FORM 4 MATHEMATICS (Non-Calculator Paper) Time: $\mathbf{2 0}$ minutes

Name: \qquad Class: \qquad

Instructions to Candidates

- Answer all questions. There are 20 questions to answer.
- Each question carries 1 mark.
- On your desk you should have nothing except for a pen, a pencil and the examination paper.
- To answer questions involving numerical calculations you are advised to choose and use the more efficient techniques (mental or paper-and-pencil).
- You are not required to show your working. However space for working is provided if you need it.

No.	Question	Space for Working
1	If $\frac{8}{9}=0.888 \ldots$, what is the value of $\frac{8}{90}$ correct to 3 decimal places? Answer:	
2	A jar of marmalade holds $1 / 2 \mathrm{~kg}$ of jam. How many jars of marmalade can be filled from 25 kg of jam? Answer: \qquad	
3	Fill in >, < or =. $8^{2 / 3}$ \qquad 4	
4	Lm1000 are invested at 10% simple interest. After how many years will the interest amount to Lm500? Answer: \qquad	
5	The hypotenuse is approximately A. 8 cm B. 7 cm C. 6 cm D. 5 cm Answer: \qquad	
6	A girl was asked to multiply a number by 5 . Instead she divided by 5 and got an answer of 4 . What was the correct answer? Answer: \qquad	
7	How many 5-cent coins make up Lm8.20? Answer: \qquad	

No.	Question	Space for Working
8	A boy bought a number of copybooks at 24 cents each. He received 20 cents change from Lm5. How many copybooks did he buy? Answer: \qquad	
9	Decrease Lm5 by 20\%. Answer: \qquad	
10	The volume of the cylinder is $36 \pi \mathrm{~cm}^{3}$. The area of the base is $9 \pi \mathrm{~cm}^{2}$. Work out the height of the cylinder. Answer: \qquad	
11	A right-angled triangle is inscribed in a circle. The length of the hypotenuse is 10 cm . Work out the length of the radius of the circle. Answer: \qquad	
12	Work out $\sqrt{2 \times \frac{1}{8}}$ Answer: \qquad	
13	Which of the following is not equal to $1 / 2$? A. 0.5 B. 2^{-1} C. 5×10^{-1} D. 20% Answer: \qquad	

No.	Question	Space for Working
14	Given that $24 \times 36=864$, work out 3.6 cm the area of this rectangle. Answer: \qquad	
15	Work out the Highest Common Factor (HCF) of 18 and 24 . Answer: \qquad	
16	If $b=3 \times 10^{-2}$, work out the value of b^{2} giving your answer in standard form. Answer: \qquad	
17	The following are the probabilities of certain events happening. There is an error in one of them. Which one is it? A. 2 B. 1 C. $1 / 2$ D. 0 Answer: \qquad	
18	Find the value of $2 x^{2}$ when $x=-3$. Answer: \qquad	
19	Given that 5 miles is approximately equal to 8 km , change 400 km to miles. Answer: \qquad	
20	6 workers take 12 hours to complete a certain job. How long would it take 8 workers to complete the job? Answer: \qquad	

JUNIOR LYCEUM ANNUAL EXAMINATIONS 2006

Educational Assessment Unit - Education Division
FORM 4 MATHEMATICS (MAIN) TIME: 1h 40min

$\mathbf{1}$	2	3	4	5	6	7	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	NC	Main	Total

Name: \qquad Class: \qquad
Calculators are allowed but the necessary working must be shown. Answer all questions.

1. Use your calculator to work out $\sqrt[5]{\mathbf{1 0 0}}$, giving your answer correct to $\mathbf{2}$ decimal places.

Answer: \qquad
2. Write down the value of x.
(i) $\left(\frac{1}{2}\right)^{x}=1$
(ii) $x^{-3}=\frac{1}{8}$
(iii) $16^{x}=4$

Answer: (i) $x=$ \qquad (ii) $x=$ \qquad (iii) $x=$ \qquad
3. Simplify: $\frac{3}{x-4}-\frac{1}{x-1}$

Answer: \qquad
4. (a) Given that $a-b=x$ and $a+b=\frac{1}{x}$, what is the value of $a^{2}-b^{2}$?

Answer: \qquad
(b) Factorise: $2 x^{2}+5 x+3=$ \qquad
5. A salesperson is using the spreadsheet below to change US dollar, UK sterling and Euro into Maltese Liri.

	A	B	C	D	
1		Exchange Rate	Quantity	Maltese Liri	
2	US Dollar	2.8185	120	42.58	
3	UK Sterling	1.598	80		
4	Euro	2.3294	450		
5					

(i) What formula did the salesperson write in cell D2?
(ii) What amount did the salesperson get in cell D3?
(iii) The salesperson changed the amount in cell C4 and got Lm98.74 in cell D4. What amount did he input in cell C4?

Answer: (i) \qquad (ii) \qquad (iii) \qquad (5 marks)
6. Lm5000 is invested at 4.5% compound interest.
(i) Use the formula $A=P\left(1+\frac{r}{100}\right)^{n}$ to work out the interest after 5 years, correct to the nearest Lm.
(ii) After how many years will the amount of the investment first exceed Lm7000?

Answer: (i) \qquad (ii) \qquad
7. (a) Describe the transformation that maps triangle T to T1.
(b) Describe the transformation that maps triangle $\mathbf{T 1}$ to $\mathbf{T 2}$.
(c) Triangle T 2 is enlarged by a scale factor of 2 with $(-4,0)$ as the centre of enlargement. Draw the image of $\mathbf{T 2}$ under this transformation.

(a)
(b) \qquad
8. The Shot Put area on an athletics ground is a sector of a circle. It is marked out in 5 -metre intervals. Giving your answers correct to 3 significant figures, calculate:
(i) the length of the ' 5 -metre' arc, AB .
(ii) the area of the sector OCD.
(iii) the size of $\angle \mathrm{DOC}$ if the area of the sector OCD is $100 \mathrm{~m}^{2}$.

Answer: (i) \qquad (ii) \qquad (iii) \qquad (6 marks)
9. (a) If $\mathrm{AB}: \mathrm{AD}=3: 2$ and the area of triangle $\mathrm{ADE}=8 \mathrm{~cm}^{2}$, work out the area of triangle ABC .

Answer:

\qquad
(b) The shadow of a tree is 100 metres long and the shadow of a golf flag is 10 metres long. The two shadows coincide, as shown below. What is the height of the tree?

Answer: \qquad
10. (a) Use the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ to solve the equation $2 x^{2}+6 x=1$.

Give your answers correct to 3 significant figures.

Answer: \qquad
(b) The area of this triangle is $27 \mathrm{~cm}^{2}$.
(i) Form an equation in x.
(ii) Solve the equation to find the value of x.

Answer: \qquad
11. A solid is formed from a cone on top of a hemisphere as shown in the diagram. Work out, correct to 3 significant figures:
(i) the slanting height of the cone,
(ii) the total surface area of the solid.
(Surface area of sphere $=4 \pi r^{2}$
Curved surface area of cone $=\pi r l$)

Answer: (i) \qquad (ii) \qquad
12. (a) PQ is a chord of a circle with centre O . OM is drawn perpendicular from O to PQ . Prove that M is the midpoint of $P Q$.

(b) PS and PR are tangents to the circle with centre $\mathrm{O} . \angle \mathrm{SQR}=x^{\circ}$.
(i) Write $\angle \mathrm{SOR}$ and $\angle \mathrm{SPR}$ in terms of x.
(ii) If $\angle \mathrm{SPR}=62^{\circ}$, work out the value of x.

Answer: (i) $\angle \mathrm{SOR}=$ \qquad $\angle \mathrm{SPR}=$ \qquad (ii) $x=$ \qquad
13. James is taking a test consisting of two papers. The probability that he passes Paper I is 0.7 . If he passes Paper I the probability that he is successful in Paper II is 0.6 . If he fails Paper I the probability that he is successful in Paper II is 0.3 .
(i) Complete the tree diagram below.

(ii) Use the probability tree to work out the probability that James
(a) will pass both papers,
(b) will pass at least one paper.
(iii) If James fails in only one paper he is allowed to sit for it a second time. What is the probability that James will have to repeat one of the papers?

Answer: (ii) (a) \qquad (b) \qquad (iii) \qquad
14. (a) Complete the table below for $y=2 x-x^{2}$.

x	-2	-1	0	1	2	3
$2 x$	-4		0		4	
$-x^{2}$	-4		0		-4	
y	-8		0		0	

(b) Use this table to draw the graph of $y=2 x-x^{2}$ for values of x from -2 to 3 , using 2 cm for 1 unit on both axes.
(c) On the same axes draw the graph of $y=x-3$.
(d) Use your graphs to solve the equation $x^{2}-x-3=0$.

			${ }^{\circ}$						

