Coimisiún na Scrúduithe Stáit

Leaving Certificate Examination 2008

Technical Drawing
 Paper II(A) - Ordinary Level (Engineering Applications)
 (200 Marks)

Monday 16 June
Afternoon, 2.00-5.00

Instructions

(a) Ensure that you have received examination paper M82(L) which accompanies this paper.
(b) Answer question 1 and two other questions.
(c) Drawings and sketches should be in pencil unless otherwise stated.
(d) Where dimensions are omitted they may be estimated.
(e) Credit will be given for neat orderly presentation of work.
(f) Work on one side of the paper only.
(g) Your Examination Number should be written on each drawing sheet used.

Note: The following drawings are shown on examination paper M.82(L) which accompanies this paper: Fig. 1, Fig. 5(a), Fig. 5(b), and Fig. 5(c).

1. Details of an Adjustable Table Vice are shown in Fig. 1 with a parts list tabulated below.

PART	NAME	REQUIRED
1	Support Base	1
2	Fixed Jaw	1
3	Moving Jaw	1
4	Adjusting Screw	1
5	Clamping Screw	1
6	Set Screw	1

(a) Assemble the parts and draw, full size, the views listed below. The jaws should be 50 mm apart and the vice in its lowest position. (Hidden detail need not be shown)
(i) a sectional elevation on plane A-A;
(ii) a plan projected from (i).
(b) Insert the following on your drawing:
(i) Title:- ADJUSTABLE TABLE VICE;
(ii) ISO projection symbol;
(iii) Four principal dimensions.
2. Fig. 2 shows the elevation and plan of two cylindrical pipes, of 60 mm diameter. The lower pipe is centrally located on an equilateral triangular base plate as shown.
A pictorial view is also given.
The pictorial view shows material thickness which may be ignored for the purposes of your drawing.
(a) Draw the given elevation and plan.
(b) Draw a surface development of the cylindrical pipe with $\mathrm{C}-\mathrm{C}$ as the seam line.
(50 marks)

Fig. 2

Page 2 of 5
3. (a) A radial plate cam has a minimum radius of 40 mm and a camshaft diameter of 24 mm . The cam rotates in a clockwise direction and imparts the following motion to an inline knife-edge follower:
0° to 60° Rise 12 mm with uniform velocity;
60° to 240° Rise 48 mm with uniform acceleration and retardation;
240° to 270° Dwell;
270° to 360° Fall 60 mm with simple harmonic motion.
Draw the profile of the cam.
Include the displacement diagram as part of the solution.
(b) Fig. 3 shows a link mechanism. Crank OA rotates in an anti-clockwise direction about the fixed point O . A and C are pin joints. The end B of the link AB slides horizontally along the rail EF. The link CP is constrained to slide through the fixed pivot D .
(i) Using a line diagram to represent the mechanism, plot the locus of point P for one revolution of the crank OA.
(ii) Draw the profile of a simple machine guard about the mechanism with a minimum clearance of 15 mm .
(50 marks)

Fig. 3
4. (a) Using the data table below make a fully dimensioned drawing of the machine part in Fig. 4(a), showing all specifications.

1	Screwthread Metric 20, Pitch 2.5, Length 30
2	Undercut 4 x 4
3	Diameter 40, Length 18, Flat 30 x 10 long
4	Diameter 50, Length 30, Fillet radius 10
5	Diameter 94, Length 28, Chamfer 4 x 4, Finish diamond knurl
6	Diameter 60, Length 12
7	Minimum diameter 40, Length 50, Woodruff keyway diameter 40 and depth 8 - mid length
8	Diameter 20, Length 30
9	Taper included angle 60°

(b) Fig. 4(b) shows a part section through a portion of a pump.
(i) Draw a parts list, in table format, which includes the item number and name for each of the parts $1,2,3,4$ and 5.
(ii) Explain, with the aid of freehand sketches, the operation of the pump.

Fig. 4(b)

(c) Using large freehand sketches, explain the following engineering terms:
(i) Ball-bearing;
(ii) Roller-bearing;
(iii) Bush.
(50 marks)
5. Answer SECTION A or SECTION B but not both.

SECTION A

(a) Fig. 5(a) shows the elevation and end elevation of a machine casting. Draw an isometric view of the casting with the shaded portion in front of the section plane A-A removed. Point P is to be the lowest point on the drawing.
(b) Using large freehand sketches illustrate the following:
(i) Counterbore;
(ii) Slotted hole;
(iii) Blind hole.
(50 marks)
OR

SECTION B

(a) List six Computer Aided Drawing commands necessary to produce the drawing in Fig. 5(b).
(b) By means of sketches and a short note, explain the following CAD commands:
(i) Copy;
(ii) Trim;
(iii) Spline.
(c) An object is shown in Fig. 5(c) as a wireframe representation. Draw a large freehand isometric sketch of the object with all hidden lines removed.
(d) Draw, full size, the object that would be displayed on a traditional CAD system when the following commands are executed:
(All points (X, Y) are specified using absolute co-ordinates. The origin $(0,0)$ is located at the lower left corner of the display)

- A rectangle is drawn with its lower left corner at $(20,20)$ and its upper right corner at $(180,220)$. The rectangle is then exploded.
- The upper two corners of the rectangle are filleted with a 20 mm radius.
- The baseline of the 'rectangle' is offset 160 mm in an upward direction.
- A circle, of 100 mm diameter, is drawn with its centre point at $(100,110)$ and is then offset 15 mm inwards.
- A circular arc is drawn to pass through points A, B and C having the following co-ordinates:

$$
\mathrm{A}(150,70) \quad \mathrm{B}(170,110) \quad \mathrm{C}(150,150)
$$

- Points A and C are joined to the centre of the 100 mm circle using two straight lines. The portion of the lines between the 100 mm circle and the centre of the circle are trimmed.
- A rectangle is drawn with its lower left corner at $(140,30)$ and its upper right corner at $(166,50)$.
- Three lines DE, EF and FG are drawn using the following co-ordinates:

$$
D(40,200) \quad E(40,190) \quad F(80,190) \quad G(80,200)
$$

- These three lines are mirrored about the axis DG.
- A circle, of 20 mm diameter, is drawn with its centre point at $(100,200)$.
- Inside this circle a polyline, with a width of 2 mm , is drawn from the point $(100,210)$ to the centre of the circle.
- This circle and polyline is duplicated three times in a rectangular array consisting of one row and three columns. There is a 30 mm array distance between the columns.

Blank Page

