three equations correctly, ie   Matches any two equations correctly	$\times$ Any equation matched more than once
		b	b	1 m	Gives a correct equation eg $x=1$	



Tier	\& Q	Quest		Scatter graphs		
3-5	4-6	5-7	6-8			
	22	15	7		Correct response	Additional guidance
	a	a	a	1m	Indicates a positive correlation eg   - There is positive correlation between diameter and height   - As diameter increases, height increases   - Higher trees have wider trunks   - Bigger trees are fatter   - They both increase together	$\checkmark$ Minimally acceptable response eg   - Big trees have big diameters   $\times$ Incomplete response   eg   - It's positive   - Big trees have big heights   - Higher trees are bigger   $\times$ Incorrect reference to proportion eg   - It's directly proportional
	b	b	b	1 m	Gives a correct explanation   The most common correct explanations:   Refer to the trend in the data   eg   - It would be too far away from the other points   - It would be an outlier   - It doesn't fit the general trend   - It would be a long way from the line of best fit   - This diameter is far too big for the height   - It is too small to have such a big diameter   Give a value for the height or diameter if the tree were a poplar   eg   - If it was a poplar you would expect it to be about 6 metres high   - Poplars that are 3 m high are only about 2 cm in diameter	$\checkmark$ Minimally acceptable explanation eg   - It's on its own on the graph   - It doesn't fit the correlation   - It doesn't fit the pattern   - It doesn't have the same relationship   - The diameter in cm is bigger than the height in m   - The diameter is big but the height is small   $\times$ Incomplete or incorrect explanation   eg   - It's different from the others   - It's on its own   - It doesn't fit the graph   - Poplar trees are tall and thin   - It would not be on the line of best fit   - It's not in the same range   - The diameter is too big   - Poplar trees don't have diameters bigger than their height   - For poplars, diameter $+1=$ height   ! Height for diameter of 5 cm given Accept values in the range 5.5 m to 7 m inclusive   ! Diameter for height of $3 m$ given Accept values in the range 1 cm to 2.3 cm inclusive
	c	c	c	1m	Indicates a value between 4 and 5.2 inclusive	
		d	d	$\begin{array}{\|c} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{array}$	Indicates that all four statements are false   Makes three correct decisions	! Indication other than ticks Accept only if unambiguous


Tier \& Question					Winning ticket
3-5	5-7	6-8			
	16	8		Correct response	Additional guidance
	a	a	1 m	Gives a correct probability eg   - $\frac{75}{245}$   - $\frac{15}{49}$   - 0.306(...)   - $31 \%$	! Answer of 0.3(0) or 30\% Accept provided a correct method or a more accurate value is seen   $\times$ Incorrect method   eg   - 3 colours so $\frac{1}{3}=0.3$
	b	b	1 m	Gives a correct probability eg   - $\frac{3}{245}$	! Follow through   Accept follow through from an incorrect total number of tickets seen in part (a), provided their total is not 3 or 100   eg, from $\frac{75}{255}$ for part (a), accept   - $\frac{3}{255}$   ! Decimal or percentage value Accept 0.01 or $0.012(\ldots)$, or the equivalent percentages, provided no incorrect method is seen
	c	c	1m	$\frac{1}{3}$ or equivalent probability	! Decimal or percentage value Accept 0.33 or better, or the equivalent percentages



Tier \& Question						Journeys (cont)
3-5	4-6 5-7	5-7 6-				
		17	9		Correct response	Additional guidance
		c	c	$2 \mathrm{~m}$   or   1m	Indicates 40 miles per hour or $\frac{2}{3}$ mile per minute   Shows or implies a complete correct method for calculating the speed in miles per hour or miles per minute eg   - $20 \div 30 \times 60$   - $20 \times 2$   - $20 \div 30$   or   Indicates a correct speed in miles per minute, rounded or truncated to one decimal place eg   - 0.6 miles per minute   - 0.7 miles per minute	Note to markers:   Apply the additional guidance from parts (a) and (b) to part (c)   ! Answer given in miles per minute and rounded or truncated   In this context, accept rounding or truncation to two or more decimal places. For 2 m , do not accept an answer of 0.6 or 0.7 unless a correct method or a more accurate value is seen   $\mathbf{x}$ For $1 m$, method leading to rate of travel as time per distance   eg   - $30 \div 20$   $\times$ For 1m, incomplete method   eg   - 20 miles in 30 minutes, so   2 miles per 3 minutes


Tier \& Question			( Different ways		
3-5	4-6 5-7	6-8			
	18	10		Correct response	Additional guidance
	a	a	3 m   or   2m   or   1m	Indicates correct decisions for all six statements, ie   Indicates correct decisions for five statements   Indicates the correct decision for at least one of the false statements, and makes at least three other correct decisions eg	$\checkmark$ Unambiguous indication eg   - $\boldsymbol{J}$ for True and $\mathbf{x}$ for False
	b	b	$1 \mathrm{~m}$	Gives a correct explanation   The most common correct explanations:   Refer explicitly or implicitly to the more efficient method of algebraic manipulation suggested by part (a)   eg   - You can solve the equation quickly by doing the same thing to both sides of the equation   - Because $2 x=3, x=1 \frac{1}{2}$   Refer to the time taken or the number of trials needed   eg   - Takes a long time   - You need to try lots of values   - It is inefficient   Refer to the difficulty of finding an exact answer   eg   - If there are lots of decimal places it might be hard to be exact	$\checkmark$ Minimally acceptable explanation   eg   - Using algebra is better   - Decimal answers can be hard to find   - It can be inaccurate   ! Incomplete explanation   eg   - There is a better method   - The answer is always one value   - Easy to make a mistake   - It is inaccurate   - It's like guess work   - You could go on forever   Do not accept unless alongside a correct explanation


Tier \& Question				Marking overlay available		Locus of points
3-5	4-6 5	5-7	6-8			
		19	11		Correct response	Additional guidance
		a	a	1 m	Indicates the two points of intersection of the circles with radius 4 cm , within the tolerance as shown on the overlay	! More than two points indicated Ignore additional points that are equidistant from $A$ and $B$, as these may be working for part (b). Ignore other additional points provided it is clear which two points are the pupil's answer for part (a)
		b	b	1 m	Draws a straight line that fulfils the following three conditions below:   1. Ruled   2. Within the tolerance as shown on the overlay   3. Extended to at least both the 6 cm circles as shown on the overlay	$\times$ Shading, or additional lines or curves marked   $\times$ Line indicated by a series of points or shown dashed or dotted



Tier \& Question			Straight line		
3-5	4-6	5-7 6-8			
		13		Correct response	Additional guidance
		a	1m	Gives a correct explanation   eg   - Right-angled triangle drawn on graph, with correct dimensions which are then used for height $\div$ base   - $\frac{\text { Change in } y}{\text { Change in } x}=\frac{5}{10}$   - 6 right, 3 up, so $3 \div 6$   - Half a square up for every one square along   - $(10,6)$ is on the line, so $6=10 m+1$ $\begin{aligned} 10 m & =5 \\ m & =0.5 \end{aligned}$	$\checkmark$ Correct description of method eg   - You draw a right-angled triangle on the line, then you divide height by base   $\checkmark$ Minimally acceptable explanation   eg   - Right-angled triangle drawn on graph, with correct dimensions labelled   - $\frac{y}{x}=\frac{5}{10}$   - 6 right, 3 up   - Half a square up each time   ! Units given   Ignore   $\times$ Incomplete explanation   eg   - $\frac{5}{10}$   - It's 1 on the $y$-axis, -2 on the $x$-axis, and $1 \div 2=0.5$
		b	$2 \mathrm{~m}$   or 1m	Gives a correct equation   eg   $y=\frac{1}{2} x+1$   - $y=0.5 x+1$   - $2 y-x=2$   $\frac{1}{2} x$, or equivalent, seen   eg   - $\frac{1}{2} x+1$   or   Shows understanding that the equation is of the form $y=m x+c$ and that $m=\frac{1}{2}$ and $c=1$, even if there are subsequent errors eg $\begin{aligned} & y=m x+c \\ & y=0.5+1 \text { (error) } \end{aligned}$	
		c	1m	Gives any equation equivalent to $y=\frac{1}{2} x+c$, where $c$ is any value other than 1 eg   - $y=\frac{1}{2} x-7$   - $y=0.5 x+5$   - $2 y=x$	! Follow through from part (b) Accept an equation of a line parallel to their (b), provided the equations contain both the variables $x$ and $y$ eg, from $y=2 x+1$ for part (b), accept - $y=2 x+4$


Tier \& Question					Theme park
3-5	4-6 5	5-7 6-8			
		14		Correct response	Additional guidance
		a	1 m	Gives a value between 27.5 and 28.5 inclusive	
		b	$2 \mathrm{~m}$   or 1m	Gives a value between 16 and 18 inclusive   Identifies both the upper quartile age as a value between 37.5 and 38.5 inclusive and the lower quartile age as a value between 20.5 and 21.5 inclusive   or   On the graph, indicates on the $x$-axis two correct points corresponding to one value between 37.5 and 38.5 inclusive, and one value between 20.5 and 21.5 inclusive, even if the values are not stated or are stated incorrectly	! More than two points indicated on the $x$-axis Ignore a point intended to correspond to the median. Otherwise do not accept
		c	1m	Gives a correct statement of comparison, interpreting the data   eg   - On average, younger people went to the theme park   - There was not as much variation of age at the theme park   - Older people tended to go to the flower show   - More people from different age groups went to the flower show	$\checkmark$ Follow through from incorrect values for parts (a) or (b)   $\checkmark$ Minimally acceptable statement   eg   - The average age was higher at the flower show   - Younger people went to the theme park   - The theme park had people closer to each other in age   ! Comparison with the theme park is implicit Given the wording of the question, condone eg, accept   - Older people tended to go   $\times$ No interpretation of the median or IQR within the context given   eg   - The median age in the theme park is lower   - The range was higher at the flower show   $\mathbf{x}$ Incorrect statement   eg   - People at the theme park were between 20 and 40 but people at the flower show were between 30 and 60   - Young people went to the theme park but did not go to the flower show



Tier \& Question			( Inequality (cont)		
3-5	4-6	5-7 6-8			
		15		Correct response	Additional guidance
		b	$1 \mathrm{~m}$   (U1)	Gives a correct explanation   The most common correct explanations:   Give the correct solution   eg   - $-3<y<3$   - It's only true if $y$ is between -3 and 3   - $y$ must be bigger than -3 as well   Give a counter-example   eg   - -4 is less than 3 but $16>9$   - If you square minus 8 the answer isn't less than 9	$\checkmark$ Minimally acceptable explanation   eg   - Numbers less than -3 don't work   - $(-5)^{2}>9$   - $-4 \times-4=16$   - It's not true for -7   $\times$ Incomplete explanation   eg   - When you square a negative number, the answer is positive   - $\sqrt{ } 9=3$



Tier \& Question$\begin{array}{\|l\|l\|l\|l} \hline 3-5 & 4-6 & 5-7 & 6-8 \\ \hline \end{array}$			Computer game		
		17		Correct response	Additional guidance
		a	1 m	Indicates W, L, L	$\checkmark$ Unambiguous indication eg $\cdot 1,0,0$
		b	1m	45	! Qualifier used   eg   - About 45   Accept, even though the exact value can be determined from the information given
		c	1m	0.6 ( 0.02) or equivalent probability	$\checkmark$ Qualifier used eg   - About 60\%
		d	1m	Joins $(100,0.6)$ to $(120,0.5)$ using a curve with negative but increasing gradient, or by marking and joining any number of individual points on such a curve eg	! Point (120, 0.5) not accurately marked Accept if on line $x=120$ and within 1 mm of correct height   ! Part(s) of curve with incorrect gradient Condone use of a straight line, ruled or unruled, ie   However do not accept other incorrect gradients eg   (decreasing gradient)   (gradient stops increasing)   (gradient positive in parts)

Index to mark schemes

Tier				Question	Page
3-5	4-6	5-7	6-8		
1				Pictogram	10
2				Missing numbers	10
3				Scales	11
4				Prices	12
5				Clock	13
6	3			Calculations	14
7	1			Chains	14
8	2			Puzzling out	15
9	4			Wind chill	15
10	5			Throwing dice	16
11	6			Perimeter and area	18
12	7			Weighing	20
13	8	2		Patterns	21
14	9	3		Simplifying	22
15	10	1		Car parking	22
16	11	4		Thinking fractions	23
17	12	5		Moving C	23
18	13	6		Shoe sizes	24
19	14	7		Construction	24
20	15	8		Travel to work	25
21	16	9	1	Solving	26
	17	10	2	Shapes	27
	18	11	3	Mixed numbers	28
	19	12	4	Areas algebraically	30
	20	13	5	Arranging	31
	21	14	6	Lines on a square	32
	22	15	7	Scatter graphs	34
		16	8	Winning ticket	35
		17	9	Journeys	36
		18	10	Different ways	38

Index to mark schemes

Tier				Question	Page
$3-5$	$4-6$	$5-7$	$\mathbf{6 - 8}$		
		19	11	Locus of points	39
		20	12	Evens or odds	39
			13	Straight line	40
			14	Theme park	41
			15	Inequality	42
			16	Angle proof	44
			17	Computer game	45

## NATIONAL

CURRICULUM
5-16

## GCSE

## GNVQ

First published in 2003

## © Qualifications and Curriculum Authority 2003

Reproduction, storage, adaptation or translation, in any form or by any means, of

## OTHER

VOCATIONAL QUALIFICATIONS this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Produced in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
83 Piccadilly
London
W1J 8QA
www.qca.org.uk/

## Further teacher packs may be purchased (for any purpose other than statutory assessment) by contacting:

QCA Publications, PO Box 99, Sudbury, Suffolk CO10 2SN
(tel: 01787 884444; fax: 01787 312950)

