JUNIOR LYCEUM ANNUAL EXAMINATIONS 2008

DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION

Educational Assessment Unit

Answer all questions.

All working must be shown. The use of a calculator is allowed. Where necessary take acceleration due to gravity $g = 10m/s^2$.

You might find the following list of formulae useful.

Pressure	$P = \rho g h$	F = PA
Force	F = ma	W = mg
Motion	Momentum = mv	$s = \frac{1}{2} at^{2}$
	Impulse = Change in Momentum	v = u + at
Electricity	Q = It	W = QV
	V = IR	$\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3$
	$P = IV = I^2R = \frac{V^2}{R}$	$R \alpha \frac{1}{A}$ $R \alpha L$
Heat	$\mathbf{H} = \mathbf{mc} \triangle \boldsymbol{\theta}$	$\mathbf{E} = \mathbf{Pt}$

For office use only.

Number	1	2	3	4	5	6	7	8	Total
Max Mark	8	8	8	8	8	15	15	15	85
Actual Mark									

	Total Theory	Total Practical	Final Mark
Actual Mark			
Maximum Mark	85	15	100

Answer ALL questions. This section carries 40 marks.

1. Fill in the table below:

Quantity	Unit	Instrument
(to be measured)	(symbols can be used)	(used to measure quantity)
Electrical resistance		Resistance meter
	kg	
	kWh	joulemeter
weight		
atmospheric pressure		barometer
frictional force		air track

[8]

2. An object of mass 3 kg is at rest on a smooth horizontal surface. A force of 15N is applied on the object for 3 seconds.

a. Add to the diagram another force W that represents the weight of the object. [1]
b. What is the numerical value of W? ______ [2]
c. What is the initial velocity of the object just before the force is applied? _____ [1]
d. The applied force causes the object to move with ______ [1]
e. Calculate the velocity of the object after 3 seconds. [1]

[3]

3. The diagram shows a simple electrical circuit:

5. a. An uncharged polythene rod contains an _____ amount of negative and positive charges. [1] b. The polythene rod becomes ______ charged when rubbed against a woollen duster. [1] c. If the charged polythene rod is earthed, _____ charges flow to earth so that the polythene rod becomes again _____ [2] d. A negatively-charged rod is brought near the charged polythene rod . charged polythene Tick the box next to the correct statement. (i) There is no force at all. (ii) There is a force of repulsion. (iii) There is a force of attraction. [1] e. charged polythene metal positively charged metal conductor on insulating base Put + and • signs to show the charge on the : (i) positively-charged metal conductor. (ii) charged polythene rod. [2] f. The diagram in question e above shows that _____ charges attract. [1]

Section **B**

Answer ALL questions. This section carries 45 marks.

6. The diagram shows a water tank that has an opening in the base. This opening is closed by means of a plastic stopper that can withstand the water pressure when the height of water in the tank is **equal** or **less** than 0.85m.

a. Calculate the **pressure** exerted by the water on the plastic stopper when the depth of the water in the tank is 0.85m. (Density of water = 1000 kg/m^3)

b. The area of the opening at the base of the tank is 0.0012 m^2 . Calculate the **force** exerted by the water on the plastic stopper.

_____[5]

[5]

c. The plastic stopper is replaced by a rubber stopper that can withstand a pressure of 10 kPa (10 000 Pa) before the opening starts to leak.Calculate the maximum height of water in the tank before the rubber stopper starts to leak.

[5]

page 5 of 8

7. Emma investigated how the resistance of a wire varied with its length. She tabulated her results as shown below:

Length of wire (m)	0	0.20	0.40	0.60	0.80	1.00
Resistance (ohms)	0	1.20	2.40	3.50	4.80	6.10

a.	. On the graph paper on page 7 of this question paper, plot a graph						
	of resistance on the y-axis against length on the x-axis.						
	Draw the best straight line through the points.		[7]				
h	From your graph find.						
υ.							
	(i) The length of wire that has a resistance of 1 ohm.		[1]				
	(ii) The resistance of a 0.5m length of wire.		[1]				
c.	The graph shows that the resistance of a wire and its length are						
			[2]				
d.	Emma repeated the same experiment using a						
	(i) 1m length of thicker wire of the same material.						
	(ii) 1m length of thinner wire of the same material						
	Tick the box payt to the correct statements:						
	Tex the box hext to the correct statements.						
G	i) For a 1m length of thicker wire the resistance, is larger than 6.10 charge						
(1	i) For a finitengul of uncker whe the resistance. Is larger than 0.10 offins.						
	18 also 6.10 ohms.						
	is less than 6.10 ohms.						
			[2]				
(ii	i) For a 1m length of thinner wire the resistance: is larger than 6.10 ohms.						
	is also 6.10 ohms.						
	is less than 6.10 ohms.		[2]				
			r . 1				

page 6 of 8

Use a graph paper for this page

8. In an experiment about momentum, a trolley A of mass 3.2kg is allowed to roll down a steep ramp before it collides with a stationary trolley B of mass 4.8kg. Just before the collision, trolley A is moving with a velocity of 5m/s.

a.	The v	velocity of trolley B before the collision is and its momentum	
	is the	erefore also	[2]
b.	Calc	ulate the momentum of trolley A just before the collision.	
			[2]
c.	On co	ollision, the trolleys stick together and move forward.	
	i) '	What is the mass of the combined trolleys ?	
			[2]
	ii) V	Vhat is the momentum of the combined trolleys just after the collision?	
			[2]
i	ii)	Calculate the velocity of the combined trolleys just after the collision.	
			[3]
d.	This	experiment is repeated using a ramp that is less steep.	
	State	whether each of the following increases, decreases or remains unchanged.	
	i)	the velocity of trolley A before the collision.	
	ii) the momentum of trolley A just before the collision.	_
	ii	i) the mass of the combined trolleys	
	iv	the velocity of the combined trolleys just after the collision.	[4]