JUNIOR LYCEUM ANNUAL EXAMINATIONS 2004

Educational Assessment Unit - Education Division
FORM $4 \quad$ MATHEMATICS (Non Calculator Paper) \quad Time: 20 min

Name: \qquad Class: \qquad

Mark

Instructions to Candidates

- Answer all questions. There are 20 questions to answer.
- Each question carries 1 mark.
- On your desk you should have nothing except for pen, pencil and examination paper.
- To answer questions involving numerical calculations you are advised to choose and use the more efficient techniques (mental or paper-and-pencil).
- You are not required to show your working. However space for working is provided if you need it.

No.	Question	Space for Working
1	The product of 24 and 3 is: A. 72 B. 27 C. 21 D. 8 Answer:	
2	Write a prime number between 30 and 40 . Answer:	
3	Write in figures: twenty thousand and two. Answer:	
4	Estimate: $\frac{1002 \times 42}{78 \times 51}$ Answer:	
5	Give an estimate for the square root of 35 . Answer:	
6	$9+9+9+9+9$ is not equal to: A. 45 B. 9×5 C. 5×9 D. 9^{5} Answer:	
7	If $x^{3}=125$, what is the value of x ? Answer:	
8	Evaluate: $1000^{1 / 3}$ Answer:	

9	Which is the largest number? A. 2.75×10^{2} C. 0.275×10^{2} B. 2.75×10^{-2} D. 27.5×10^{2} Answer:	
10	Work out the simple interest on Lm1000 after two years at 5.5% per annum. Answer: Lm	
11	What is the difference between $\frac{3}{5}$ and $\frac{1}{2}$?Answer:	
12	If $\sqrt{625}=25$, what is the value of $\sqrt{6.25}$?Answer:	
13	If $634 \times 25=15850$, what is the value of 63.4×2.5 ?Answer:	
14	A team can win, draw or lose a match. The probability of winning is $1 / 2$ and the probability of drawing is 0.3 . What is the probability of losing a match? Answer:	
15	I think of a number, double it and subtract 5. The answer is 21 . What number did I think of? Answer:	

FORM 4 MATHEMATICS (MAIN) Time: 1 hour 40 min

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	7	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	NC	Main	Total

Name: \qquad Class: \qquad
Calculators are allowed but the necessary working must be shown. Answer all questions.

1. Write down the next number.

$$
4,2,1,1 / 2,1 / 4, \ldots
$$

giving your answer
(i) as a fraction,
(ii) in standard form.

Answer: (i) \qquad (ii) \qquad
2. Find the value of \boldsymbol{x} :
(i) $2^{x}=16$
(ii) $2^{x}=1$
(iii) $2^{x}=1 / 4$

Answer: (i) \qquad (ii) \qquad (iii) \qquad
3. (a) Find the value of \boldsymbol{a} given that:

$$
(x-5)^{2}=x^{2}-a x+25
$$

Answer: \qquad Answer: \qquad
4. The following LOGO statement draws a regular polygon.

PD FD 80 RT 120 FD 80 RT 120 FD 80 RT 120

(i) Draw a sketch of this polygon.
(ii) The following procedure draws the same polygon.

Complete the procedure.

TO POLYGON

PD

REPEAT \qquad [FD \qquad RT \qquad]

END

5. Dominic used a spreadsheet to change Maltese Liri to euro (Figure 1). The exchange rate was $\mathrm{Lm} 1=2.35$ euro. He wanted to change Lm375 into euro.
(i) What formula did Dominic type in cell C2?
(ii) What amount did he get in cell C2 when he pressed the ENTER button?

Dominic changed the amount in cell A2 and he got 1198.5 euro in cell C2.
(iii) What was the value Dominic typed in cell A2?

	A	B	C
1	Maltese Liri	Exchange Rate	Euro
2	375	2.35	

Figure 1

Answer: (i) \qquad (ii) \qquad (iii) \qquad
6. In the year 2000 the value of a house was Lm75 000. In the year 2001 the value had increased to Lm81 750.
(i) Work out the percentage increase.
(ii) The value of the house continues to rise at the same rate. What was its value in 2002 ?

Answer: (i) \qquad (ii) \qquad
7. In Figure 2 PTR is a tangent to a circle, centre O. PO is parallel to BT.
(i) Write down the size of angle ABT and angle BTR.
(ii) Prove that triangles OPT and ABT are similar.

Figure 2

Answer: (i) $\underline{A B T}=$ \qquad /BTR = \qquad
8. A right-circular cone is formed from a rectangular piece of wood measuring 10 cm by 10 cm by 12 cm (Figure 3). The diameter of the cone is 10 cm and its height is 12 cm . Work out, correct to 3 significant figures:
(i) the volume of the cone,
(ii) the volume of the wood that is wasted.
(Volume of cone $=\frac{1}{3} \pi r^{2} h$)

Figure 3

Answer: (i)
(ii) \qquad
(6 marks)
9. ABCDEFGH is a regular octagon having centre O (Figure 4).
(i) Write down the image of triangle AOB after a clockwise rotation of 90° about O .
Describe the transformation that will transform triangle AOB into
(ii) triangle GOH
(iii) triangle GOF

Figure 4

Answer: (i) \qquad
(ii) \qquad
(iii) \qquad
10. Figure 5 shows a circle divided into eight equal sectors which are numbered as shown. A pointer is fixed to the centre and is free to spin. A trial consists of spinning the pointer and noting the number on which the pointer stops.
Work out the probability of getting
(i) a 5 or a 3
(ii) an even number

The pointer is spun twice and the two numbers noted.
Work out the probability that the two numbers
(iii) are both even

Figure 5
(iv) add up to 15 .

Answer: (i) \qquad (ii) \qquad (iii) \qquad (iv) \qquad
(8 marks)
11. PQ is a chord of a circle with centre O (Figure 6). The length of the radius $O P$ is 25 cm and the length of PQ is 40 cm . Work out, correct to 3 significant figures
(i) the distance of $\mathbf{P Q}$ from the centre,
(ii) the size of the obtuse angle POQ,
(iii) the area of sector POQ.

Figure 6

Answer: (i) \qquad (ii) \qquad (iii) \qquad
12. (a) Simplify: $\frac{8}{x+7}-\frac{3}{x-4}$
(b) Use the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

to solve the equation $5 x^{2}=3 x+1$.

Answer: (a) \qquad (b) \qquad
13. The perimeter of a rectangle is 12 cm and the length of one of the sides is $x \mathrm{~cm}$.
(i) Write an expression for the width of the rectangle.
(ii) Show that the area, A, of this rectangle is given by $\boldsymbol{A}=\boldsymbol{6} \boldsymbol{x}-\boldsymbol{x}^{\mathbf{2}}$.

Complete the following table that shows the area of the rectangle for values of x from 0 to 6 .

x	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$6 x$	0	6	12		24	30	36
$-x^{2}$	0	-1	-4		-16	-25	-36
A	0		8		8	5	0

On the grid that follows draw the graph of $A=6 x-x^{2}$. Use your graph to estimate
(iii) the area of the rectangle when the length is 2.5 cm ,
(iv) the maximum area of the rectangle.

Abstract

 (11 marks)

