JUNIOR LYCEUM ANNUAL EXAMINATIONS 2006

Educational Assessment Unit - Education Division

FORM 4

CHEMISTRY

TIME: 1h 30min

Class: _____

Name:

Useful Data: A copy of the Periodic Table is printed below. Relative atomic masses may be taken as: Ag = 108One mole of any gas occupies 22.4 dm³ at standard temperature and pressure. Standard temperature and pressure (stp) = 0°C and 760 mm Hg Faraday constant = 96 500 Cmol⁻¹ Q = It

1	2											3	4	5	6	7	0
							$\overset{1}{\underset{1}{\mathbf{H}}}$										\mathbf{H}_{2}^{4}
7 Li 3	9 Be 4											11 B 5	12 C 6	14 N 7	16 O 8	19 F 9	20 Ne 10
23 Na 11	24 Mg 12											27 Al 13	28 Si 14	31 P 15	32 S 16	35.5 Cl 17	${}^{40}_{18}$
39 K 19	40 Ca 20	45 Sc 21	48 Ti 22	51 V 23	52 Cr 24	55 Mn 25	56 Fe 26	59 Co 27	59 Ni 28	63.5 Cu 29	65 Zn 30	70 Ga 31	73 Ge 32	75 As 33	79 Se 34	80 Br 35	84 Kr 36
85 Rb 37	88 Sr 38	89 Y 39	91 Zr 40	93 Nb 41	96 Mo 42	99 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	$\overset{112}{\underset{48}{\overset{12}{}}}$	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 Tl 81	207 Pb 82	209 Bi 83	210 Po 84	210 At 85	222 Rn 86

PERIODIC TABLE

Marks Grid [For Examiners use only]

			Secti	ion A			S.	Section 1	B	
Question Nº.	1	2	3	4	5	6	7	8	9	
Max Mark	8	10	10	10	12	10	20	20	20	
Actual Mark										Theory Total

85% of Theory Paper	15% Practical	100% Final Score

SECTION A: Answer ALL questions in this section, using the spaces provided. This section carries 60 marks.

- 1. This question concerns the following elements which are found in different Groups or particular areas of the Periodic Table
 - A. copper B. chlorine C. magnesium D. hydrogen
 - E. sodium F. neon G. sulfur H. aluminium

Select, from A to H, the element which fits the following descriptions.

- (i) It is soft, can be cut with a knife and floats on water.It reacts on exposure to air so it is stored under oil. ______
- (ii) A gas that burns in air to form a neutral liquid. This gas is used as rocket fuel.
- (iii) A yellow solid that burns in air to form an acidic oxide.
- (iv) It is extracted from its oxide by electrolysis and is used in alloys for aircraft construction.
- (v) A dense, poisonous gas, which is obtained as a by-product in the electrolysis of brine.
- (vi) It forms compounds in which it has a charge of +1 or +2.

It melts at 1083°C and is used in electrical wiring.

(vii) It is a monoatomic gas, does not tend to react and is used in advertising signs.

(viii)Some of its compounds are responsible for hardness of water.

(8 marks)

- 2. This question is about the reactivity of metals with water and steam.
 - (a) Use your knowledge of metals and the reactivity series to give the **name** of a metal that would:
 - (i) react vigorously with water
 - (ii) hardly react with water but reacts with steam
 - (iii) **not** react with water or steam

(3 marks)

b) A teacher demonstrated the reaction of zinc with steam using the apparatus shown below.

- 4. The diagram shows a Hofmann Voltameter which is a suitable apparatus to collect the gases liberated during the electrolysis of acidified water, (dilute sulfuric acid).
 - (a) Label the names of the gases.

(2 marks)

(b) Fill in the table of results below

	At cathode	At anode
ions migrating to the electrodes	H^+	
ionic half equations for the electrode reactions		

(5 marks)

- (c) In another experiment, an electric charge of 1930 coulombs was passed through a solution of silver nitrate.
 - (i) Convert 1930 coulombs into Faradays.

(1 marks)

(ii) Calculate the mass of silver deposited.

 Ag^+ + $e^ \rightarrow$ Ag

5. (a) The passage below refers to the manufacture of sulfuric acid by the Contact process.Complete the passage by filling the blank spaces with the correct figures or words selected from the following list. [N.B. Some of these will not be used.]

2, 200, 450, 600, hydrogen, oxygen, water, sulfur dioxide, sulfur trioxide, iron, vanadium (V) oxide, pesticides, fertilisers.

In the first stage of the Contact process, sulfur is burned in air to form ______. This gas is then used in the second stage of the process. It is mixed with _______ gas, then passed over the catalyst _______ at a temperature of ______ °C and ______ atmospheres pressure. The product of this reaction is _______ gas. Finally, this gas is absorbed in concentrated sulfuric acid forming a liquid called 'oleum' to which the correct amount of _______ is added in order to obtain ordinary concentrated sulfuric acid. One use of sulfuric acid is to make _______.

(8 marks)

- (b) A sample of sulfur dioxide gas has a volume of 500cm³ at 25°C and 750mm Hg pressure. This volume of gas is then stored at standard temperature and pressure conditions (0°C and 760mm Hg).
 - (i) Convert both temperatures from degrees Celsius to Kelvin temperatures.

(1 mark)

(ii) Write the 'ideal gas equation' for converting the volume of a gas from one set of conditions to another.

(1 mark)

(iii) Calculate the volume of sulfur dioxide at stp.

(2 marks)

6. This question refers to a titration experiment to determine the unknown concentration of hydrochloric acid solution using a standard solution of sodium carbonate of molar concentration 0.1M (0.1 mol dm⁻³). 25cm³ portions of sodium carbonate were measured out, placed in three conical flasks and a suitable indicator was added.

Three titres were	carried o	out with	the fol	lowing	result:
-------------------	-----------	----------	---------	--------	---------

Titre	1	2	3
2 nd Burette reading (cm ³)	30.50	31.60	30.50
1 st Burette reading (cm ³)	0.00	3.00	2.00
titre value (cm ³)	30.5	28.6	28.5

The equation for the reaction is:

Na_2CO_3	+	2HCl	\rightarrow	2NaCl	+	H_2O	+	CO_2
------------	---	------	---------------	-------	---	--------	---	--------

- (a) Name a suitable indicator.
- (b) State **two** things that could be done, when close to the 'end point', in order to obtain an exact titre value.

			(=
(c)	(i)	Why is one of the titre values ignored?	
			(1 mark)
	(ii)	Work out the average titre value	
			(1 mark)

(d) Calculate the number of moles of sodium carbonate in 25cm^3 of 0.1M solution.

(2 marks)

(1 mark)

(2 marks)

(e) (i) Use the mole ratio of sodium carbonate : acid to find the number of moles of hydrochloric acid that reacted.

(1 mark)

(ii) Use your answer to part (e) (i) and the average titre value to find the molarity of the hydrochloric acid.

SECTION B: Answer any TWO questions from this section on the separate sheets provided. Each question carries 20 marks.

7. This question is about ammonia gas and its properties.

	(a)	(i) Draw a diagram of the apparatus that can be used to prepare, dry and collect ammonia						
			in the laboratory.		(4 marks)			
		(ii)	he reagents and the name of the	drying				
			agent.		(6 marks)			
		(iii)	Write a balanced equation for the reaction		(2 marks)			
	(b)	Give one observation and name a product that is formed when dry ammonia						
		with	n- (i) dry hydrogen chloride	(ii) heated copper (II) oxide	(4 marks)			
	(c)	Wha	at is seen when dilute ammonia solution is a	dded, first dropwise, then in exc	ess to			
		cop	per (II) nitrate solution?		(2 marks)			
	(d)	Giv	e an equation for one of the reactions taking	place in parts (b) or (c).	(2 marks)			
8.	(a)	Ima	gine that you are provided with solutions of	the following substances.				
		amr	nonium carbonate, aluminium sulfate, lead n	itrate and sodium iodide.				
		(i)	Choose any TWO of these solutions and st	ate the test (and result) that would	ld			
			confirm the presence of both ions in each s	olution.				
			(this means that you have to identify four i	ons in all)	(8 marks)			
		(ii)	Give equations for any THREE of the tests					
			(These may be complete or ionic equations)	(6 marks)			
	(b)	If some solid sodium hydrogencarbonate is decomposed by heat, two gases are liberated						
		and	a solid residue is left.					
		(i)	Name the two gases liberated.					
		(ii)	Describe a test to identify one of these gase	s.				

(iii) Write an equation for the decomposition. (6 marks)

9. The following is a reaction scheme for iron metal and its compounds.

(*N.B* : note the direction of the arrows)

(a) for each of the reactions, 1 to 5, give:

- (i) the name of the reagent (other chemical) required to bring about the change.
- (ii) one observation that would be made during the reaction. (10 marks)
- (b) Write balanced equations for reactions (1) to (4). (8 marks)
- (c) Use the idea of oxidation numbers to explain why reaction (5) is an oxidation reaction

(2 marks)

END PAPER