

Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE 2010

MARKING SCHEME

PHYSICS & CHEMISTRY

ORDINARY LEVEL

General Guidelines

In considering this marking scheme the following points should be noted.

- 1. In many instances only key words are given, words that must appear in the correct context in the candidate's answer in order to merit the assigned marks.
- 2. Marks shown in brackets represent marks awarded for partial answers as indicated in the scheme.
- **3.** Words, expressions or statements separated by a solidus, /, are alternatives which are equally acceptable.
- 4. Answers that are separated by a double solidus, //, are answers which are mutually exclusive. A partial answer from one side of the // may not be taken in conjunction with a partial answer from the other side.
- 5. The descriptions, methods and definitions in the scheme are **not** exhaustive and alternative valid answers are acceptable. Marks for a description may be obtained form a relevant diagram, depending on the context.
- 6. The context and the manner in which the question is asked and the number of marks assigned to the answer in the examination paper determines the detail required in any question. Therefore, in any instance, it may vary from year to year.
- 7. Where indicated, 1 mark is deducted for incorrect/ no units.
- 8. Each time an arithmetical slip occurs in a calculation, one mark is deducted.

SECTION I – PHYSICS (200 marks)

Question 1	Answer any eleven parts
(<i>a</i>) The mass of a suitcase is 5 kg. What is the weight of the suit on the hook of a newton balance as shown in Figure 1?	case when it is placed
$W = mg / W = 5 \times 9.8$ 49 (N)	5 1
(<i>b</i>) What is the unit of <i>work</i> ? joule / Nm / J / newton metre	6
(c) Water freezes at 0 °C. What is this temperature on the Kelv 273 (K)	in scale? 6
(<i>d</i>) Give one example of a thermometric property. length of mercury (alcohol) column / pressure / volume / emf / resis	stance, etc. any one6
[definition3]	any one
(e) Figure 2 shows a ray of light passing through a glass prism. that occurs at X. total internal reflection	Name the phenomenon
(f) Give one use of a concave mirror. to produce magnified image/to produce upright image / make-up m mirror / reflecting telescopes / reflector for lights /headlamps / floor microscope [use of convex mirror3]	
 (g) Which one of the following types of radiation has the highest from radio waves blue light ultraviolet light [radio waves3] 	equency? red light 6
(<i>h</i>) During the photoelectric effect, what is released from the su electrons	rface of a metal?
(<i>i</i>) In the equation for <i>Coulomb's law</i> , $F = \frac{1}{4\pi\varepsilon} \frac{q_1 q_2}{d^2}$, what does	s d represent?

distance (between centres of point charges)

...6

(<i>j</i>) Figure 3 shows two 4 μ F capacitors connected in parallel. What is the effective capacitance of the combined capacitors? 8 (μ F) 2 (μ F) / 0.5 (μ F)3]	6
(k) A television, rated at 200 W, is left on continuously for four hours. Calculate the number of units (kW h) used. $200 \times 4 = 800$ $800 \div 1000 = 0.8$	5
(<i>l</i>) What is the advantage of transmitting electricity at a high voltage? energy losses reduced / more efficient / less waste, etc.	6
(<i>m</i>) What would you use to detect the presence of a magnetic field?compass / iron filings / magnet (suspended nearby to swing freely)/ deflection of charged particles	any one6
 (n) A sample of a radioactive isotope has a half-life of 3 days. What fraction of the sample will remain after 9 days? 3 half lives ¹/₈ 	5 1
(<i>o</i>) Give one difference between <i>nuclear fission</i> and <i>nuclear fusion</i> .	• , •,1

fission involves splitting (nuclei) / fusion involves joining (nuclei) / fission produces isotopes with long half-lives / fusion produces isotopes with short half lives / fission fuel toxic /fission fuel scarce / fusion fuel plentiful / fission controlled / fusion uncontrolled / fusion in sun / fission in nuclear power stations, etc any one...6

Define (i) <i>velocity</i> rate of change // change of displacement of displacement // wrt time or $s \div t // speed$ explain s and t // in a given direction	5,1 5 1 5
(ii) acceleration rate of change // change of velocity of velocity // wrt time or $(v-u) \div t$ explain <i>u</i> , <i>v</i> and <i>t</i>	<u>2×3</u> 3 5 1
State the principle of conservation of momentum. total momentum before $/ m_1 u_1 + m_2 u_2$ equals $/ =$ momentum after $/ m_1 v_1 + m_2 v_2$ or	<u>6, 2×3</u> 6 3 3
total momentum remains constant	3 6

Bumper cars are a popular attraction in amusement parks. A bumper car starts from rest	
on a smooth horizontal surface and reaches a velocity of 2 m s ⁻¹ in 4 seconds.	
Calculate: (iii) the acceleration of the bumper car	<u>2×3</u>
$v = u + at / (v - u) \div t / (2 - 0) \div 4$	3
$0.5 (m s^{-2})$	3

(iv) the distance travelled by the bumper car in the first 4 seconds.	<u>2×3</u>
$s = ut + \frac{1}{2at^2} / \frac{v^2}{v^2} = \frac{u^2}{2as} + \frac{2as}{s} = \frac{1}{2}(u+v)t$	3
$s = (0 \times 4) + \frac{1}{2}(0.5 \times 16) = 4 \text{ (m)} //(4 - 0) \div 2 \times 0.5 = 4 \text{ (m)} //\frac{1}{2}(0 + 2) \times 4 = 4 \text{ m}$	3
$[s = vt = 8 \text{ m} \dots 3]$	

Figure 4 shows bumper car A of total mass 250 kg moving on a smooth horizontal surface at a velocity of 2 m s⁻¹. Bumper car A collides into a stationary bumper car B of total mass 200 kg.

After the collision bumper car B moves off with a velocity of 1.5 m s ⁻¹ . Calculate: (v) the momentum of bumper car A <i>before</i> the collision $m_I u_I$ = 250 × 2 = 500 (kg m s ⁻¹)	<u>2×3</u> 3 3
(vi) the momentum of bumper car A <i>after</i> the collision	<u>3×3</u>
$(200 \times 1.5) = 300$	3
$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2 / 500 (+ 0) = m_1v_1 + 300$	3
$(m_2 v_2 =) 200 (\text{kg m s}^{-1})$	3
(vii) the velocity of bumper car A <i>after</i> the collision.	<u>2×3</u>
$200 \div 250$	3
$= 0.8 \text{ (m s}^{-1})$	3

What is meant by kinetic energy ? 2×3 energy due to // work //example...3motion // done //...3or...3 $\frac{1}{2mv^2}$...5explain m, and v...1Explain why the kinetic energy of bumper car B changes during the collision.3energy transferred to B from A/B moves from rest /...3B's velocity or speed increases in the collision...3

<u>Refraction</u> occurs when light travels from one <u>medium</u> to another. Explain each of the underlined terms.	<u>3×3</u>
bending (of light)/change of direction (of light) material/substance/example	6 3
State one of the laws of refraction of light.	<u>3×3</u> 3
normal, // sine of angle of incidence/ sin <i>i</i> //sin <i>i</i>	
incident ray, refracted ray //proportional to / \propto //divided by sinr	3
in same plane // sine of angle of refraction / $\sin r$ // is constant	3
Figure 5 shows a ray of light incident at 80° approaching a beaker containing cooki	ng oil.
If the angle of refraction is 42°, calculate the refractive index of the cooking oil.	<u>3×3</u>
$(\sin i) = 0.9848 \ (0.99 - 0.98)$	3
$(\sin r) = 0.6691 \ (0.669 - 0.670)$	3
(refractive index cooking oil =) $1.47 (1.46 - 1.5)$	3
(

Lenses make use of the refraction of light. Name two devices that use lense	es. $\underline{2\times3}$
(reading) glasses / contact lenses / magnifying glass / telescope / microscope /	endoscope / binoculars
/camera / spectrometer / eyeglass / loupe / periscope (eyepiece), etc	any two $\dots 2 \times 3$

	xperiment to measure the focal length of a converging (convex) lens.	<u>5×3</u>
Apparatus:	converging lens, object, screen or plane mirror and/or locating pin correct arrangement of	3 3
Method:	focus image / move screen	
	correct measurements of u and v calculate $f/$ correct formula	3×3
Give one way to improve the accuracy of your result. <u>3</u> find approximate answer by focusing image of distant object on a screen / avoid parallax errors when reading distances / mirror perpendicular to page / mark back of mirror / narrow beam of light / repeat, etc. any one3		
0	s an object O placed 10 cm from a converging lens of focal length 5 cr	
1.0	plete the diagram to show the formation of the image by the lens.	<u>3×3</u> 3
one correct ray		3
correct refracti	on	3

Give two properties of the image observed.	<u>2×3</u>
inverted, real, same size as object, 10 cm from lens, other side of lens	any two $\dots 2 \times 3$

2nd ray correct

...3

is inversely pr to its pressure	ixed mass of) gas	<u>3×3</u> 3 3 3
Describe an e Apparatus:	experiment to verify Boyle's law. pressure guage, sealed mass of gas, pump / plunger // J tube, mo sealed mass of gas any two listed or labelled correct arrangement	
Method:	measure volume measure pressure vary pressure pV constant any valid precaution	any three3×3
outlet of the the volume o inside the put $p_1V_1 = p_2V_2$ $100 \times 180 = p$ 600 (kPa)		until
Give two assued assued as the second	ory is used to explain the behaviour of gases. Imptions of the kinetic theory of gases.	<u>9, 3</u>
Figure 8 rep What is mea obeys gas law	ons / rapid motion / random motion / negligible volume / straight negligible duration of collisions / large number of molecules/ resents an <u>ideal gas</u> in a sealed balloon. nt by the underlined term? s / obeys Boyle's law / obeys kinetic theory	1st correct9 2nd correct3 <u>5,1</u>
Figure 8 repr What is mean obeys gas law at all tempera	resents an <u>ideal gas</u> in a sealed balloon. At by the underlined term? s / obeys Boyle's law / obeys kinetic theory sures and pressures	2nd correct3 <u>5, 1</u> 1st correct5 2nd correct1
Figure 8 repr What is mean obeys gas law at all temperat	resents an <u>ideal gas</u> in a sealed balloon. At by the underlined term? s / obeys Boyle's law / obeys kinetic theory	2nd correct3 <u>5,1</u> 1st correct5 2nd correct1
Figure 8 repr What is mean obeys gas law at all temperat (i) How do increases / (ga (ii) What is warmed?	<pre>hegligible duration of collisions / large number of molecules/ resents an ideal gas in a sealed balloon. ht by the underlined term? s / obeys Boyle's law / obeys kinetic theory tures and pressures es the velocity of the gas particles change as the balloon is war</pre>	2nd correct3 <u>5,1</u> 1st correct5 2nd correct1 rmed? <u>6</u> 6
Figure 8 repr What is mean obeys gas law at all temperat (i) How do increases / (ga (ii) What is warmed? more frequent	 hegligible duration of collisions / large number of molecules/ hegligible duration of collisions / large number of molecules/ hegesents an ideal gas in a sealed balloon. ht by the underlined term? s / obeys Boyle's law / obeys kinetic theory s / obeys Boyle's law / obeys kinetic theory cures and pressures es the velocity of the gas particles change as the balloon is war as particles) speed up the effect of the gas particles on the walls of the balloon as the	2nd correct3 5,1 1st correct5 2nd correct1 rmed? <u>6</u> 6 e balloon is <u>6</u> 6

Figure 9 shows a positive and a negative charge at a fixed distance apart. Copy the diagram and show the electric field between the two charges. diagram showing field lines arrows showing correct direction from positive to negative	<u>6,3</u> 6 3
'A current is a flow of electrical charges.' Give two effects of an electric current. heating/lighting, magnetic, chemical	<u>9, 3</u>
1st com 2nd corre	
Describe how to demonstrate one of these effects. electrical supply / battery / main electricity heating coil or element // compass or iron filings // electrolyte correct arrangement temperature rise // deflection or pattern // chemical change or valid appliance that demonstrates effect mentioned e.g. kettle, electromagnet, voltameter operation described	<u>4×3</u> 3 3 3 3 9 9
Figure 10 shows a wind-up torch containing a dynamo which is based on the principle <i>electromagnetic induction</i> .	e of
State one of the laws of electromagnetic induction. voltage / current / emf proportional to change in magnetic flux // opposes change that caused it 1 st correct remaind	
Who discovered electromagnetic induction? Faraday	<u>3</u> 3
As the handle is turned the bulb in the torch lights. Explain why the bulb lights as the handle is turned. turning handle moves magnet // turning handle moves coil //turning handle provided energy relative to coil //relative to magnet emf induced // current flows [current carrying conductor in magnetic field experiences force3]	y3 3 3
What energy change occurs in a wind-up torch? kinetic energy /mechanical energy to electrical energy	<u>5, 1</u> 5 1
Name one other device based on the principle of electromagnetic induction. alternator, generator, induction coil, induction hob, induction oven, transformer, etc any o	<u>6</u> ne6

Answer any two parts

Question 6

(*a*)

The following terms distance, square , pr	are used in stating Newton's law of universal gravitation:	
Using these to gravitation "T	erms, copy and complete the following statement of Newton's law of The force between two masses is directly proportional to the	of the
masses and ir them." product square distance [in correct or	der]	. between <u>3×3</u> 3 3 3
Describe an experim	ent to measure the acceleration due to gravity, g.	<u>6×3</u>
Apparatus:	pendulum, string // electromagnet, ball //free fall of object stand and cork or how suspended // stand, trapdoor // light gates correct arrangement drawn or described	<u>6×3</u> 3 3 3
Method:	measure length // height / distance between light gates	3
	time the oscillations // time fall of ball / record t_1 and t_2 g calculated from results / correct equation	3 3
Explain the u	vefront of <u>monochromatic light</u> approaching a narrow gap. nderlined term. gth / one frequency / one colour	<u>6</u> 6
Name a sour sodium lamp,	ce of monochromatic light. laser	<u>6</u> 6
some light blo	nd show the path of the wavefront after passing through the gap. ocked curvature at edges	<u>2×3</u> 3 3
Name the phenomen diffraction	on which occurs at the gap.	<u>3</u> 3
Give two measurem	an be used to measure the wavelength of monochromatic light ents which need to be taken during the experiment. / distance to screen / angle of deflection of ray or distance between in 1st corr	ect9

2nd correct ...3

 (c) State Ohm's law. (applied) emf or (applied) voltage / V // V proportional to / ∞ // = current at constant temperature // I // IR at constant temperature [omit at constant temperature (-1), omit to explain I and V (-1)] 	<u>3×3</u> 3 3 3
Figure 12 shows an 8 Ω and a 12 Ω resistor connected in series with a battery. The ammeter in the circuit gives a reading of 2.5 A. Calculate: (i) the voltage (potential difference) across the 12 Ω resistor V = IR $V = 2.5 \times 12$ 30 (V)	<u>3×3</u> 3 3 3
(ii) the effective resistance of the circuit $R = R_1 + R_2$ $R = 8 + 12 = 20 \ (\Omega)$	<u>2×3</u> 3 3
(iii) the voltage across the battery. $V = IR = 2.5 \times 20 = 50$ (V)	<u>3</u> 3
The ammeter is now placed between the two resistors. What does the ammeter read in this new position? 2.5 A / the same	<u>6</u> 6
(d) 'Radioactivity is the spontaneous <u>disintegration</u> of unstable <u>nuclei</u> with the emissof one or more types of nuclear radiation.' Explain the underlined terms. decay /breaking up /splitting up centres of atoms where protons and neutrons are located	<u>3×3</u> 3 3 3
Figure 13 shows a beam from a radioactive sample passing between a pair of charged plates. Name each one of the nuclear radiations, labelled X and Y. gamma alpha	
1°	t correct6 l correct3
Give the structure of Y. protons // helium neutrons // nucleus two of each or helium nucleus	<u>3×3</u> 3 3 6 3
List one use of radioactive substances. medical / cancer / carbon dating / detecting leaks / smoke detectors / produce preserve foodstuffs, etc.	$\underline{6}$

SECTION II - CHEMISTRY (200 marks)

Question7 Answer any ele	even parts
(a) Figure 14 shows a sample of rock salt which contains the compound sodium ch What type of bonding exists in a crystal of sodium chloride? ionic	nloride. 6
(<i>b</i>) Give one property of a proton. positively charged / charge +1 / located in nucleus / (relative) mass 1 / mass 1 amu a	ny one6
(c) Which subatomic particle is located in an <i>orbital</i> ? electron	6
(d) In the equation $E = hf$, what does f represent? frequency	6
(e) Give one reason why the element fluorine has a large electronegativity value. small (atomic) radius / outer electrons close to nucleus	ć
[allow can accommodate an electron in outer shell6] [define electronegativity3]	ny one6
(f) Calculate the percentage of carbon by mass in carbon monoxide (CO). $M_r = 28$ % carbon = (12 ×100) ÷ 28 = 42.86% (42.86 - 43%)	3
(g) Give one property of a transition element. forms coloured compounds, is a good catalyst, has variable valency, has an incomplete has at least one ion with an incomplete <i>d</i> -subshell, metallic, a good conductor, etc a	e <i>d</i> -subshell, ny one6
(<i>h</i>) What would you use to show that dissolving ammonium chloride in water is an endothermic process? thermometer / temperature drop	6
(<i>i</i>) Copy, complete and balance the following reaction: CaCO ₃ + HCl \rightarrow + 2HCl / CaCl ₂ / CO ₂ any two	$\underline{}_{\text{WO}} + \mathbf{H}_{2}\mathbf{O}$
(<i>j</i>) What is the pH of a 0.02 M solution of hydrochloric acid (HCl)? (pH =) $-\log_{10}[H^+] / -\log[H^+] / -\log[0.02]$ (pH =) 1.69 (1.69 - 1.7)	
(<i>k</i>) List the following metals in order of <i>increasing</i> activity: lead, sodium, silver. silver, lead, sodium / Ag, Pb, Na [one metal correct: sodium, lead, silver / silver, sodium, lead, / lead, silver sodium (-1) [reversed Na, Pb, Ag (-1)]]	6
 (l) What is an <i>electrolyte</i>? (electrically) conducting liquid [example5] [define electrolysis3] 	6

(*m*) The relative molecular mass of oxygen gas (O₂) is 32. Calculate the number of molecules in 64 g of oxygen gas. 2 moles $2 \times 6 \times 10^{23} = 1.2 \times 10^{24}$

1st correct ...5 2nd correct ...1

(*n*) Give an example of an *alkane*.

Methane, etc. Accept formula. Accept named cycloalkanes only but not formula.

any one... 6

(*o*) What structural feature do aromatic compounds have in common? benzene (ring)

...6

A <u>compound</u> of the <u>element</u> boron is used in the manufacture of laboratory glassware. Explain the underlined terms. two or more elements joined chemically / bonded	<u>4×3</u> 3 3
[example3] (substance that) cannot be made simpler / cannot be broken down //only one type chemically //of atom [example3]	3 3
Define (i) mass number (number of) protons and neutrons in an atom	<u>5, 1</u> 5 1

(ii) relative atomic mass

mass of an atom	3
average / compared to $1/12^{th}$ (mass of) carbon-12 (atom or isotope)	3

Copy the following table and complete it by filling in the missing numbers:

Atom	Atomic number	Mass number	Number of neutrons
${}^{10}_{5}{ m B}$	5	10	5
¹¹ ₅ B	5	11	6

....6×3

<u>6</u>6

<u>6×3</u>

What name is given to a set of atoms such as ${}^{10}_5$ B and ${}^{11}_5$ B?	
isotopes	

A sample of boron consists of 20% ${}^{10}_{5}$ B and 80% ${}^{11}_{5}$ B.

Calculate the relative atomic mass of this sample of boron. $20 \times 10 = 200$	<u>4×3</u> 3
$80 \times 11 = 880$	3
200 + 880 = 1080 $1080 \div 100 = 10.8(0)$	3
Give the electronic (s, p) configuration of an atom of boron.	<u>6</u>
$1s^2 2s^2 2p^1 / 1s^2 2s^2 2p_x^{-1}$ or	6

Question 3	
(<i>a</i>) Using the Brønsted-Lowry theory, define (i) an acid proton donor [produces H ⁺ 5]	<u>2×3</u> 3 3
define (ii) a base proton acceptor [produces OH ⁻ 5]	<u>2×3</u> 3
Weak acids only slightly dissociate in solution. Give one example of a weak acid.phosphoric, ethanoic acid, acetic acid, vinegar, benzoic acid, etc. Accept name or correctformula. Accept tea, milk and other weak acid solutions.[sulfuric, hydrochloric or nitric acid3]	<u>6</u>
Identify one acid and one base in the following reaction: $HF + H_2O \rightleftharpoons F^- + HF / HO^+$	$\frac{\mathbf{H}_{3}\mathbf{O}^{+}}{\underline{6},\underline{3}}$ 6
$HF / H_3O^{\dagger} H_2O / F^{-}$	3
Give one example of a conjugate acid-base pair in the above reaction. HF and F ⁻ / H_2O and H_3O^+	<u>6</u> 6
(b) Each one of the following elements reacts with hydrogen gas: nitrogen, sulfur, chloring Give the name and chemical formula of the product formed in each reaction. $5, 2 \times 2$ ammonia NH ₃ hydrogen sulphide H ₂ S	
hydrogen chloride [allow hydrochoric acid] HCl	
correct names or formulae for three substances5, remaining names or formulae	
From these products, identify (i) an acidic product hydrogen sulphide / H ₂ S / hydrogen chloride / HCl (ii) a basic product ammonia / NH ₃	<u>6</u> 6 <u>3</u> 3
For one of these products: (iii) state its molecular shape ammonia pyramidal / hydrogen sulphide v-shaped or planar / hydrogen chloride linear	<u>6</u> 6
(iv) sketch its shape, showing the position of the atoms. correct diagram	<u>6</u> 6

(iv) sketch its shape, showing the position of the atoms. correct diagram

A student carried out a titration to <u>standardise</u> a <u>solution</u> of sodium hydroxide (N Explain the underlined terms. find concentration mixture / solid / liquid / gas //solute dissolved in liquid //and solvent	6.2×3 6 3 3	
Figure 15 shows some equipment which the student used.		
 (i) Name the glassware labelled A and B. A: burette B: pipette [reversed 2 ×3] 	<u>2×6</u> 6 6	
(ii) What is the purpose of C? vessel for reaction to take place in / contains spatters [conical flask5]	<u>6</u> any one6	
	<u>6,3</u> ion, correct6 correct3	
(iv) Name a suitable indicator for this titration. phenolphthalein, methyl orange, litmus, etc an [universal indicator3]	<u>6</u> ny one6	
(v) Give two safety precautions that the student should have followed while carrying out this		

(v) Give two safety precautions that the student should have followed while carrying out this titration. $\underline{2 \times 6}$

wear safety glasses, tie back hair, wear lab coat, wear gloves, avoid contact with corrosive liquids, use pipette filler, etc any two $\dots 2 \times 6$ [non safety precaution, any two $\dots 2 \times 3$]

(vi) The student recorded that 20 cm³ of sodium hydroxide (NaOH) solution was neutralised by 18.7 cm³ of 1.5 M hydrochloric acid (HCl) solution.

The chemical equation for this titration is: HCl + NaOH \rightarrow NaCl + H₂O Calculate the molarity of the sodium hydroxide solution. 3×3

$\frac{V_1M_1}{M_1}$	$\frac{3.7 \times 1.5}{28.05}$	3
n_1	1	

$$\frac{V_2 M_2}{n_2} / \frac{20 \times M_2}{1} / 20 M_2 \qquad \dots 3$$

28.05 ÷ 20 = 1.4(025) \ldots \ldots 3

Ethanol (C_2H_5OH) can be produced by the <u>hydration</u> of ethene (C_2H_4). What is meant by the underlined term? addition of water	<u>2×3</u> 3 3		
Sketch the structural formula of (i) ethanol CH_3CH_2OH	<u>6</u> 6		
(ii) ethene	<u>6</u>		
$CH_2 = CH_2$	6		
Name the <i>homologous series</i> to which ethanol belongs.	<u>6</u>		
alcohols	6		
What is the name of the first member of this homologous series?	<u>3</u>		
methanol	3		
Explain why ethene is an <i>unsaturated</i> compound. double bond between carbon atoms	<u>5, 1</u> 5 1		
Describe the physical appearance, at room temperature, of (iii) ethanol,	<u>2×3</u>		
colourless	3		
liquid	3		
(iv) sodium	<u>2×3</u>		
grey / off-white /shiny / metallic	3		
solid	3		
Ethanol reacts with sodium according to the following chemical equation: $2C_2H_5OH + 2Na \rightarrow 2C_2H_5ONa + H_2$ $\Delta H = -270 \text{ kJ mol}^{-1}$			
How would you show that the gas produced in the above reaction is hydrogen?	<u>3, 6</u>		
test with lighted taper	3		
burns with a pop	6		
Calculate:(v) the quantity of energy released when 1 mole of ethanol reacts with 1 mole of sodium	<u>2×3</u>		
$270 \div 2$	3		
= 135 (kJ mol ⁻¹)	3		
 (vi) the number of moles of hydrogen released when 4 moles of ethanol and 4 moles of sodium react. 	<u>6</u> 6		

(*a*)

Define a <i>mole</i> of a substance. Avogadro number // molecular mass // same number of particles // amount of particles // in grams // as 12 g of carbon // of a chemical	<u>2×3</u> 3 3
Hydrogen peroxide decomposes according to the following chemical equation:	
$2H_2O_2 \rightarrow 2H_2O + O_2$ How could you make the hydrogen peroxide decompose faster? apply heat, increase temperature, add catalyst, use more concentrated hydrogen per any or	<u>6</u> roxide ne6
Describe a test to confirm that the gas produced is oxygen. re-ignites glowing taper	<u>6,3</u> 6 3
If 17 g of hydrogen peroxide were used in this reaction, calculate: (i) the number of moles of hydrogen peroxide used $M_r = 34$ $17 \div 34 = 0.5 \text{ (moles)}$	<u>2×3</u> 3 3
(ii) the mass of water produced. 0.5 moles water $0.5 \times 18 = 9 \text{ (g)}$	<u>2×3</u> 3 3
(b)	
 Figure 16 shows sulfur dioxide (SO₂) gas being prepared. (i) Name the liquid A and the solid B. sulfuric acid / H₂SO₄ sodium sulfite / Na₂SO₃ 	<u>6,3</u> ect6
2nd corre	ect3
(ii) What is the purpose of liquid C?to dry the gas[allow purify gas6]	<u>6</u> 6
 (iii) Describe the colour change observed as a sample of litmus solution is add to a gas jar full of sulfur dioxide. blue to red [colours reversed3] 	led <u>2×3</u> 3 3
(iv) State one physical property of sulfur dioxide. colourless, smelly, heavier than air, soluble in water any or [poisonous, acidic, choking5]	<u>6</u> ne6
(v) Give one use of sulfur dioxide. used to make sulfur trioxide or sulfuric acid, canning, food preservative, bleaching, any or	<u>6</u> ne6

Physics & Chemistry

<u>Oxidation</u> and <u>reduction</u> reactions occur in a car battery. Define the underlined words in terms of electron transfer.	<u>4×3</u>
loss	3
of electrons	3
gain	3
of electrons	3
$\begin{array}{ll} \mbox{Identify (i) the substance oxidised, (ii) the substance reduced, in the following reaction:} \\ \mbox{PbO} + \mbox{H}_2 \rightarrow \mbox{Pb} + \mbox{H}_2 \mbox{Over hydrogen / } \mbox{H}_2 \mbox{Identify (i) the substance reduced, in the following reaction:} \\ \mbox{Homosonic oxide / PbO} \end{array}$	<u>6,3</u> 6 3
A clean iron nail is placed in a beaker containing a solution of copper sulfate.	
Describe how the colour of the solution in the beaker changes.	<u>2×3</u>
blue	3
fades /goes colourless / brown (solid) appears	3
Copy and complete the following reaction which occurs in the beaker:	02

	$Fe + CuSO_4 \rightarrow ___ + ___$	<u>2×3</u>
FeSO ₄		3
Cu		3

(*c*)