JUNIOR LYCEUMS ANNUAL EXAMINATIONS 2006

Educational Assessment Unit - Education Division

FORM 4 PHYSICS TIME: 1h 30min

NAME:

Answer **ALL** questions in the spaces provided on the Examination Paper. All working must be shown. The use of a calculator is allowed.

Where necessary take the acceleration due to gravity, $g = 10 \text{ m/s}^2$.

You may find some of these formulae useful:					
W = mg F	= ma Energy =	Power x time	$v = u + at$ $s = \frac{at^2}{2}$		
momentum =	mass x velocity	Pressure = $\frac{for}{ar}$	r <u>ce</u> Ρ=hρg rea		
Heat energy =	= mass x specific hea	at capacity x temp	erature change		
V = I R	P = VI	Q = It	$R = R_1 + R_2 + R_3$		

Section A. Answer All Questions. This Section carries 55 marks.

1. Ryan of mass 50 kg, running at 1.5 m/s, jumps on to a stationary trolley of mass 10 kg, and both move together along a long corridor in a supermarket. Calculate:

а.	The momentum of the trolley before Ryan jumps on it.	2
b.	Ryan's momentum just before jumping on to the trolley.	3
C.	Calculate the total mass moving after Ryan jumps on to the trolley.	2
d.	Calculate the common velocity of Ryan and the trolley as they both travel together along the long corridor.	3

CLASS:

2. A battery-operated model car is travelling at a *uniform speed* along a level runway in the direction shown in the diagram. One external horizontal force F_A acting on the car is shown on the diagram.

- a. Force F_A acting against the motion of the car is called ______. **1**
- b. i. Add to the diagram another horizontal force F_E acting on the car in the opposite direction to F_A
 - ii. F_E is referred to as the ______ force.
- c. The resultant force acting on the car travelling at uniform speed is _____ N. ___1
- d. i. State what happens to the speed of the car when force F_E is bigger than force F_A .
 - ii. As force F_E gets bigger, force F_A gets _____ but not to the _____ same extent.
- e. Calculate:
 - i. the resultant force acting the model car given that force F_E is 5 N and $$1$ force \ F_A \ is 2 \ N.$
 - ii. the acceleration produced by this force given that the mass of the model car is 2 kg.
- **3.** The figure shows an underwater photograph of four divers: A, B, C and D.
- a. i. Which two divers are under the same pressure?
 - ii. Give a reason to your answer.
- b. i. Which diver has the greatest pressure due to the water?
 ii. Explain your answer.

2

- c. Calculate the pressure **due to the water** on diver C, given that the density **2** of water is 1000 kg/m³.
- d. Calculate the **total pressure** on diver C given that atmospheric pressure is **2** 100 000 Pa.
- e. The pressure **due to the water only** acting on diver D is 10 000 Pa. **2** Calculate the depth, h, of diver D.
- **4a.** The diagram shows a power ring circuit diagram and an unconnected 13-A socket.

- i. Wire ____ is the live wire and its colour is brown.
- ii Wire ____ is the neutral wire and its colour is blue.
- iii. Complete the circuit diagram by completing the missing socket **2** connections to the circuit.
- **4b.** A 100-W lamp on a 240 V supply is switched on for 30 minutes. Calculate:
 - i. current flowing through the heating element, 2
 - ii. resistance of the filament of the lamp,
 - iii. the number of kWh consumed.

2

2

1

5. Two small balls coated in metallic paint are suspended by long insulating strings from A and B as shown in figure 1 below.

a.

b.

6.	A boy drops a large stone from the top of a cliff. The time taken by the		
	stone to strike the ground below is 2.5 s.		
a.	i. The initial velocity of the stone = m/s.	1	
	ii. The initial acceleration of the stone is m/s ² .	1	
	iii. The acceleration of the stone is caused by the		
	iv. The velocity of the ball after it hits the ground = m/s.	1	
		1	
b.	Calculate:	•	
	i. the height of the cliff,	3	

ii. the velocity with which the stone hits the ground.

Section B. Answer All Questions. This Section carries 45 marks.

1. Marica sets up the apparatus as shown in the diagram below in order to find the specific heat capacity **c** of an unknown metal. The mass of the metal block is 2 kg.

The heater is switched on and the following results are obtained.

temperature θ / °C	20	25	30	35	40	45
time t / minutes	0	1	2	3	4	5

- a. Plot a graph of temperature (y-axis) against time (x-axis) on the graph paper provided.
- b. From your graph find the room temperature. _
- c. What do you notice about your graph that shows that the metal block is very well-lagged?
- d. The joulemeter in the diagram shows the reading before the heater is turned on. The reading on the joulemeter when the temperature of the metal block is 45 °C is 39 000 J. Calculate energy supplied by the heater.
- e. Find the time in seconds during which the heater is switched on.
 f. Calculate the power of the heater in J/s or watts W.
 g. Calculate the specific heat capacity c of the metal block.

6

1

2a. The figure below shows two freshly poured cups of hot tea. Cup A is covered by a saucer while Cup B is left uncovered.

The graphs below show how the temperature of the tea in Cup A and the temperature of the tea in Cup B drops with time.

i. ii. iii.	The temperature of the tea in cup A after 8 minutes is °C The temperature of the tea in cup B after 8 minutes is °C The difference in temperature between the tea in cup A and that in cup B after 8 minutes is °C	1 1 1
iv.	The temperature of the tea in cup A drops to 60 °C in approximately minutes.	1
V.	The temperature of the tea in cup B drops to 60 °C in approximately minutes.	1
vi.	The temperature of the tea in cup A takes minutes longer than the tea in cup B to drop to 60 °C.	1
vii.	Why does the tea in cup A take a longer time to cool than that of B?	2
viii.	Heat is lost from <i>cup B</i> to the surrounding air <i>mostly</i> by	2
ix.	Use the graph to find how long you could leave the uncovered cup of tea before drinking the tea at a temperature of 45 °C	2

2b. The figures below represent three sheets of copper A, B and C, painted in different colours.

- Surface _____ absorbs heat energy very quickly. i. 1 Surface _____ is a very good emitter of thermal radiation. 1 ii. 1
- Surface is the best reflector of heat energy. iii.
- **3a.** Write down the meaning of these symbols:

3b. Describe an experiment to show the relationship between the current flowing through a **resistor** and the p.d. (voltage) across it. You are provided with the following apparatus:

battery, switch, variable resistor, ammeter, voltmeter, the resistor and connecting wire.

Your answer should include:

- a circuit diagram of the experimental set-up, i.
- a brief account of how you would carry out the experiment, ii.
- a table of results to record the list of observations made, iii.
- the result you expect from your investigation, iv.
- a sketch of an appropriate graph showing the expected results. ٧.
- vi. one precaution in order to obtain more accurate results
- **Circuit diagram** i.

PLEASE TURN OVER

2

2

2

2

2

ii. Method

iii. Table of results

iv. Result expected.

v. Expected Graph

p.d./V

vi. One Precaution

_