Name: \qquad Class: \qquad

Useful Data: A copy of the Periodic Table is provided with this paper.
One mole of any gas occupies $22.4 \mathrm{dm}^{3}$ at standard temperature and pressure.
Relative atomic mass may may be taken as: Zinc $\mathrm{Zn}=65$
Standard temperature and pressure $=0^{\circ} \mathrm{C}$ and 760 mm Hg
Section A: Answer All questions in this Section, using the spaces provided.
This section carries 60 marks.

1. The three sets of apparatus, X, Y and Z , shown below were set up by students to prepare and collect gases.
(X)

(Y)

(Z)

a) Complete the table below for the preparation and collection of a gas using apparatus (X) and apparatus (Y).
The gas prepared by each method must be different.

Apparatus	Name of gas to be prepared	Names of reagents to be used in preparation	Physical property on which the method of collection depends
\mathbf{X}			
\mathbf{Y}			

(8 marks)

1. b) (i) Name a gas that can be collected by the method shown in apparatus (Z).
\qquad .
(ii) On the diagram, circle the fault in the set up of apparatus (Z).
2. Give the name of the process which occurs when:
a) solid iodine is obtained from iodine vapour \qquad -.
b) liquid water is obtained from water vapour \qquad .
c) a liquid becomes a vapour without bubbling \qquad .
(3 marks)
3. a) Magnesium oxide is an ionic compound. Draw diagrams, showing ALL electron shells, to represent the magnesium and oxide ions.
b) Draw a dot/cross diagram, showing OUTER electrons only, to show the bonding in a molecule of water.
4. a) For each of the following aqueous solutions state whether the pH is 7 , less than 7 , or greater than 7 .
(i) lime water \qquad .
(ii) vinegar \qquad .
(iii) common salt \qquad .
b) Wasp stings are alkaline
(i) Which of the above substances could be used to ease the pain?
(ii) What type of reaction occurs to ease the pain? \qquad .
(5 marks)
5. This question concerns the following elements magnesium, sodium, iron, aluminium, bromine, argon.
Select the element which:
a) forms coloured ions
b) exists as a liquid at room temperature
\qquad
c) does not tend to form compounds
d) reacts vigorously with cold water
e) forms an amphoteric oxide
\qquad
\qquad
\qquad
\qquad
(5 marks)
6. Complete the table below, which shows the products formed when some substance are electrolysed under certain conditions.

Electrolyte and Condition	Cathode product	Anode product		
sodium chloride	sodium	chlorine		
using graphite electrodes				dilute sulphuric acid using platinum
:---				
electrodes				

(4 marks)
7. Excess of dilute hydrochloric acid was added to zinc metal which reacted according to the following equation
$\mathrm{Zn}+2 \mathrm{HCl} \quad \rightarrow \quad \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

The volume of hydrogen liberated was recorded at fixed time intervals.
a) (i) Name this type of reaction \qquad
(ii) Give an ionic equation for this reaction.
b) (i) Give the name of a suitable piece of apparatus for measuring the volume of hydrogen evolved. \qquad
(ii) Lable the axes below and sketch the curve you would expect to obtain if the results of this experiment were plotted on a graph.

c) If 0.26 g of zinc are used in this experiment, calculate the volume of hydrogen, in cm^{3}, that would be liberated at stp.
d) If this experiment was carried out under laboratory conditions (temperature $21^{\circ} \mathrm{C}$ and a pressure of 760 mm Hg). Calculate the volume that the hydrogen gas would occupy under these conditions.
8. Describe one test, in each case, to distinguish between:
a) the cation (positive ion) in NaCl and KCl
test \qquad
result with NaCl \qquad
result with KCl \qquad
b) the anion (negative ion) in solutions of NaBr and NaI
test \qquad
result with NaBr \qquad
result with NaI \qquad
c) the cation (positive ion) in solutions of FeCl_{2} and FeCl_{3}
test \qquad
result with FeCl_{2} \qquad
result with FeCl_{3} \qquad
(9 marks)
9.
a) Give the name and formula of the main organic product obtained when each of the following procedures is carried out.
(i) a mixture of methane and chlorine is exposed to ultraviolet light.
name \qquad formula \qquad .
(ii) a mixture of ethene and steam is passed over phosphoric acid catalyst at high temperature and pressure.
name \qquad formula \qquad .
(iii) a mixture of propene and hydrogen is passed over a hot metal catalyst. name \qquad formula \qquad .

Section B: Answer any TWO questions from this section on the separate sheets provided. Each question carries 20 marks.
10. (a) Describe a reaction which could be investigated in the laboratory which is a reversible chemical change.
(b) The equations below represent the catalysed reactions in the Haber process and Contact process respectively.

$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$	\rightleftharpoons	$2 \mathrm{NH}_{3(\mathrm{~g})}$
$2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$	\rightleftharpoons	$2 \mathrm{SO}_{3(\mathrm{~g})}$

Both of these processes involve 'chemical dynamic equilibrium'. In both cases the forward reaction is exothermic.
Choose ONE of these processes. Then-
i) Use Le Chatelier's principle to explain the 'theoretical conditions' of pressure, temperature and concentration, that would favour the forward reaction.
(12 marks)
ii) State the optimum (actual) conditions used in the process, including the name of any catalyst used.
(4 marks)
11. Petroleum is the main source of fuels and many organic chemicals, however crude oil has to be refined in order to obtain these useful products.
a) What type of organic compounds are present in crude oil and why is it necessary to refine the crude oil to obtain the products?
(2 marks)
b) The two main processes used in refining are fractionation (fractional distillation) and cracking. Describe the principles involved in these two processes and indicate clearly why fractionation is a physical process while cracking is a chemical process.
c) (i) Name two substances obtained as a result of fractionation, giving a use of each substance.
(ii) Name one substance obtained as a result of cracking, which is a different type of organic compound to those obtained in c(i). Give one use of this substance.
d) Crude oil contains small amounts of sulphur. Suggest a problem that may arise if sulphur is not removed from fuels.
(2 marks)
12. Explain each of the following statements, giving equations where appropriate.
a) A solution of hydrogen chloride in water affects pH indicator and reacts with a carbonate, while hydrogen chloride dissolved in methyl benzene does not show these properties.
b) The process used to extract aluminium from aluminium oxide is much more expensive than the process used to extract iron from iron oxide.
(8 marks)
c) Water flowing through limestone dissolves a substance which produces a solid coating on the inside of kettles or hot water pipes.
(6 marks)

