FORM 3 PHYSICS Time: 1h 30 min

NAME: \qquad CLASS: \qquad
Answer all questions.
All working must be shown. The use of a calculator is allowed.
Where necessary take acceleration due to gravity $\mathbf{g}=10 \mathrm{~m} / \mathbf{s}^{\mathbf{2}}$.

You may find some of these formulae useful.		
Area of triangle $=$ base \times height \quad area of trapezium $=\boldsymbol{h}($ sum of parallel sides)		
$\mathbf{v}=\mathbf{s} / \mathbf{t} \quad \mathbf{v}=\mathbf{u}+\mathbf{a t} \quad \mathbf{s}=\mathbf{a t}^{\mathbf{2}} / \mathbf{2}$	$\mathbf{W}=\mathbf{m g} \quad$ den	ass/volume
$\text { work done }=\mathbf{F} \mathbf{s} \quad P E=\mathbf{m g h}$	$\text { Power }=\frac{\text { work done }}{\text { time }}$	$K E=\frac{\mathrm{mv}^{2}}{2}$
moment of a force $=$ Force \times perpen	lar distance	
$\text { magnification }=\frac{\text { height of image }}{\text { height of object }}=\frac{\mathbf{i m}}{\text { ob }}$	$\begin{aligned} & \text { e distance } \\ & \text { ct distance } \end{aligned}$	
refractive index of glass $=\underset{\text { speed of lig }}{\text { speed }}$	$\frac{t \text { in air }}{\text { in glass }}$	
$\text { frequency }=\frac{\text { number of waves }}{\text { time }}$	$\mathbf{v}=\mathbf{f} \lambda$	

SECTION A: Answer all questions in the spaces provided. This section carries 55 marks.

1. A microwave oven operating at a frequency of $2500 \mathrm{MHz}\left(2.5 \times 10^{9} \mathrm{~Hz}\right)$ is used to cook food placed in a glass dish.
a. Calculate the wavelength of the microwaves if wave velocity in air is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
b. Explain why food in a glass dish can be cooked in a microwave but the same food wrapped in aluminium foil cannot.
\qquad
2. A toy car whose mass is 0.4 kg is driven by a battery-operated electric motor. At a particular moment, the car is travelling with a constant velocity of $10 \mathrm{~m} / \mathrm{s}$.
a. Complete the energy flow diagram below, naming 2 forms of energy into which the chemical energy stored in the battery is changed.

b. Is the energy supplied by a non-rechargeable battery, renewable or non-renewable?
\qquad
c. Calculate the kinetic energy which the car has when travelling with a velocity of $10 \mathrm{~m} / \mathrm{s}$.
d. If the car is only 50% efficient, what energy is supplied by the motor at this particular moment?
e. Cars driven by an electric motor may in future replace fuel-operated vehicles.

Give one advantage of using electric cars rather than fuel-operated vehicles.
3.

AC is a uniform metre ruler resting on a point at B . It is held in equilibrium by a vertical length of elastic (CD) fixed to the ceiling at D.
a. What is the weight of the ruler?
b. In which direction does the weight act? \qquad
c. The stretching force in elastic CD is called
d. In which direction does the stretching force in CD act?
e. Calculate the moment about the pivot of the weight of the ruler and state its direction.

$$
\text { Moment: } \quad \text { Direction: }
$$

f. What is the moment about the pivot of the stretching force in CD and state its direction?

Moment: \qquad Direction:
g. What can you conclude about a body in equilibrium?
\qquad
4. Three wires of different materials were suspended vertically. 1 N weights were loaded to each wire and the extension was measured. This was repeated using weights of $2 \mathrm{~N}, 3 \mathrm{~N}, 4 \mathrm{~N}$ and 5 N . Below is a table with results:

Weight suspended /N	0	1	2	3	4	5
Length of wire A/mm	500	505	510	515	522	530
Length of wire B/mm	500	502	504	506	508	510
Length of wire C/mm	500	503	506	509	512	515

a. What is the length of each unloaded wire?
b. Calculate the extension for each wire when a weight of 3 N was suspended.

Wire A \qquad Wire B \qquad Wire C
c. Which of the wires was extended beyond the elastic limit?
d. State what would finally happen to the wire in question c , if more loads were added after the elastic limit has been exceeded.
e. When an object of unknown weight was suspended from wire C , the length of the wire was stretched to 510 mm . Calculate:
(i) the extension
(ii) the weight of the unknown object
5. A new car model was tested on a race track for brake performance. The following are the results:

Speed	Stopping distance	Stopping time
$10 \mathrm{~m} / \mathrm{s}$	12.5 m	2.5 s
$20 \mathrm{~m} / \mathrm{s}$	40.0 m	4.0 s
$30 \mathrm{~m} / \mathrm{s}$	90.0 m	6.0 s

a. Calculate the deceleration when the speed of the car is $20 \mathrm{~m} / \mathrm{s}$.
b. You may find the equation below useful.

Stopping Time $=$ Reaction Time + Braking Time

(i) What do you understand by reaction time?
(ii) If the reaction time is always 0.8 s , find the braking time when the car is travelling at :
$10 \mathrm{~m} / \mathrm{s}$ \qquad $20 \mathrm{~m} / \mathrm{s}$ $30 \mathrm{~m} / \mathrm{s}$ \qquad
(iii) Name 1 factor on which a driver's reaction time depends.
\qquad
(iv) Work out the distance travelled by the car during the reaction time when the speed is $10 \mathrm{~m} / \mathrm{s}$.
6. The diagram shows a section of an optical fibre

a. What is the effect at point C called?
b. CD is known as the

Angle i and angle r are \qquad
i must be greater than the \qquad
The light travelling from point B is not
c. The light ray travelling from point A takes longer to travel the length of the fibre than that travelling from point B . Why?
d. State why an optical fibre must always be thin.
\qquad
e. Give 1 practical use of optical fibres.

Section B: Answer ALL questions on the foolscap provided. This section carries $\mathbf{4 5}$ marks.

7. This question is about distance and velocity.

The distance covered every 20 seconds by a competitor taking part in the first 500 m of a marathon is shown in the table below.

Time $/ \mathrm{s}$	0	20	40	60	80	100	120	140	160	180
Distance $/ \mathrm{m}$	0	120	230	315	360	410	440	465	485	500

a. Plot a graph of distance on the Y-axis against time.
b. From your graph, find the distance the competitor covers after:
(i) 50 seconds
(ii) 150 seconds
c. From the table above, find the distance the competitor covers:
(i) between the 20th and 40th second
(ii) between the 120th and 140th second
d. Explain why the answers to questions c.(i) and c. (ii) are different.
e. Find the competitor's average velocity:
(i) during the first 50 seconds
(ii) during the first 150 seconds
(iii) for the first 500 m of the marathon.

8. This question is about sound waves and wave patterns.

A tuning fork of frequency 256 Hz is struck and its stem is placed in contact with a hollow bench. A microphone connected to an oscilloscope is brought near the vibrating tuning fork. The wave pattern on the screen is shown below.

a. What can you say about the type of waves travelling from the tuning fork to the microphone?
b. How many complete wavelengths are there in the oscilloscope pattern?
c. Why is it advisable to hold the stem of a vibrating tuning fork in contact with a hollow bench?
d. The grid above (not to scale) contains squares of side 1 cm . Find a value for:
(i) the amplitude
(ii) the wavelength
e. Make two copies A and \mathbf{B} of the grid above.
(i) On copy \mathbf{A}, draw what you would see on the oscilloscope screen when the loudness of the vibrations reaching the microphone is halved.
(ii) On copy B, draw what you would see on the oscilloscope screen when a tuning fork of frequency 128 Hz is used instead.
f. Instead of using a tuning fork, a musical instrument is played in front of the microphone. Explain how the wave pattern on the oscilloscope screen is effected.

9. This question is about dispersion and the electromagnetic spectrum.

The diagram shows how a 60° glass prism produces a spectrum from a source of white light.

a. The diagram shows a light ray labelled X from the raybox onto a white screen. The light ray reached the screen where the spectrum was green.

Copy the diagram and from point O , sketch:
(i) a ray which reaches the screen where the spectrum is red. Mark this Y.
(ii) a ray which reaches the screen where the spectrum is violet. Mark this Z .
b. State one similarity between red light and violet light.
c. State how the spectrum on the screen changes when the source is replaced by a red lamp.
d. (i) Write down in order of decreasing wavelength the 7 colours of the spectrum of white light.
(ii) Which of these is known as the colour of least deviation?
e. Write in order of increasing wavelength the name of two waves from the electromagnetic spectrum:
(i) whose wavelength is larger than that of red light.
(ii) whose wavelength is less than that of violet light .
f. Write down two properties, which are common to all electromagnetic waves.

