JUNIOR LYCEUM ANNUAL EXAMINATIONS 2008
 DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION Educational Assessment Unit

FORM 3

PHYSICS
TIME: 1h 30min
Answer all questions.
All working must be shown. The use of a calculator is allowed.
Where necessary take acceleration due to gravity $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

You may find some of these formulae useful.

Density \quad Density $=\frac{\text { Mass }}{\text { Volume }}$
Force $\quad W=m g$
Moment of a force $=$ force X
perpendicular distance
Energy \& Work done = F s
Work

$$
\mathrm{PE}=\mathrm{mgh}
$$

Power $=\frac{\text { Work done }}{\text { Time taken }}$
$K E=\frac{m v^{2}}{2}$
Pressure \quad Pressure $=\frac{\text { Force }}{\text { Area }} \quad$ Pressure $=\rho \mathrm{hg}$
Waves $\quad v=f \lambda \quad v=\frac{s}{t} \quad$ Frequency $=\frac{\text { number of waves }}{\text { time }}$
Refractive Index of glass $=\frac{\text { speed of light in air }}{\text { speed of light in glass }}$

Magnification $=\frac{\text { height of image }}{\text { height of object }}=\frac{\text { image distance }}{\text { object distance }}$

For office use only:

Question No.	1	2	3	4	5	6	7	8	Total Mark	Practical Mark	Final Mark

SECTION A: Answer all questions in the space provided. This section has a total of 40 marks.

1. (a) Isaac and Nicole use the apparatus below to find the density of a small quantity of cooking oil.
A

B

(i) Name the above apparatus:
\qquad
A =
$B=$ \qquad
(ii) They find that 35 g of oil has a volume of $38 \mathrm{~cm}^{3}$. Calculate its density.
\qquad
(b) Isaac and Nicole calculate the density of three different solids A, B and C as shown in the table below.

Solid	Density
A	$1.6 \mathrm{~g} / \mathrm{cm}^{3}$
B	$2.7 \mathrm{~g} / \mathrm{cm}^{3}$
C	$0.6 \mathrm{~g} / \mathrm{cm}^{3}$

(i) Which solid A, B or C floats over water? (Density of water is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$) Give a reason for your answer.
(ii) If solid A is broken into two smaller pieces, would its density change? Explain your answer.
\qquad
2. The diagram shows a metre rule AB resting at its centre on a pivot. A weight of 20 N is placed 0.3 m away from the pivot. Another weight X is placed 0.4 m away from the pivot on the opposite side to keep the rule in balance.

(a) Underline the correct answer in each of the following:
(i) The direction of the weight X is (upwards, downwards).
(ii) The direction of the moment of the weight X is (clockwise, anticlockwise).
(iii) The direction of the moment of the 20 N weight is (clockwise, anticlockwise).
(iv) The sum of the clockwise moments is (greater than, equal to, smaller than) the sum of anticlockwise moments.
(b) Calculate the size of weight X .
(c) Calculate the size of the reaction force at the pivot.
3.(a) Elisa has a mass of 50 kg . When she stands with both feet flat on the ground, the total surface area in contact with the ground is $0.2 \mathrm{~m}^{2}$. Calculate:
(i) Elisa's weight \qquad
(ii) her pressure on the ground.
\qquad
\qquad
(b) She wears a pair of shoes with high heels as shown in the diagram.
(i) How will her pressure on the ground change?
[1]
(ii) Give one reason for your answer.
(iii) It is not allowed to walk with high heels on the marble floor of St. John's Cathedral at Valletta. Explain why.
4. Ganni jumps on a mat, until he is jumping high and reaching
a height of 1.8 m . His mass is 60 kg .
(a) Mark on the diagram, where Ganni has

(i) maximum K.E. with letter \mathbf{X}
(ii) maximum P.E. with letter \mathbf{Y}
(b) Calculate his potential energy at a height of 1.8 m .
\qquad
\qquad
(c) With what speed must he leave the mat to reach a height of 1.8 m ?
\qquad
\qquad
\qquad
(d) Eventually Ganni slows down his movements and stops. Describe the energy changes that occur.
\qquad
\qquad
5. Fill in the missing words from the lists provided.
(a) planets, stars, red shift
\qquad give out light but \qquad only reflect light.
(b)
orbit,
monitoring,
communication
Thousands of artificial satellites orbit the Earth. \qquad satellites
orbit the earth once every 24 hours. \qquad satellites rotate in low orbit and are used for weather forecast.
(c)
same size, larger,
smaller
The bigger the masses of the planets, the \qquad is the gravitational force between the planets. The further away the masses are from each other, the \qquad is the gravitational force between them.
(d) universe, galaxy, solar system

The \qquad consists of a large number of galaxies. Our galaxy is called the Milky Way. The \qquad is a system of planets orbiting around a sun.

SECTION B: Answer ALL questions. This section has a total of 45 marks.

6. Roberta and Kieran investigate their personal power when they walk up a flight of stairs.
(a)(i) The stairs consist of 5 steps, each 15 cm high. Roberta has a mass of 50 kg . Calculate the work done by Roberta in walking up the stairs.
(ii) Roberta's average time in walking up the stairs is 10 s . Calculate her power output. Give the correct units for power.
(iii) Suggest one precaution they may take to obtain more accurate results.
(iv) Kieran weighs more than Roberta, but takes the same time to walk up the steps. How will his personal power vary with that of Roberta? Explain your answer.
(b) Roberta and Kieran observe the lift installed at their school. They tabulate the work done by the lift as it moves from one floor to another, as shown below.

Height (m)	Work done (kJ)
2	16
4	32
6	48
8	64
10	80
12	96

(i) On the graph paper provided, plot a graph of work done on the y-axis against height on the x-axis.
(ii) Use your graph to find

- the work done when the lift moves 7 m
- the height when 40 kJ of work has been done \qquad

7.

(a) Jacob and Louise investigate the image produced in a plane mirror by an object O . They set the object 5 cm in front of the mirror as shown below.
(i) Complete the ray diagram to show how an image is formed. Mark the position of the image as I.
(ii) Draw the normal at position X on the mirror.
(iii) Mark clearly the angle of incidence and the angle of reflection at position X on the mirror.
(iv) What is the horizontal distance of image from the mirror?
\qquad
(b) The lens of a projector is used to put an image on a screen.
(i) Draw two rays on the diagram to show how the image is produced.

(ii) Give three characteristics to describe the image obtained on the screen.
(iii) Calculate the magnification of the lens.
(iv) Describe two changes which occur to the image when the object is moved very close to the lens.
\qquad
8.(a) Water waves are produced in a glass-sided water tank. Viewed from the side at a particular instant, the waves appear as shown below. A small cork floats on the water as shown.

(i) Mark on the above diagram

- a crest with a letter C
- a trough with a letter T
- the length of one wavelength, using λ
- the amplitude of the wave, with the letter A.
(ii) On the above diagram, draw arrows to show how the cork moves.
(iii) Are the water waves as shown in the diagram transverse or longitudinal? Give one reason for your answer.
(iv) It was observed that 10 waves passed a particular point every 4 s . Calculate the frequency of these waves. Give the correct units of frequency.
(b) Ships use ultrasound to detect objects under water.
(i) What is ultrasound?
(ii) A ship sends out a pulse of ultrasound with a speed of $1500 \mathrm{~m} / \mathrm{s}$ and detects an echo 1.5 s later. Calculate the distance between the ship and the
 object that causes the echo.
(iii) Both X-rays and ultrasound are used in medicine. Why is ultrasound preferred to X-rays to produce an image of an unborn baby?
[1]
(iv) Name two properties of X-rays.

