JUNIOR LYCEUM ANNUAL EXAMINATIONS 2005

Educational Assessment Unit - Education Division
FORM $4 \quad$ MATHEMATICS (Non Calculator Paper) \quad Time: 20 min

Name: \qquad Class: \qquad

Mark

Instructions to Candidates

- Answer all questions. There are 20 questions to answer.
- Each question carries 1 mark.
- On your desk you should have nothing except for pen, pencil and examination paper.
- To answer questions involving numerical calculations you are advised to choose and use the more efficient techniques (mental or paper-and-pencil).
- You are not required to show your working. However space for working is provided if you need it.

No.	Question	Space for Working
1	Evaluate: $0.5 \times 18 \times 7$. Answer:	
2	A fair coin is tossed three times. What is the probability of getting three heads? Answer:	
3	Work out: $\sqrt{2 \frac{1}{4}}$. Answer:	
4	A chocolate bar costs 22 cents. What is the total cost of 99 chocolate bars? Answer:	
5	How many quarters are there in $51 / 4$? Answer:	
6	The perimeter of a triangle ABC is $12 \mathrm{~cm} . \mathrm{AB}=3 \mathrm{~cm}$ and $B C=4 \mathrm{~cm}$. What is the size of angle \mathbf{B} ? Answer:	
7	A can of oil holds 250 ml of oil. How many cans of oil can be filled from a tank that holds 8 litres of oil? Answer:	
8	Evaluate $25^{-1 / 2}$. Answer:	
9	The number x is a factor of 36 , a square number and an even number. Find x. Answer:	

10	At a sale items are reduced by 20%. Work out the sale price of a DVD player marked at Lm50.	
	Answer: Lm	
11	Lm250 are invested at 4\% per annum simple interest. After n years the interest earned was Lm50. Work out the value of \boldsymbol{n}.	
	Answer:	
12	The area of the parallelogram PQRS is $25 \mathrm{~cm}^{2}$. What is the area of the triangle $\mathbf{P X Q}$? Answer:	
13	One euro is worth 40 cents. How many euro will I get for $\operatorname{Lm} 20$?	
	Answer:	
14	If $\sqrt{17.64}=4.2$, what is the area of the floor of a square room having walls of length 4.2 metres?	
	Answer:	
15	In triangle PQR , PR is three times as long as QR. What is the value of $\sin \mathbf{P}$?	
	Answer:	

JUNIOR LYCEUM ANNUAL EXAMINATIONS 2005

Educational Assessment Unit - Education Division
FORM 4 MATHEMATICS (MAIN) Time: 1 hour 40 min

1	2	3	4	5	6	7	8	9	10	11	12	13	14	NC	Main	Total

Name: \qquad Class: \qquad
Calculators are allowed but the necessary working must be shown. Answer all questions.

1. Underline the TRUE statement
A. The square root of a number is always smaller than the original number.
B. The square root of a number is never smaller than the original number.
C. The square root of a number is sometimes smaller than the original number.
2. Solve the equation: $(z-1)^{2}=25$.

Answer: \qquad
3. Find the value of n given that
(i) $2^{7} \div 2^{n}=32$
(ii) $3^{n}=\sqrt{81}$

Answer: (i) \qquad (ii) \qquad
4. (a) Open the brackets and simplify: $(2 p-q)^{2}$.

Answer: \qquad Answer: \qquad
5. Given that $p v=b+2(a-p)$ make p the subject of the formula.

Answer: \qquad
6. (a) Complete the procedure RHOMBUS that draws the rhombus.

TO RHOMBUS

RT 45

REPEAT \qquad [FD 100 RT \qquad FD \qquad RT \qquad]
LT 45
END
(b) Fill in: The order of rotational symmetry of the rhombus is \qquad .
7. In Italy a pair of shoes costs 85 euro. The same pair of shoes can be bought in England for $£ 55$.
$\mathrm{Lm} 1=2.35$ euro $=£ 1.59$.
Would it be cheaper to buy the shoes in Italy or in England?

How much would I save in Maltese Liri?

Answer: \qquad
8. A man borrows Lm10 000 at 9% per annum interest. He repays Lm1800 at the end of each year. He uses a spreadsheet to work out the amount due at the end of each year.
(a) What formulae did he write in cell B3 and cell B6?
(b) Fill in the empty cells to find the amount due after the second repayment.

	A	B
1		Lm
2	Sum Borrowed	10000.00
3	Interest (1st year)	900.00
4	Amount due	10900.00
5	1st Repayment	1800.00
6	Amount due	
7	Interest (second year)	
8	Amount due	
9	2nd Repayment	$\mathbf{1 8 0 0 . 0 0}$
10	Amount due	
14		

Answer: (a) \qquad
9. VABCD is a right pyramid on a rectangular base.
$V A=V B=V C=V D=12 \mathrm{~cm}$.
$\mathrm{AD}=10 \mathrm{~cm}, \mathrm{AB}=7 \mathrm{~cm}$.
Work out, correct to 1 decimal place:
(i) the length of $\mathbf{B D}$,
(ii) the height of the pyramid,
(iii) the volume of the pyramid.
(Volume of pyramid $=\frac{1}{3}$ base area \times height)

Answer: (i) \qquad (ii) \qquad (iii) \qquad
10. (a) Write the quadratic equation $x-\frac{2}{x}=5$ in the form $a x^{2}+b x+c=0$.
(b) Use the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ to solve the equation $x-\frac{2}{x}=5$, giving your answers correct to 3 significant figures.

Answer: (a) \qquad (b) \qquad
11. Each day Mr Borg runs home from work. He has a choice of three routes. The first is 4 km long, the second is 5 km long and the third is 6 km long. Mr Borg chooses the route he runs at random. Work out the probability that on two days Mr Borg runs a total distance of
(i) 8 km
(ii) 9 km
(iii) 10 km .

Answer: (i) \qquad (ii) \qquad (iii) \qquad
12. (a) AP and BP are two tangents to a circle with centre O. Prove that triangles APO and BPO are congruent.

(b) AB, BC and AC are tangents to the circle. If angle $\mathrm{ABC}=40^{\circ}$ and angle $\mathrm{ACB}=80^{\circ}$, work out the size of (i) angle APR, (ii) angle PQR.

Answer: (i) \qquad (ii) \qquad
13. (a) The diagram below shows a shape S1 and its images S2, S3 and S4.

Describe fully the transformation that will move:
(i) S 1 to S 2 : \qquad
(ii) S 1 to S 3 : \qquad
(iii) S 3 to S 4 : \qquad

(b) Draw the image of S3 when it is enlarged by a scale factor of 2 about $(1,-1)$.
14. The graph of $\boldsymbol{y}=\boldsymbol{x}^{2}-\boldsymbol{x}$ is shown below.

(a) Use this graph to estimate the solutions of the equations
(i) $x^{2}-x=1$
(ii) $x^{2}=x+3$
(b) Complete the table and, on the same axes, draw the graph of $\boldsymbol{y}=\mathbf{1} \boldsymbol{x}$.

\boldsymbol{x}	-1	1	2
\boldsymbol{y}			

(c) The two graphs intersect at P and Q . Write down the coordinates of P and Q .
\qquad
(d) Write, in the form $a x^{2}+b x+c=0$, the equation whose solutions are the x-coordinates of P and Q .
\qquad

