FORM 5 MATHEMATICS (Non Calculator Paper) TIME: 20 min.

Name \qquad Class

Mark

ANSWER ALL QUESTIONS. THERE ARE 20 QUESTIONS TO ANSWER.

EACH QUESTION CARRIES 1 MARK.

CALCULATORS, RULERS, PROTRACTORS AND OTHER MATHEMATICAL INSTRUMENTS ARE NOT ALLOWED.

ON YOUR DESK YOU SHOULD HAVE NOTHING EXCEPT FOR PEN, PENCIL AND EXAMINATION PAPER.

TO ANSWER QUESTIONS INVOLVING NUMERICAL CALCULATIONS YOU ARE ADVISED TO CHOOSE AND USE THE MORE EFFICIENT TECHNIQUES (MENTAL OR PENCIL-AND-PAPER).

YOU ARE NOT REQUIRED TO SHOW YOUR WORKING. HOWEVER SPACE FOR WORKING IS PROVIDED IF YOU NEED IT.

BONOT

WRITE
N

THIS

SPACE

No.	QUESTION	SPACE FOR WORKING (IF REQUIRED)
1.	43×87 gives the same result as: A) $43 \times 8+43 \times 7$ B) $43 \times 70+43 \times 8$ C) $43 \times 80+43 \times 7$ D) $4 \times 8+3 \times 7$. Ans:	
2.	1 Euro is approximately 40 cents. During a holiday in Italy, a Maltese tourist was charged 50 Euros for a traffic offence. What is its equivalence in Malta Lira? Ans: \qquad	
3.	Paul is facing South. He turns 90° clockwise. He will then face: A) North B) South C) East D) West. Ans: \qquad	
4.	p^{3} means the same as: (A) $3+p$ (B) $p \times p \times p$ (C) $p+p+p$ (D) $3 \times p$. Ans: \qquad	
5.	The perimeter of an equilateral triangle is 40.5 cm . What is the length of one of its sides? Ans: \qquad	
6.	Simplify 3-1 $\frac{3}{8}$. Ans:	
7.	A tangent and a radius of a circle meet at an angle of: A) 30° B) 60° C) 90° D) 180°. Ans: \qquad	
8.	The capacity of a cylindrical beaker is 2 litres. How many millilitres of water does it hold when it is 75% full? Ans: \qquad	

No.	QUESTION	SPACE FOR WORKING (IF REQUIRED)
9.	Denise uses the following LOGO commands. PD REPEAT 360 [FD 1 RT 1] Make a sketch of what the turtle will draw. Ans: \qquad	
10.	The area of a square is $38 \mathrm{~cm}^{2}$. Give an estimate for the length of one edge of the square, giving the answer correct to the nearest whole number. Ans:	
11.	During a race in France, Jalabert cycled 1.9 kilometres in 3 minutes. Express this as an average speed in $\mathbf{k m} / \mathbf{h}$. Ans: \qquad	
12.	$3+\frac{1}{8}$ is equivalent to: A) $\frac{31}{8}$ B) $\frac{1}{38}$ C) $\frac{4}{8}$ D) $3 \frac{1}{8}$. Ans:	
13.	One CD player and a set of five CDs cost $\operatorname{Lm} 40$. The same CD player and four similar CDs cost Lm35.50. What is the cost of one CD? Ans:	
14.	$\left(\frac{2}{3}\right)^{-1}$ simplifies to: A.) 3^{2} B) $\frac{2}{3}$ C) 3^{-2} D) $\frac{3}{2}$ Ans:	

No.	QUESTION	SPACE FOR WORKING
15.	Write 0.00058 in standard form. Ans:	
16.	On a spreadsheet: the number in cell $\mathbf{A 2}$ is 250 the number in cell A3 is 15 . In cell A4 there is the formula $=A 2-A 3 * 4$ What value is obtained in cell $\mathbf{A} 4$? Ans: \qquad	
17.	Write down a fraction that lies between $\frac{1}{2}$ and $\frac{7}{8}$. Ans: \qquad	
18.	A cylinder has a base radius of 6 cm . Its height is 20 cm . The curved surface area of the cylinder is approximately: A) $360 \mathrm{~cm}^{2}$ B) $720 \mathrm{~cm}^{2}$ C) $2160 \mathrm{~cm}^{2}$ D) $4320 \mathrm{~cm}^{2}$. Ans:	.
19.	PQ and RS are two parallel lines. What is the size of angle b, when $a=128^{\circ}$? Ans: \qquad	
20.	 This is the graph of the line $y=x-1$ as shown on a computer screen. On the same graph, sketch the line of $y=x+1$.	

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	Total Main	Non Calculator	Global Mark
Mark																

Name \qquad Class \qquad

CALCULATORS ARE ALLOWED BUT ALL NECESSARY WORKING MUST BE SHOWN ANSWER ALL QUESTIONS

1. Change
a) Lm 2.75 to cents
b) 260 minutes to hours and minutes

	c
h	\min
	m^{2}

2. a) (i) Evaluate $3^{0}+3^{2}+3^{-1} \quad$ (ii) Simplify $y^{3} \times y^{5} \div y^{4}$
b) A map is drawn to a scale of 1:50000. A line on the map of length 4.5 cm represents a road between two towns P and Q . What is the actual distance between these two towns? Give your answer in kilometres.
3. a) (i) Write the following numbers correct to $\mathbf{1}$ significant figure to give an estimate for \mathbf{Q}.

$$
\mathbf{Q}=\left(\frac{28.85+40.92}{6.82}\right)^{3}
$$

(ii) Use your calculator to work out the value of \mathbf{Q}. Give your answer correct to the nearest whole number.
b) Work out $\left(3 \frac{1}{2}+1 \frac{3}{8}\right) \div 6 \frac{1}{2}$
4. One exterior angle of a regular polygon is 45°. Work out:
a) the number of sides of the polygon
b) the size of one interior angle of the polygon
c) the sum of all interior angles of the polygon.
5. A factory operator works 40 hours a week. He earns Lm2.30 per hour. The overtime rate is $11 / 2$ times the normal rate per hour. Last week he worked a total of 48 hours. Some of this information is given in the spreadsheet shown below.

	A	B
$\mathbf{1}$	Normal payment rate per hour (in Lm)	$2 \cdot 30$
$\mathbf{2}$	Normal number of hours per week	40
$\mathbf{3}$	Number of overtime hours in a week	8
$\mathbf{4}$	Normal pay in a week (in Lm)	
$\mathbf{5}$	Overtime payment rate per hour (in Lm)	
$\mathbf{6}$	Overtime pay in a week (in Lm)	
$\mathbf{7}$	Total weekly payment including overtime (in Lm)	

List of formulae

$=\mathbf{B 4}+\mathrm{B} 6$
$=1.5$ * B1
$=$ B1 * B2
= B3 * B5
a) Write down the formula you would use in cell:

B4 \qquad ; B5 \qquad ; B6 \qquad ; B7 \qquad .
b) In a certain week the operator worked 10 hours overtime. How much did he earn on overtime during this particular week?

a) The trapezium PQRS is the path traced out by the LOGO turtle. QR is parallel to PS . $\mathrm{PQ}=\mathrm{QR}=40$ turtle steps, $\mathrm{RS}=80$ turtle steps and $\angle \mathrm{PSR}=30^{\circ}$.
Work out the length of PS in turtle steps, giving your answer correct to the nearest whole number.
b) Complete this set of LOGO commands given to the turtle to draw the trapezium PQRS. (The turtle started at point P as shown).

PD FD 40 RT 90 FD 40 RT \qquad FD 80 HOME
7. a) Angela measured the diameter and the mass of 5 circular discs made of the same material and of equal thickness. These are given in the table on the right.

Angela also drew the graph of mass (m) against diameter (d), shown on the right.

Does m vary directly as d ? Give a reason for your answer.

b) Another girl, Brenda, drew up the table on the right by squaring each diameter.

d^{2}	1	4	9	16	25
m	8	32	72	128	200

She also drew the graph of m against d^{2}, shown on the right.
i) Does m vary directly as d^{2} ? Give a reason for your answer.
ii) Using the table of values for d^{2} and m, or otherwise, work out the constant of variation, k.

iii) Use this value of k to write down a formula connecting m and d^{2}.
iv) Use your formula to work out the value of m when d is 9 cm .
8. $\mathrm{f}(x)=3 x+2$ and $\mathrm{g}(x)=\frac{x}{2}+7$.
a) Work out $f(-3)$.
b) Solve $\mathrm{f}(x)=\mathrm{g}(x)$.
c) Find $\mathrm{f}^{-1}(x)$.

9. A telephone company wants to set up a new radio telephone transmission mast to provide services to three towns A, B and C. The diagram below shows the position of the three towns. The diagram is drawn to a scale of $\mathbf{1} \mathbf{~ c m}$ to $\mathbf{1 k m}$.

A.	Scale: $\mathbf{1 c m}$ to $\mathbf{1 k m}$

The mast has to be located within the triangular area enclosed by the towns A, B and C so that it is equidistant from towns A and B and 4 km from town C.
a) Using the same scale as in the diagram, construct accurately the position of the mast on the diagram. Mark the position of the mast with an M.
(All construction lines and arcs must be shown).
b) From your drawing measure and write down the distance of BM, giving your answer in km correct to 1 decimal place.

The cards were placed face down on a table in a random order.
a) Kevin picked a card at random from the pack. He then replaced the card face down. Write down the probability that the card picked showed:
(i) a prime number.
(ii) an even number.
b) The cards were again placed face down on a table in a random order.

Another boy, Simon, then picked a card at random from the pack and did not replace it. He then picked a second card. Complete the following tree diagram.

Second card picked

Use the tree diagram to work out the probability that, for the cards picked by Simon:
(i) both cards showed even numbers
(ii) only one card showed an even number
(iii) the product of the two numbers shown was even.
11. XPY and PZ are two common tangents to the circles shown in the diagram. $\angle \mathrm{ZXP}=a^{\circ}$ and $\angle \mathrm{ZYP}=b^{\circ}$. Explain why, giving reasons:
i) $\mathrm{XP}=\mathrm{PY}$
ii) $\angle \mathrm{XZY}=90^{\circ}$
iii) $\angle \mathrm{ZRY}=b^{\circ}$.

12. The following table gives the prices of 200 houses which are offered for sale in a monthly property magazine for town A. The prices shown are in Lm 1000's.
(Ex. $20 \leq p<30$ means houses priced at Lm 20000 or more but less than Lm 30000).
A histogram illustrating the given information is also shown.

Price (p) in Lm 1000 's	Number of houses f	Halfway value of p x	$f x$	(requency
$0 \leq p<10$	3	5	15	3
$10 \leq p<20$	7	15	105	10
$20 \leq p<30$	27	25	675	37
$30 \leq p<40$	52	35	1820	89
$40 \leq p<50$	67	45	3015	156
$50 \leq p<60$	26	55	1430	182
$60 \leq p<70$	18	65	1170	200

a) (i) Work out an estimate for the mean price.
(ii) On the histogram shade the bar representing the modal group.
b) The following cumulative frequency curve was drawn using the data given in the table. Use the cumulative frequency curve to estimate:
(i) the median price
(ii) the interquartile range
c) A married couple cannot afford to spend more than Lm 45000 to buy a house. Estimate the percentage of the 200 houses that are within their price range.

d) Box plot A illustrates the distribution of prices for town A. Draw a line on box plot A to mark the location of the median.
e) Box plot B illustrates the distribution of prices for another town B. In which of the two towns has the married couple the greater number of houses to choose from? Explain your answer.
13. The following table of values of x and y was used by Mark to draw the graph of $y=\frac{1}{x}$, for values of x from 0.2 to 4 . (The values of y were rounded off to 2 decimal places).

x	0.2	0.4	0.6	0.8	1	2	3	4
y	5	2.5	1.67	1.25	1	0.5	0.33	0.25

a) The graph drawn by Mark is shown on the left.
i) On the same axes sketch the graph if Mark had also taken values of x from -4 to -0.2 .
ii) Give a reason why $x=0$ was not included in the table of values.
iii) What happens to the value of y as x gets closer to zero for positive values of x ?
b) i) On the same axes draw the graph of $y=x+2$.
ii) From your graphs write down an estimate to one decimal place for the positive solution of $\frac{1}{x}=x+2$.
iii) Use the method of trial and improvement to give the positive solution to $\frac{1}{x}-x=2$, correct to two decimal places. (Show all your working).

END OF PAPER

