\qquad Class: \qquad

Directions to Candidates:

Answer ALL questions in Section A on this paper.
Answer any TWO questions from Section B on separate foolscaps.
The use of flow chart template is permitted.
Calculators are NOT allowed.
Good English and orderly presentation are important.

For office use only:

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	Paper Total	Course Work	Final Mark
Max	5	5	5	5	5	5	5	5	5	5	5	15	15	15	85%	15%	100%
Mark																	

Section A-Answer all Questions

1
The table below lists some Input and Output devices. Tick (\checkmark) whether each device is an input or output device and provide a suitable application for each. An example has been given to help you answer this question.

Device	Input	Output	Application
Keyboard	\checkmark		Word Processing.
Laser Printer			
Mouse			
Bar-code Reader			
Joystick			
Plotter			

2 (a) Two common types of secondary storage media are magnetic and optical.
Tick (\checkmark) whether the following media are magnetic or optical and for each medium give a typical storage capacity.

Secondary Storage	Magnetic	Optical	Capacity
Hard Disk			
Floppy Disk			
Compact Disk			

(b) Secondary storage media allow direct (random) and/or sequential (serial) methods of accessing data. Distinguish between the two methods.

Direct:

\qquad

Sequential:

\qquad
3 (a) Say what the following abbreviations stand for:
CAM:
CAL:

EFT:

\qquad
(b) Mention a typical situation where CAL and EFT may be used.

CAL:
EFT :

4 (a) Most software is covered by copyright laws and therefore it is illegal to copy it (software piracy). Describe three security measures which software houses use to protect their software.
$1^{\text {st }}$ Security: \qquad
$2^{\text {nd }}$ Security: \qquad
$3^{\text {rd }}$ Security: \qquad
\qquad
(b) To protect data against loss or unauthorized access, different procedures (methods) are used, for example passwords. Describe two OTHER methods which can be used to protect important data.
$1^{\text {st }}$ Method: \qquad
$2^{\text {nd }}$ Method: \qquad
\qquad
5 (a) The following are three computer applications:
Bank transactions; preparing telephone invoices; training airline pilots.
Match the computer applications with the systems listed below:
i. simulation:
ii. real-time system: \qquad
iii. batch processing: \qquad
(b) Distinguish between real-time and multiprogramming operating systems.

Real-time:

\qquad
\qquad
Multiprogramming: \qquad

6 (a) Computers are linked together to form network systems. Give one advantage and one disadvantage of a network system.

Advantage: \qquad
\qquad
Disadvantage: \qquad
\qquad
(b) Different types of communication links can be used to connect computers together - the telephone cable is an example. Mention two other types of communication links.
$1^{\text {st }}$ type:
$2^{\text {nd }}$ type:
(c) What do you understand by the bandwidth of a network system?

Bandwidth:
\qquad
\qquad
7 (a) Computer systems may either be general-purpose or dedicated. What is the difference between them?

General-purpose: \qquad
\qquad
Dedicated: \qquad
\qquad
(b) Give two examples of dedicated computer systems.
$1^{\text {st }}$ example:
$2^{\text {nd }}$ example:
\qquad
\qquad
(c) What do you understand by process control?

Process Control:

\qquad
\qquad

8 (a) Programmers often make errors while writing computer programs. Which are the three common types of programming errors?
$1^{\text {st }}$ error:
$2^{\text {nd }}$ error:
$3^{\text {rd }}$ error:
(b) The incorrect program below should accept an inputted temperature in degrees Celsius (C), should convert it to degrees Fahrenheit (F) and output the result on the screen.

```
Program cen_to_fer;
Var
    F,C : Real;
Begin
Write('Enter the temperature in Centigrade: ');
Readln(C);
(9*C/5) + 32 := F;
Readln;
End.
```

Write down the two errors in the program and show how each error may be corrected so that the program runs as intended.
$1^{\text {st }}$ error:

Error corrected:

$2^{\text {nd }}$ error:
\qquad

Error corrected: \qquad
9 (a) Convert the decimal numbers 147 and 17 into binary.
Space for working:
(b) Using two's complement, show how the subtraction 147-17 is performed.

Space for working:

Answer: \qquad
(c) Can $\mathbf{+ 1 3 0}$ be represented in two's complement using an 8-bit register? Explain why.

Answer:
\qquad
\qquad
10 The weather person on a local television station must decide to tell the viewers if it is a nice day or not. It is a nice day if the temperature lies between $\mathbf{T 1}$ and $\mathbf{T} 2$ and the humidity is between $\mathbf{H 1}$ and $\mathbf{H 2}$, as given below.

$$
\begin{aligned}
& \boldsymbol{T} \boldsymbol{1}<32^{\circ} \mathrm{C} \\
& \boldsymbol{T} \boldsymbol{2}>16^{\circ} \mathrm{C} \\
& \boldsymbol{H} \boldsymbol{1}<90 \% \\
& \boldsymbol{H} \boldsymbol{2}>50 \%
\end{aligned}
$$

Therefore, it will be a nice day only if all four statements above are true. Otherwise, if at least one statement is false then it will not be a nice day.
To answer the following questions use \mathbf{N} to represent a nice day.
(a) Draw the logic circuit using appropriate symbols having T1, T2, H1 and H2 as inputs and \mathbf{N} as output.

(b) Write down the Boolean expression for the logic circuit, in question 10 (a), in terms of T1, T2, H1, H2 and \mathbf{N}.

Answer:

11 The Fetch-Execute Cycle is the repetitive task of the CPU while executing a program. Using the terms: Program Counter, Instruction Register, ALU and Main Memory, describe the steps of the Fetch-Execute Cycle.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Section B - Answer any TWO questions

12 (a) A program instruction for a simple computer is designed with a word length of 14 bits. The diagram below shows that 3 bits are used for the Function code and the remaining 11 bits for the Address.

i. How many different functions can be coded with this computer?
ii. How many different memory locations can be directly addressed?
(b) Describe briefly three differences between high level languages and low level languages.
(c) Compilers and interpreters are both language translators. Explain the main difference between them.
(d) i. What is the input to a compiler called?
ii. What is the output from a compiler called?
(e) Draw a flowchart for a validation program which asks the user to input 30 marks. For each mark entered the computer should output 'Mark Accepted' if the mark is between 0 and 100, otherwise it should output 'Mark Rejected'.

13 (a) Draw a block diagram of the hardware of a computer system. The diagram should include: ALU, Control Unit, Accumulator, Program Counter, RAM, ROM, an Input Device, an Output Device and a Secondary Storage device. In your diagram show the flow of information.
(b) Briefly explain the functions of the ALU, Control Unit and Memory Unit.
(c) Name and describe the function of a register found in the ALU and another one found in the Control Unit.
(d) Give two reasons why secondary storage devices are required in a computer system.

14 (a) Dry Running and Program Tracing are two methods used to test whether a program works correctly or not. Explain the terms Dry Running and Program Tracing.
(b) Write a program in Pascal which accepts 20 examination marks and stores them in an array. The marks can be real numbers (with any decimal place). Use the marks read to output on the screen the marks in the form of a bar chart with asterisks (*) together with the mark given to one decimal place. Use the ROUND function to round down the marks to the nearest integer to display an integral number of asterisks.
The output should be displayed as in the example below:

```
***** }5.
********** 9.7
```

Use in-line documentation (comments) where you think it is necessary to explain your source code.

