JUNIOR LYCEUM ANNUAL EXAMINATIONS 2005

Educational Assessment Unit - Education Division

FORM 3	PHYSICS	TIME: 1h 30min
Name:		Class:

Answer **ALL** questions in the spaces provided on the Examination Paper. All working must be shown. The use of a calculator is allowed.

Where necessary take acceleration due to gravity $g = 10 \text{ m/s}^2$

You may find some of these formulae useful: area of triangle = $\underline{base \times height}_2$ area of trapezium = $\frac{h}{2}$ (sum of the parallel sides) volume = length x breadth x height v = s/t v = u + at s = at²/2 W = mg density = mass/volume work done = F s PE = m g h Power = $\frac{work \text{ done}}{time}$ KE = $\frac{mv^2}{2}$ moment of a force = force x perpendicular distance magnification = $\frac{height \text{ of image}}{height \text{ of object}}$ = $\frac{image \text{ distance}}{object \text{ distance}}$ refractive index of glass = $\frac{speed \text{ of light in air}}{speed \text{ of light in glass}}$ frequency = $\frac{number \text{ of waves}}{time}$ v = f λ 1. Complete the following table as shown in part (a).

No.	Physical Quantity	S. I. Symbol	S. I. Unit
а	time	t	S
b	focal length	f	
С	force	F	
d	potential energy	PE	
е	initial velocity	u	
f	power	Р	

2. a. The apparatus required to measure the length of your room is a _________. 1
b. The __________ of some wine can be found using a measuring cylinder. 1
c. The time taken for Martha to complete a 100 m race can be 1

measured using a ______.

- d. The weight of some flour can be found using a _____. 1
- e. The mass of a bag of apples is 2500 g.
 Its mass in kilograms is ______ kg.
 2
- f. Joseph takes 4 minutes to travel on foot from his home to school.
 The time in seconds is _______s. 2
- g. A plastic water pipe is 350 cm long.
 Its length in metres is _____ m 2

1

1

1

3. A uniform metal ruler AB is balanced at the 0.6 m mark when a load of 4 N is placed at the 0 m mark.

4.

3/8

4. b. The figure shows an object O placed 1.5 m away from a plane mirror MM', and its image I appearing inside the mirror. An observer Y is 1 m away from the object O as shown.

i.	The distance between the object ${f O}$ and the image ${f I}$	m.	1
ii.	The distance of the observer Y from the mirror MM' =	m.	1
iii.	The image I appears to be m behind the mirror.		1
iv.	The distance between the observer ${f Y}$ and the image ${f I}$ =	m.	
ν.	The distance between the observer Y and his image =	m.	1

- a. Tommy lifts a bucket containing 3 kg of water from a well. The mass of the empty bucket is 1.0 kg. Calculate:
 - 1 i. the weight of the empty bucket, 1 ii. the weight of the water in the bucket, 1 the total mass of the bucket and the water, iii. 1 the total weight of the bucket and the water. iv. b. Tommy takes 50 s to raise the bucket and the water through a height of 5 m from the surface of the water to the top of the well. Calculate: 2 i. the work done by Tommy in lifting the bucket and the water,
 - **ii.** The **power** built up by Tommy while carrying out this work.

5.

iii. The **potential energy** gained by the bucket and the water at the top of the well.

2

6. a. The figure below represents water waves obtained in a large ripple tank.

- i. Mark a crest by the letter 'C' on the wave diagram.
 ii. Mark a trough by the letter 'T' on the wave diagram.
 iii. A water wave is a ______ wave.
 iv. The amplitude of the water wave is ______ m.
 v. The wavelength of the wave is ______ m.
- b. The wave diagrams represent sound waves A, B and C travelling through the air during 0.04 s.

c. The velocity of both transverse waves and longitudinal waves depends only on the ______ through which the waves travel.

Section B: Answer all questions in the spaces provided. 45 marks

1. The following table shows how the velocity \mathbf{v} of a truck changes with time \mathbf{t} .

v / m/s	0	4	8	12	16	20	24	24	12	0
t/s	0	1	2	3	4	5	6	7	8	9

- Plot a graph of velocity v (y-axis) against the time t (x-axis) on the graph paper provided.
- b.i.The velocity of the truck after 2.5 s is _____ m/s.1
 - ii. The truck reaches a velocity of 18 m/s after _____ s.
- c. From the graph or otherwise, calculate:
 - i. the acceleration of the truck during the first 6 s of its journey.
 - ii. the **total** distance covered by the truck.

- iii. the average velocity of the truck during the whole journey.
- 2

5

1

3

a. The figure shows an object O placed in front of a converging lens L.
 Note: 1 small square represents 1 cm.

3. Figures A, B and C below show three measuring cylinders containing different amounts (masses) of the same kind of cooking oil. The mass of each measuring cylinder when empty is 70 grams.

- **a.** You are asked to carry out an experiment to find out whether the density of cooking oil depends on its mass.
 - i. What is the additional apparatus you require to carry out your 2 investigation? _____.
 - ii. State the two measurements you require to find the density of 2 cooking oil.
 - iii. Draw a suitable table of results to record your observations.

iv.	Do you expect different values for the density of cooking oil in the
	three measuring cylinders?
v.	Give a reason for your answer to question iv.
	tha buys a bottle of cooking oil from the supermarket. The density of
the	cooking oil is 920 kg/m ³ . Calculate:
i.	the mass of cooking oil in a fully-filled bottle of volume 0.001 m ³ ,
 ii.	the weight of the cooking oil in the bottle,
 ii. 	the weight of the cooking oil in the bottle, the weight of the empty bottle given that its mass is 800 g,