JUNIOR LYCEUM \& SECONDARY SCHOOL ANNUAL EXAMINATIONS 2007

FORM 5 MATHEMATICS (Non Calculator Paper - Option A) TIME: 20 minutes

Name: \qquad Class: \qquad

Mark

INSTRUCTIONS TO CANDIDATES

- Answer all questions. There are 20 questions to answer.
- Each question carries 1 mark.
- Calculators, rulers, protractors and other mathematical instruments are not allowed.
- You are not required to show your working. However space for working is provided if you need it.

No.	Question	Space for Working
1	Write down the value of $1-\left(\frac{1}{4} \times 3\right)$. Answer:	
2	What is 30% of Lm 2 ? Answer: \qquad cents	
3	Write $\mathbf{3}^{\mathbf{- 2}}$ as a fraction. Answer: \qquad	
4	Write down the Least Common Multiple of 9 and 12. Answer: \qquad	
5	$24=2^{p} \times 3^{q}$. What is the value of $(p+q)$? Answer: \qquad	
6	$25^{2}=625$. Write down the value of $\sqrt{\mathbf{6 . 2 5}}$. Answer: \qquad	
7	The best estimate for the diagonal of the square is: A) 5 cm C) 7 cm B) 6 cm D) 8 cm Answer: \qquad cm	
8	The reciprocal of 2 is $\frac{1}{2}$ and the reciprocal of 4 is $\frac{1}{4}$. Write the reciprocal of 10 as a decimal. Answer: \qquad	

No.	Question	Space for Working
9	Work out the gradient of a line passing through the points $\mathrm{A}(-3,4)$ and $\mathrm{B}(2,-6)$. Answer: \qquad	
10	Taking $\pi \approx 3$, find an approximation for the area of a circle having a radius of 2 cm . Answer: \qquad cm^{2}	
11	A number P is increased by 10%. The result is Q . Q is then decreased by 10%. The result is R. Which statement is correct? A) $P=R$ B) $P>R$ C) $P<R$ Answer:	
12	$x=1.5 \times 10^{2}$. Write the value of $\mathbf{2 x}$ in standard form. Answer: \qquad	
13	Given that $\mathbf{1}$ gallon $\approx \mathbf{4 . 5 5}$ litres, change 10 gallons to litres. Answer: \qquad litres	
14	Mary bought 12 files at Lm1.50 each and 12 pens at 50 cents each. How much did she spend altogether? Answer: Lm \qquad	
15	Work out the size of each exterior angle of a regular hexagon. Answer: \qquad	
16	Write an equation in x (other than $x=3$) whose solution is 3 . Answer: \qquad	

No.	Question	Space for Working
17	The diameter of the circle is 10 cm . What is the perimeter of the regular hexagon? Answer: \qquad cm	
18	O is the centre of the circle. Find the value of x. Answer: \qquad	
19	A bag contains 5 blue discs and a number of red discs. The probability of choosing a blue disc is $\frac{1}{4}$. What is the total number of discs in the bag? Answer: \qquad	
20	Which one of the following shows the graph of $y=5-x$? A) B) C) D) Answer: \qquad	

JUNIOR LYCEUM \& SECONDARY SCHOOL ANNUAL EXAMINATIONS 2007
Educational Assessment Unit - Education Division
FORM 5 MATHEMATICS (Main Paper - Option A) TIME: 1h 40min

1	2	3	4	5	6	7	8	9	10	11	12	13	Total Main	Non Calculator	GLOBAL MARK

DO NOT WRITE ABOVE THIS LINE

Name:

\qquad Class: \qquad
CALCULATORS ARE ALLOWED BUT ALL NECESSARY WORKING MUST BE SHOWN. ANSWER ALL QUESTIONS.

1. a) Write the following numbers correct to $\mathbf{1}$ significant figure to give an estimate for \mathbf{P}.

$$
\mathbf{P}=\sqrt{\frac{47.8 \times 4.2}{1.9}}
$$

estimate =
\qquad
b) Use your calculator to work out the value of \mathbf{P} correct to $\mathbf{1}$ decimal place.

$$
\mathbf{P}=
$$

\qquad
c) Write down the difference between the answer in a) and the answer in b).

> difference =
\qquad (3 marks)
2. The formula for finding the volume of a cylinder is $V=\pi r^{2} h$.
a) Work out the volume of the cylinder shown.

Give your answer correct to $\mathbf{1}$ decimal place.

volume =
\qquad cm^{3}
b) Make \boldsymbol{r} the subject of the formula.

$$
\boldsymbol{r}=
$$

\qquad
3. a) Complete this set of LOGO commands given to the turtle to draw a regular pentagon.

PD REPEAT
 \qquad [FD 70 RT
 \qquad

b) ABCD is a parallelogram.

BX and DY are drawn perpendicular to AC. Prove that triangles ABX and CDY are congruent.

4. The figure shows two semi-circular arcs. The radii of the two arcs are 6 cm and 10 cm . Work out the area of the shaded region. Give your answer correct to 3 significant figures.

\qquad cm^{2}
\qquad
5. PQRS is a rectangle.
a) Write, in terms of \boldsymbol{x}, an expression for the perimeter of the rectangle.

perimeter $=$ \qquad cm
b) The perimeter of the rectangle is 32 cm . Find the value x.

$$
\boldsymbol{x}=
$$

\qquad
(4 marks)
6. Joe is using a spreadsheet to help him work out how much he spends at the stationer's. VAT is charged at 18%.

a) What formula did Joe type in cell D2? \qquad
b) What amount did Joe obtain in cells D3, D4, D5 and D6? (Give answers correct to the nearest cent).

D3 = \qquad , $\mathbf{D 4}=$ \qquad , $\mathbf{D} 5=$ \qquad , $\mathbf{D 6}=$ \qquad
7. The maximum weight a van can carry is given as 1000 kg , correct to the nearest 100 kg . The weight of a bag of cement is given as 50 kg , correct to the nearest kg .
a) Complete the following inequalities to show the lower and upper bounds of each weight.
(i) \qquad $\mathrm{kg} \leq$ maximum carrying weight of van $<$ \qquad kg
(ii) \qquad $\mathrm{kg} \leq$ weight of bag of cement $<$ \qquad kg
b) What is the greatest number of bags of cement the van can safely carry at one time to be sure that the maximum carrying weight is not exceeded?
\qquad
8. For the function $\mathrm{f}(x)=3 x-1$
a) (i) Find the range of values of \boldsymbol{x} for which $-4<\mathrm{f}(x)<8$
(ii) Write down the largest integer that satisfies the inequality in (i).

$$
x=
$$

\qquad
b) Find $\mathrm{f}^{-1}(x)$

$$
\mathrm{f}^{-1}(x)=
$$

\qquad
\qquad
9. a) In the diagram, the circle through A, B, C and D has centre O . PAQ is a tangent at A and AC is a diameter. Angle $\mathrm{BAP}=x^{\circ}$.
Answer the following questions correctly to prove the alternate segment theorem, which states that:
"The angle between a tangent and a chord drawn at the point of contact is equal to any angle in the alternate segment."

No marks will be awarded unless valid
 reasons are given.
(i) The size of $\angle \mathbf{C A P}$ is \qquad reason: (\qquad)
(ii) The size of $\angle \mathbf{C A B}$ in terms of x is \qquad
(iii) The size of $\angle A B C$ is \qquad reason: (\qquad)
(iv) Use triangle $A B C$ to work out the size of $\angle A C B$ in terms of x. Show ALL your working.
$\angle A C B=$ \qquad reason: (\qquad)
(v) Use this value for \angle ACB to write down the size of \angle ADB in terms of x.

$$
\angle \mathrm{ADB}=
$$

\qquad reason: (\qquad)
b) In the diagram P, Q, R and S lie on a circle.

APB is a tangent at $\mathrm{P} . \angle \mathrm{PQR}=115^{\circ}$.
Work out the size of $\angle \mathbf{A P R}$.
Show all your working and give reasons for your answers.

10. The force of attraction, F, between two objects is inversely proportional to the square of the distance, d, between them.
a) Write down a formula connecting F and d. (Use k for the constant of proportionality).

formula

\qquad
b) Given that for two objects, $d=25$ when $F=0.004$, find the value of k.

$$
\mathbf{k}=
$$

\qquad
c) Work out the distance between these two objects when $F=0.001$.

$$
\boldsymbol{d}=
$$

\qquad
11. a) The diagram shows the cumulative frequency graph for the distribution of marks obtained by 100 students sitting for an exam.

(i) Use the cumulative frequency curve to write down an estimate for the:

(ii) To which one of the above, does each of the following statements apply?
" The \qquad tells how spread out the central half of the data is."
" The \qquad is the middle number, which cuts off the top half of the data from the bottom half."
" The \qquad tells how spread out the data is but it is badly affected by extreme high or low values."
(iii) Grade \mathbf{A} is awarded to the top $\mathbf{1 0 \%}$ of the students. Write down an estimate for the lowest mark needed to obtain grade \mathbf{A}.
11. b) Two groups of students in class A and class B sat for the same exam. The box plots below show the results.

(i) Give an estimate for the percentage of students in class \mathbf{A} who obtained a mark of over 60 .
(ii) First prize is awarded to the student who obtains the highest mark in the exam.

The winner of the first prize was from class \qquad and the highest mark obtained was \qquad .
(iii) "On the whole the marks for class A are higher than those for class B." Do you agree with the above statement? Give reasons.
12. The graph of $y=3-x^{3}$ is shown on the next page.
a) For the line with equation $y=x-2$:
(i) Write down the value of y when $x=0$ and the value of x when $y=0$.

$$
\text { when } x=0, y=
$$

\qquad and $x=$ \qquad , when $y=0$
(ii) Hence or otherwise draw, on the same axes, the graph of $y=x-2$.
b) (i) Write down an estimate, correct to one decimal place, for the value of \boldsymbol{x} at the point of intersection of the two graphs.

$$
x=
$$

\qquad
(ii) Find the cubic equation whose solution is the value of x found in (i).

Simplify your equation. Show your working.

c) In this part of the question use your answers to part (b)

Use the method of trial and improvement to work out, correct to two decimal places, an estimate for the value of x for which $x^{3}+x=5$.
13. Maria drives to the office in Valletta during the morning rush hour. On her way she drives past the Gzira and Msida roundabouts. At this time the probability that the traffic is slow moving at the Gzira roundabout is $\mathbf{0 . 8}$ and the probability that the traffic is slow moving at the Msida roundabout is $\mathbf{0 . 9}$.
a) Use the following probability tree diagram to work out the probability that:

(i) The traffic is slow moving at both roundabouts.
(ii) The traffic is slow moving at one roundabout and fast moving at the other.
(iii) The traffic is fast moving at least at one of the roundabouts.
b) Maria drives to the office 200 times in a year. How many times could she expect to find fast moving traffic at both roundabouts? (Show your working).

