JUNIOR LYCEUM ANNUAL EXAMINATIONS 2005

Educational Assessment Unit - Education Division

\qquad

Answer ALL questions in the spaces provided on the Examination Paper. All working must be shown. The use of a calculator is allowed.

Where necessary take acceleration due to gravity $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$

```
You may find some of these formulae useful:
area of triangle = base x height area of trapezium = \frac{h}{2}
volume = length x breadth x height
v=s/t v = u + at s = at'2}/2\quadW=mg density = mass/volume
work done = F s PE = mgh Power = work done }\quad\textrm{KE}=\frac{m\mp@subsup{v}{}{2}}{2
```

moment of a force $=$ force x perpendicular distance
magnification $=\frac{\text { height of image }}{\text { height of object }}=\frac{\text { image distance }}{\text { object distance }}$
refractive index of glass $=$ speed of light in air
speed of light in glass
frequency = number of waves
time
$v=f \lambda$

1. Complete the following table as shown in part (a).

No.	Physical Quantity	S. I. Symbol	S. I. Unit
\mathbf{a}	time	t	s
b	focal length	f	
c	force	F	
d	potential energy	PE	
e	initial velocity	u	
\mathbf{f}	power	P	

2. a. The apparatus required to measure the length of your room is a
\qquad
b. The \qquad of some wine can be found using a measuring cylinder.
c. The time taken for Martha to complete a 100 m race can be measured using a \qquad .
d. The weight of some flour can be found using a \qquad .
e. The mass of a bag of apples is 2500 g . Its mass in kilograms is \qquad kg .
f. Joseph takes 4 minutes to travel on foot from his home to school. The time in seconds is \qquad s.
g. A plastic water pipe is 350 cm long. Its length in metres is \qquad m
3. A uniform metal ruler $A B$ is balanced at the 0.6 m mark when a load of 4 N is placed at the 0 m mark.

a. Point \mathbf{G} on the ruler is the \qquad of the ruler.
b. Support \mathbf{P} is called a \qquad .
c. Calculate:
i. the length of the ruler $A B$,
ii. the weight \mathbf{W} of the ruler AB ,
iii. the total force supported by the support P,
iv the reaction at the support P
d. State the direction of the:
i. direction of the total force acting on the support P , \qquad
ii. direction of the reaction at the support P. \qquad
4. a. The figure represents a ray of light striking and being reflected by a plane mirror MM'.
i. PO is the \qquad ray.
ii. \qquad is the reflected ray.
iii. NO is the \qquad .
iv. Angle i is the angle of \qquad .
v. The angle of reflection $r=$ \qquad $\stackrel{\circ}{\circ}$

5. b. The figure shows an object \mathbf{O} placed 1.5 m away from a plane mirror MM', and its image I appearing inside the mirror. An observer \mathbf{Y} is 1 m away from the object \mathbf{O} as shown.

i. The distance between the object \mathbf{O} and the image $\mathbf{I}=$ \qquad m.
ii. The distance of the observer \mathbf{Y} from the mirror $\mathbf{M M}{ }^{\prime}=$ \qquad m.
iii. The image I appears to be \qquad m behind the mirror.
\qquad m.
iv. The distance between the observer \mathbf{Y} and the image $\mathbf{I}=$
v. The distance between the observer \mathbf{Y} and his image $=$ \qquad m.
6. a. Tommy lifts a bucket containing 3 kg of water from a well. The mass of the empty bucket is 1.0 kg . Calculate:
i. the weight of the empty bucket,
ii. the weight of the water in the bucket,
iii. the total mass of the bucket and the water,
iv. the total weight of the bucket and the water.
7. b. Tommy takes 50 s to raise the bucket and the water through a height of 5 m from the surface of the water to the top of the well. Calculate:
i. the work done by Tommy in lifting the bucket and the water,
ii. The power built up by Tommy while carrying out this work.
iii. The potential energy gained by the bucket and the water at the top of the well.
8. a. The figure below represents water waves obtained in a large ripple tank.

i. Mark a crest by the letter ' C ' on the wave diagram.
ii. Mark a trough by the letter ' T ' on the wave diagram.
iii. A water wave is a \qquad wave.
iv. The amplitude of the water wave is \qquad m.
v. The wavelength of the wave is \qquad m.
9. b. The wave diagrams represent sound waves A, B and C travelling through the air during 0.04 s .

A

B

C
i. The note of lowest frequency is given by sound wave \qquad .
ii. The loudest note is produced by sound wave \qquad .
iii. Calculate the frequency of the note represented by sound wave A.
10. c. The velocity of both transverse waves and longitudinal waves depends only on the \qquad through which the waves travel.
11. The following table shows how the velocity \mathbf{v} of a truck changes with time \mathbf{t}.

$\mathrm{v} / \mathrm{m} / \mathrm{s}$	0	4	8	12	16	20	24	24	12	0
t / s	0	1	2	3	4	5	6	7	8	9

a. Plot a graph of velocity \mathbf{v} (y -axis) against the time \mathbf{t} (x -axis) on the graph paper provided.
b. i. The velocity of the truck after 2.5 s is \qquad m / s.
ii. The truck reaches a velocity of $18 \mathrm{~m} / \mathrm{s}$ after \qquad s.
c. From the graph or otherwise, calculate:
i. the acceleration of the truck during the first $\mathbf{6} \mathbf{s}$ of its journey.
\qquad
\qquad
ii. the total distance covered by the truck.
\qquad
\qquad
\qquad
\qquad
iii. the average velocity of the truck during the whole journey.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. a. The figure shows an object O placed in front of a converging lens L.

Note: 1 small square represents $1 \mathbf{c m}$.

i. The height of the object is \qquad cm .
ii. Draw two rays from the top of the object \mathbf{O} to locate its image I.
iii. Draw the image I.
iv. The height of the image I is \qquad cm.
v. Calculate the magnification produced by the converging lens L.
vi. The image is upright, virtual and \qquad .
vii. The focal length of the lens \mathbf{L} is \qquad cm
b. i. The refractive index of diamond is 2.5 . This means that the speed of light in \qquad is 2.5 times the speed of light in \qquad .
ii. Calculate the speed of light in diamond given that the speed of light in air is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}(300000000 \mathrm{~m} / \mathrm{s})$.
\qquad
\qquad
\qquad
\qquad
3. Figures A, B and C below show three measuring cylinders containing different amounts (masses) of the same kind of cooking oil. The mass of each measuring cylinder when empty is 70 grams.

A

B

C
a. You are asked to carry out an experiment to find out whether the density of cooking oil depends on its mass.
i. What is the additional apparatus you require to carry out your investigation? \qquad .
ii. State the two measurements you require to find the density of cooking oil. \qquad
iii. Draw a suitable table of results to record your observations.
iv. Do you expect different values for the density of cooking oil in the three measuring cylinders? \qquad .
v. Give a reason for your answer to question iv.
b. Martha buys a bottle of cooking oil from the supermarket. The density of the cooking oil is $920 \mathrm{~kg} / \mathrm{m}^{3}$. Calculate:
i. the mass of cooking oil in a fully-filled bottle of volume $0.001 \mathrm{~m}^{3}$,
\qquad
ii. the weight of the cooking oil in the bottle,
iii. the weight of the empty bottle given that its mass is 800 g ,
iv. the total weight of a fully-filled bottle of cooking oil.

