Name: \qquad Class: \qquad

Mark

Instructions to Candidates

- Answer all questions. There are 20 questions to answer.
- Each question carries 1 mark.
- On your desk you should have nothing except for pen, pencil and examination paper.
- To answer questions involving numerical calculations you are advised to choose and use the more efficient techniques (mental or paper-and-pencil).
- You are not required to show your working. However space for working is provided if you need it.
IN THIS SPACE

9	The volume of this cuboid is $\mathbf{1 5 0} \mathbf{c m}^{\mathbf{3}}$. What is the area of the base? Answer:	
10	Triangle PQR is right-angled at Q . Underline the correct equation. A. $\sin P=\frac{2}{13}$ B. $\sin P=\frac{3}{13}$ C. $\sin P=\frac{2}{\sqrt{13}}$ D. $\sin P=\frac{3}{\sqrt{13}}$	
11	In a bag there are only red discs and blue discs. A disc is chosen at random. The probability that the disc is blue is $\mathbf{0 . 6 5}$. What is the probability that the disc is red? Answer:	
12	What is the value of $\sqrt{p^{2}+q^{2}}$, given that $p^{2}=5$ and $q=-2$? Answer:	
13	The opposite angles of a cyclic quadrilateral are x° and $5 x^{\circ}$. What is the value of \boldsymbol{x} ? Answer:	
14	The sides of a rectangle are in the ratio of $\mathbf{2 : 3}$. The smaller side is 10 cm long. Work out the length of the longer side. Answer:	

15	Find the value of: $\frac{\mathbf{1}}{\mathbf{3}}+\frac{\mathbf{1}}{\mathbf{4}}+\frac{\mathbf{1}}{5}+\frac{\mathbf{2}}{\mathbf{3}}+\frac{\mathbf{3}}{\mathbf{4}}+\frac{\mathbf{4}}{\mathbf{5}}$ Answer:	
16	One of the following is not equal to $\frac{1}{4}$. Which one? A. 4^{-1} B. $\left(\frac{1}{2}\right)^{2}$ C. 25% D. 0.4 Answer:	
17	ABCD is a rectangle and M is the midpoint of DC. What fraction of the rectangle is shaded?	
18	What is the cost of 13 pens at 75 cents each and 13 notebooks at Lm1.25 each? Answer:	
19	A sum of money was invested in a bank at $\mathbf{1 0 \%}$ per annum. After 1 year the interest paid was Lm72. What was the sum invested? Answer:	
20	If $3^{4}+3^{4}+3^{4}=3^{n}$, what is the value of n ?Answer:	

FORM 4 MATHEMATICS (MAIN) Time: 1 hour 40 min

$\mathbf{1}$	2	3	4	5	6	7	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	14	$\mathbf{1 5}$	NC	Main	Total

Name: \qquad Class: \qquad
Calculators are allowed but the necessary working must be shown. Answer all questions.

1. (a) Use your calculator to find the value of $\sqrt[4]{100}$, giving your answer correct to $\mathbf{2}$ decimal places.
(b) Evaluate $\frac{1.6 \times 10^{4}}{6.4 \times 10^{-3}}$, giving your answer in standard form.
2. A car was bought for Lm5500. The price of the car goes down in value by $\mathbf{1 2 \%}$ each year. Calculate the value of the car after (i) 1 year, (ii) 2 years?
3. A pupil uses the following LOGO statement to draw the six-pointed star shown.

REPEAT 4 [FD 100 BK 100 RT 90]

This statement contains two mistakes.
(i) Write the correct statement that draws the sixpointed star.

(a) Write another statement to draw a ten-pointed star.
\qquad
(4 marks)
4. During a term Mario sat for three mathematics tests. Mario entered the results in a spreadsheet.
(i) In cell B5 Mario wanted to find the total of the three tests. What formula should he write?
\qquad
(ii) In cell B6 Mario typed the formula $=$ B5/3. What value did he get?

	A	B
1	Month	Mark
2	October	57
3	November	72
4	December	63
5	Total	
6	Mean	1

\qquad
5. A solid is formed from a cone joined to a cylinder as shown in the diagram. Calculate:
(i) the volume of the cone, in terms of π,
(ii) the height of the cylinder, given that the volume of the cylinder is three times the volume of the cone.
(Volume of cone $=\frac{1}{3}$ base area \times height)

6. The letters of the word PROBABILITY are written on eleven cards, one letter on each card. The cards are shuffled and one card is chosen at random.
(i) Find the probability that the card chosen is a \mathbf{B}.

The experiment is repeated but this time two cards are drawn. The first card is not replaced after the first card has been drawn.
(ii) Complete the probability tree.
(iii) Write down the probability that one card is a vowel (V) and the other is a consonant (C).

(6 marks)
7. A flagpole stands on top of a vertical building. From a point, P , on level ground, $\mathbf{2 5}$ metres from the base of the building, the angles of elevation of the foot and the top of the flagpole are 31° and 35° respectively. Calculate, correct to $\mathbf{3}$ significant figures,
(i) the height of the building,
(ii) the height of the flagpole.

8. PQ and RS are two chords of a circle, intersecting at X .
(i) Give reasons why triangles PRX and SQX are similar.
(ii) Given that $S X=\mathbf{6} \mathbf{~ c m}, P X=\mathbf{4} \mathbf{~ c m}$ and $S Q=$ $\mathbf{5 c m}$, find the length of $\mathbf{P R}$.
(iii) The area of triangle PRX is $4 \mathrm{~cm}^{2}$. Work out the area of triangle QSX.

9. AB is a chord of a circle with centre $\mathrm{O} . \mathrm{M}$ is the foot of the perpendicular from O to AB .
(i) Prove that triangles AOM and BOM are congruent.
AT is the tangent to the circle and angle BOM $=52^{\circ}$.
(ii) Work out the size of (a) angle APB (b) angle BAT.
P is dragged onto point Q.
(iii) Write down the size of angle AQB.
P is dragged onto point R .
(iv) Write down the size of angle ARB.
10. (a) Factorise completely:
(i) $12 x^{2}+3 x$
(ii) $2 x^{2}-9 x-5$
(b) Simplify: $\frac{3}{x^{2}-1}-\frac{2}{x+1}$
11. (a) Solve $4 \boldsymbol{x}^{2}=7 \boldsymbol{x}-1$, giving your answers correct to 2 decimal places.
(b) The area of this right-angled triangle is $\mathbf{2 0} \mathbf{~ c m}^{2}$. Form an equation and solve it to find the value of x.

Solutions of $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
(i)
$y=x^{2}+4 x$
(ii) $y=4 x-x^{2}$
(iii) $y=x^{2}-4 x$
(iv) $y=x^{2}+4 x+4$

(b) On the same diagram draw the graph of $y=x-4$.
(c) Write down the coordinates of the points of intersection of the two graphs.
(d) Write down a quadratic equation that will have the x-coordinates of these points as roots.
Express this equation in the form $a x^{2}+b x+c=0$.
13. The diagram shows a picture of a flag, F1.
(i) Rotate F1 clockwise about the point $(\mathbf{0}, \mathbf{0})$ through an angle of $\mathbf{9 0}^{\circ}$. Call this second flag F2. Draw and label F2.
(ii) Draw the line $y=x$. Reflect F2 in the line $y=x$. Call this third flag F3. Draw and label F3.
(iii) Translate F3 by a vector of $\binom{0}{-6}$. Call this fourth flag F4. Draw and label F4.
(iv) Describe fully a single transformation that will map F3 to F1.

