JUNIOR LYCEUM ANNUAL EXAMINATIONS 2006 EDUCATIONAL ASSESSMENT UNIT- EDUCATION DIVISION

FORM 3 PHYSICS Time: 1h 30min

NAME:

CLASS:

Answer all questions. All working must be shown. The use of a calculator is allowed.

Where necessary take acceleration due to gravity $g = 10 m/s^2$.

You may find some of these formulae useful.

Area of triangle = $\underline{base \times height}_{2}$ area of trapezium = \underline{h} (sum of parallel sides) v = s/t v = u + at $s = at^2/2$ W = mg density = mass/volume work done = F s PE = mgh Power = $\underline{work \ done}_{time}$ $KE = \underline{mv}^2_{2}$ moment of a force = Force X perpendicular distance magnification = $\underline{height \ of \ image}_{height \ of \ object}$ = $\underline{image \ distance}_{object \ distance}$ refractive index of glass = $\underline{speed \ of \ light \ in \ air}_{speed \ of \ light \ in \ glass}$

 $\begin{array}{l} \text{frequency} = \underline{\text{number of waves}} & \text{v} = \mathbf{f} \, \boldsymbol{\lambda} \\ \hline \\ \text{time} \end{array}$

SECTION A: Answer all questions in the spaces provided. This section carries 55 marks.

	Quantity	Symbol	Unit	Instrument
i	Mass			Balance
ii	Time	t		
iii	Distance	S		
iv	Force			Spring balance
v	Volume			Measuring cylinder

1. Fill in the table below:

[10]

2. The diagram shows a metre rule AB pivoted at its centre C. An object X is suspended from the 10 cms mark. When a 4N weight is suspended from the 70 cms mark, the rule is in equilibrium.

3. During an experiment on Hooke's Law, a student attached different loads to a spring.

Mass attached in kg.	0	0.5	1.0	1.5
Weight attached in N	0		10	
Length in cm.	20	22		26
Extension in cm.				

a. Fill in the missing spaces in the table below:

- b. When the attached weights are removed, the spring regains its original length. This means that it obeys
- c. This experiment was repeated using heavier weights. When the attached weights are removed, the spring does **not** regain its original length. This means that the was exceeded.

Lens

The diagram shows how the image I of an object O is formed by a thin converging lens.

- a. (i) Measure the height of the object. [1]
 - (ii) Measure the height of the image. [1]
 - (iii) The image magnification is ______

b. From the tip of the object, draw:

- (i) a ray of light that passes through the **centre** of the lens and ends at the image.
- (ii) another ray of light that is **parallel** to the axis and ends at the image. [1]

[1]

[2]

[1]

C.	Measure the focal length of the lens.	[1]
d.	Besides being magnified, the image is	[1]
e.	The object is moved to point P. The new image formed is than the object, and	[3]

5.

Gamma	ΠΛ	Visible	IR	microwaves	
rays	UV	spectrum	ш	merowaves	

a.		In the table above, the radiations are arranged in order of increasing wavelength. Fill in the missing radiations.	[2]
b.		UV stands for	m
		IR stands for	[1]
c.		The visible part of the spectrum is commonly known as	[1]
d.		Name two properties common to all the radiations that form the electromagnetic spectrum.	
			[2]
e.		Which of the radiations in the diagram:	
	(i) (ii)	is used to kill cancerous cells	m
	(iii)	is used to detect broken bones	[1]
		causes skin cancer	[1]
6.			
a.		A battery-operated toy car running on flat ground changes chemical energy into and	[2]
b.		A bulb changes electrical energy into and	[2]
c.		A changes energy from the sun into electricity	[1]

Section B: Answer ALL questions on the foolscap provided. This section carries 45 marks

electronic millisecond stop clock

 M_1 and M_2 are microphones placed a distance d apart. Any sound that reaches M_1 switches **on** the switch and the same sound arriving at M_2 switches it **off**. The stopclock records the time for the sound to travel the distance d. The table below shows the corresponding time intervals recorded on the stopclock when the distance d between the microphones is changed.

distance d in metres	1.0	1.2	1.4	1.6	1.8	2.0
time t in milliseconds	2.9	3.5	4.1	4.7	5.3	5.8

- a. On the graph paper provided, plot a graph of distance/m on the Y-axis against time/ms on the X-axis. Draw the best straight line. [8]
 b. From your graph, find the time when the distance is 1.5m [2]
- c. Any corresponding pair of readings of d and t can be used to calculate the speed of sound in air. Explain how this can be done with reference to the table of readings above. [2]
- d. Calculate the speed of sound in air in m/s using d = 1.4m, t = 4.1ms (0.0041s)

[3]

The diagram shows a ray of light incident at P on the face AB of a glass block.

a.	(i) (ii)	On the foolscap provided, copy the diagram and add: a normal at P the refracted ray that continues from P	[1] [1]
b.	(i) (ii)	The refracted ray hits face CD at Q and is again refracted as it emerges into the air. On your diagram, draw: a normal at Q the emergent ray that leaves the block at Q	[1] [1]
c.		What can you say about the direction of the incident ray and the emergent ray?	[2]
d.	(i) (ii) (iii)	Rays of light that pass through an optic fibre are not refracted but are transmitted through the fibre until they emerge into the air. What is this effect called? State one condition necessary for this effect to happen. Draw a diagram to show how light is transmitted through an optic fibre.	[2] [2] [2]
e.		If the speed of light in air is 3×10^8 m/s and the speed of light in glass is 2×10^8 m/s, calculate the refractive index of glass.	[3]

9. The diagram represents wave crests produced at a frequency of **20Hz** in a ripple tank. The wave crests are in deep water travelling towards a straight boundary where the water becomes shallow.

a.		Which piece of apparatus would you use to produce straight waves?	[1]
b.	(i)	Water waves produced in a ripple tank are transverse. What are transverse waves?	[2]
	(ii)	Give two other examples of transverse waves, other than water waves.	[2]
c.	(i)	Use the diagram to measure the wavelength in deep water	[1]
	(ii)	Calculate the speed of the waves in deep water	[2]
d.		On your foolscap, copy the diagram and add to it 2 more wave crests that have passed into the shallow section.	[2]
e.	(i)	Use the diagram to measure the wavelength in shallow water.	[1]
	(ii)	Calculate the speed of the waves in shallow water.	[2]
f.		Explain why the frequency remains unchanged throughout	[2]