JUNIOR LYCEUM ANNUAL EXAMINATIONS 2007

Educational Assessment Unit - Education Division

FORM 5	PHYSICS	TIME: 1 hr 45 min

NAME: _____

CLASS: _____

Answer ALL questions in the spaces provided on the Exam Paper. All working must be shown. The use of a calculator is allowed. Where necessary take the acceleration due to gravity, $g = 10 \text{ m/s}^2$.

Equations for Annual Exam Physics							
Density	m = ρV						
Pressure	P = hρg	P = F/A					
Energy and Work	PE = mgh	$KE = \frac{1}{2} m v^2$					
	E(or W) = Pt	W (or WD) = F s					
Force	F = m a	W = m g					
Motion	average <u>total distance</u> speed ⁼ total time	$v = u + a t^2$					
	2	$s = \frac{1}{2} a t^2$					
	momentum = m v						
Electricity	Q = It	W = Q V					
	V = IR	$\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3$					
	$P = IV = I^2R = \frac{V^2}{R}$	Rα <u>length</u>					
Electromagnetism	$\frac{\mathbf{N}_1}{\mathbf{N}_2} = \frac{\mathbf{V}_1}{\mathbf{V}_2}$	area					
Heat	$\mathbf{H} = \mathbf{m} \mathbf{c} \Delta \boldsymbol{\theta}$						
Waves	$c = f \lambda$						

Marks Grid: For the Examiners' use ONLY

Question	1	2	3	4	5	6	7	8	Theory	Practical	Total
Max. Mark	8	8	8	8	8	15	15	15	85	15	100
Score											

Section A.

1

1

1

2

 An empty measuring cylinder has a mass of 75 g. Its mass increases to 100 g when some olive oil is poured into it. The volume occupied by the olive oil in the measuring cylinder is 30 cm³ (0.00003 m³).

a. Calculate:

- i. the **mass** of the olive oil in the measuring cylinder in **g**,
- ii. the **density** of this sample of olive oil in g/cm^3 ,
- iii. the **mass** of the olive oil in the measuring cylinder in **kg**,
- iv. the **density** of this sample of olive oil in **kg/m³**.
- b. It is noticed that when this sample of olive oil in the measuring cylinder is placed in a refrigerator and cooled to 5 °C, the level of the olive oil in the measuring cylinder gets lower as shown in the figures below.

The level of the olive oil sample at 20 °C

The level of the olive oil sample at 5 °C

State the effect (if any) of this cooling on the value of the:

i. mass of the olive oil in the measuring cylinder,
ii. volume of the olive oil in the measuring cylinder,
iii. density of the olive oil in the measuring cylinder.

- **2.** a. Complete the following statements:
- A transverse wave is a wave in which the vibrations are at _____ ° to the direction of wave travel.
- ii. A longitudinal wave is a wave in which the vibrations are at _____° to the direction of wave travel.
- iii. The quantity of energy transferred by both kinds of waves depends on the ______ of the wave.
- iv. The velocity of both kinds of waves depends only on the ______
 through which the wave travels.

v. Sound waves cannot travel through a _____.

1

1

b. The figure below represents a transverse wave travelling through a rope held firmly at end A and moved up and down at end B.

Use the above figure to calculate:

- i. the number of complete waves, _____.
- ii. the **wavelength** λ in m,
- iii. the **velocity of the wave** through the rope in m/s, given that the frequency of the vibration is 2 Hz

1

1

3. Maria drives from her home to the supermarket. The graph below shows how her speed changes throughout the **whole** journey.

a. From the graph find:

i.	her highest speed in m/s,	m/s	1
ii.	the speed in m/s while she travels at constant velocity,	m/s	1
iii.	the acceleration in m/s ² during the first 40 s of her journey.	m/s ²	1

- b. Maria stops at the traffic lights. How long does she wait at the traffic lights? _____s 1
- c. Use the graph to find the **distance** in meters Maria covers during the **last 80 s** of her journey.
- d. Calculate:
- i. the **momentum** in kgm/s when Maria is travelling at **24 m/s** given that the total mass of the car and Maria is 5000 kg.
- ii. the average braking force F in N of Maria's car during the last 40 s of her journey given that the braking force F = change in momentum/time.

2

1

4. The list below consists of some electrical components that might be found in an electric circuit:

switch, filament lamp, diode, rheostat, light dependent resistor (LDR), short connecting wire, thermistor.

- a. Which of the above electrical components:
- i. has negligible resistance,
- ii. causes a break in the circuit cutting current flow,
- iii. has a resistance dropping rapidly when its temperature rises, _____
- iv. has a high resistance in the dark.
- b. The following circuit diagram shows two resistors R₁ and R₂ connected in series to a 12-Volt car battery.

The switch S is closed. Calculate the:

- i. total resistance R in ohms of the circuit.
- ii. current I in amperes flowing through the circuit,
- iii. **power P** of the circuit in Watts.
- c. Five different fuses of values: 2 A, 3 A, 5 A, 7 A, and 13 A are available. Which is the best fuse which may be added to the circuit?

1

1

1

1

1

1

1

- 5. The following terms are associated with the study of the universe: solar system, planet, galaxy.
- a. Place the terms in the list above, starting from the **smallest**:
- b. The diagram shows Earth and four cities **K**, **L**, **M**, **N** on the Earth's surface.

State:

i.	which cities are in daylight,		1
ii.	which cities are in night-time,		1
iii.	how long does it take city M to return to the same place again as Earth spir	ns on its	•
	axis,		1
iv.	how long does it take Earth to complete one orbit around the Sun.		1

- c. A communications satellite orbits around the earth in high orbit.
- i. The ______ force keeps the satellite from escaping its orbit. 1
- ii. Explain why the geostationary satellite appears stationary from the Earth.

2

Section B.

6. This question is about pressure

A storage tank contains a **liquid**. The graph below shows how the pressure in Pa **due to the liquid only** changes with its height in the tank.

b. Using the graph find:

i.	the depth of the liquid when the pressure due to the liquid is 9000 Pa.	 1
ii.	the pressure due to the liquid at a depth of 0.5 m,	 1
iii.	the density of the liquid.	3

- c. Given that atmospheric pressure is 100 000 Pa:
- i. what is the total pressure in Pa at the surface of the liquid?
- ii. calculate the **total pressure** in Pa at a liquid depth of 0.5 m.

2

1

- d. The storage tank containing the liquid rests on a concrete roof. The base area of the storage tank is 4 m². Calculate the pressure exerted on the roof when the tank is completely filled with the liquid given that the total weight of the tank and the liquid is 8000 N.
- e. The liquid is transferred to similar tank of the same weight but with a larger base area. State what changes, if any, take place to:
 - i. the total weight of the liquid and the tank, _____ 1
 - ii. the **pressure** exerted by the tank and the liquid on the roof. _____

7. This question is about the transformation of energy

The table below shows the **rise in temperature** $\Delta \theta$ which takes place when a lump of lead on mass 0.1 kg hits the ground after it has been dropped from **different** heights h.

rise in temperature / °C	0.0	0.7	1.1	1.9	2.4	2.9	3.7	4.1
height / m	0.0	10	20	30	40	50	60	70

- a. Using the above table:
- i On the graph paper provided, plot a graph, of rise in temperature (y-axis) against the height (x-axis). Draw the best straight line.
- ii. Explain why some of the points you have plotted do not lie on the line you have drawn.
- b. From **your** graph find the:
- i. rise in temperature when the lead lump is dropped from a height of 35 m, _____1
- ii. **temperature** of the lead lump after being dropped from a height of 35 m given that the temperature of the surroundings is 20 °C,

3

1

5

1

- c. The rise in temperature Δθ which takes place when a similar lump of lead of mass
 2 kg hits the ground after it has been dropped from a height of 39 m is 3 °C.
 Calculate:
- i. the **potential energy** of the lead lump just before it is dropped from a height of 39 m, 2
- ii. the **velocity** with which it strikes the ground after it is dropped from a height of 39 m assuming no air resistance,
- iii. the value of the specific heat capacity of lead obtained when the lead lump is 3 dropped from a height of 39 m assuming no energy losses.

- 8. This question is about electromagnetic induction.
- a. Describe an experiment to show that a current is induced in a coil when it cuts lines of magnetic flux. You are provided with the following apparatus:
 a bar magnet; a long coil; a zero-centre galvanometer; connecting wire.
 Your description should include:
- i. a **labelled** diagram of the experimental set up,

3

2

ii. a **very** brief description of the method,

2

PLEASE TURN OVER

- iii. one observation,
- iv. one conclusion,
- v. two ways of increasing the size of the induced current in the coil.
- b. One use of electromagnetic induction is in the transformer. A 240 V a.c. supply is connected to the primary coil of a transformer and a 12 V, 24 W lamp is connected to its secondary coil as shown in the figure below.

Calculate the:

- i. current in the secondary coil given that the lamp is at its normal brightness.
- ii. **number of turns in the secondary coil** given that the number of turns in the primary coil is 2000 turns.
- iii. **current in the primary coil** of the transformer, assuming it to be 100% efficient.

1

2

2

2