

Coimisiún na Scrúduithe Stáit State Examinations Commission

Scéim MharcálaScrúdú na hArdteistiméireachta 2006Fisic agus CeimicGnáthleibhéalMarking SchemeLeaving Certificate Examination 2006Physics & ChemistryOrdinary Level

General Guidelines

In considering this marking scheme the following points should be noted.

- 1. In many instances only key words are given, words must appear in the correct context in the candidate's answer in order to merit the assigned marks.
- 2. Marks shown in brackets represent marks awarded for partial answers as indicated in the scheme.
- 3. Words, expressions or statements separated by a solidus, /, are alternatives which are equally acceptable.
- 4. Answers that are separated by a double solidus, //, are answers which are mutually exclusive. A partial answer from one side of the // may not be taken in conjunction with a partial answer from the other side.
- 5. The descriptions, methods and definitions in the scheme are not exhaustive and alternative valid answers are acceptable.
- 6. The context and the manner in which the question is asked and the number of marks assigned to the answer in the examination paper determine the detail required in any question. Therefore, in any instance, it may vary from year to year.
- 7. Where indicated deduct 1 mark for incorrect/no units.

(a)	What is meant by potential energy?		
	energy due to // stored // example	3	
	position // energy //	3	
	[equation6]		
(b)	A car has a mass of 950 kg. What force is needed to give it	t an acceleration of 6 m s ⁻² ?	
	$F = ma / F = 950 \times 6$	3	
	5700 (N)	3	
(c)	Calculate the work done when a force of 5 N moves an obj	ect a distance of 3 m.	
	$W = F \times d / W = 5 \times 3$	3	
	15 (J)	3	
(d)	What is meant by an ideal gas?		
()	obeys Boyle's law / gas laws / satisfies K.T. assumptions	3	
	always / exactly / at all temperatures and pressures	3	
(e)	Give one use of a concave mirror.		
	shaving (make-up) mirror / searchlights / floodlights /		
	torch / headlights / dentist / microscope etc.	any one6	
(f)	How would you show that white light is a mixture of colou	rs?	
U/	pass the light through	3	
	a prism / diffraction grating / spectrometer [example3]	3	
(g)	The diagram shows waves passing through a narrow opening. Name the phenomenon that takes place.		
	diffraction	6	
	[bending / spreading3]		
(h)	Copy and complete the following statement: "In the photo	electric effect	
	are released from the surface of a metal when	falls on it."	
	electrons / charged particles / rays	3	

radiation (light)

...3

 (i) Fig. 2 shows a 2 μF capacitor connected in parallel with a 6 μF capacitor. Calculate the effective capacitance of the combined capacitors.

$C = C_1 + C_2 / C = 2 + 6$	3
8 (µF)	3

- (j) State Ohm's law. voltage (V) // current (I) // resistance (R) ...3 αI / RI // V ÷ R // V ÷ I ...3
- (k) Calculate the number of units (kW h) used by a 2 kW electric fire left on for 3 hours.

2×3	3
6 (kW h)	3

- Draw a diagram showing the magnetic field pattern due to a current flowing (l)in a straight conductor. conductor showing current ...3 ...3 circles (with arrows) (m) State one of the laws of electromagnetic induction. ...3 emf / current α change of magnetic flux / opposes the change ...3 (*n*) Who discovered the equation $E = mc^2$? Einstein ...6 (o) Explain the term nuclear fission.
 - nuclei / atoms / elements3 split up3 [example3]

(a) Define (i) velocity

rate of change // change of displacement // speed // $s \div$	3
of displacement // w.r.t. time // in a given direction // t	3

(ii) acceleration.

rate of change / change in velocity (speed) / $v - u$		3
of velocity (speed) / w.r.t. time	/ t	3
$[F = ma / units \dots 3]$		

An ostrich starting from rest reaches a speed of 18 m s^{-1} in 3 seconds. Calculate (i) the acceleration of the ostrich

$$a = (v - u) \div t$$
 / $a = (18 - 0) \div 3$...6
6 (m s⁻²) ...3

(ii) the distance covered by the ostrich in 3 second

$$s = ut + \frac{1}{2}at^2$$
 / $s = 0 + \frac{1}{2}(6)(3)^2$...6
27 (m) ...3

(iii) the time taken for the ostrich to cover 20 m.

$$20 = 0 + \frac{1}{2} t^2 / 2.6$$
(s)3

(b) State the principle of the conservation of momentum. momentum before $/ m_1 u_1 + m_2 u_2$ // total ...6 equals / = // momentum ...3 momentum after $/ = m_1 v_1 + m_2 v_2$ // remains constant ...3 [in a closed system ...3]

Sphere B is at rest and sphere A is approaching it with a velocity of 5 m s⁻¹. The mass of each sphere is 2 kg. After the collision both spheres move in the same direction and the velocity of sphere A is 1.5 m s^{-1} . Calculate

(i) the momentum of sphere A before the collision

$p = m \times v$ / $p = 2 \times 5$	3
$10 (\text{kg m s}^{-1})$	3

(ii) the velocity of sphere B after the collision

$m_1u_1 + m_2u_2 =$	$m_1v_1 + m_2v_2 / (2) (5) + 0 = (2)(1.5) + (2) v_2$	3
$3.5 (m s^{-1})$		3

(iii) the momentum of sphere B after the collision.

$P = (2) (3.5) / 7 (\text{kg m s}^{-1})$	3
--	---

What type of energy is lost by sphere A in the collision? kinetic / heat / sound

...6

State	the laws of refraction of light.	
Ι	incident ray, normal, refracted ray	3
	on the same plane	3
II	sin i	3
	α sin r	3
	$[\sin i \div \sin r \dots 3]$	
Сору	y the diagram and label (i) the angle of incidence <i>i</i> , (ii) the	e angle of refraction <i>r</i> .
first	angle correct	6
secoi	nd angle correct	3

second angle	concer	
[correct rays	indicated	.3]

Describe an experiment to show how a ray of	of light passes through a glass block.
draw the outline of the glass block	
mark incident ray	
mark emergent ray	
remove the glass block	
draw the incident ray	
draw the emergent ray	
join the incident and emergent rays	1 st correct point6
	two additional points 2×3
Calculate the refractive index of the glass.	
$z_{\rm rescale}$ since $z_{\rm rescale}$ (since 20°) $z_{\rm rescale}$ (since 10°) $z_{\rm rescale}$	$(0.5) \cdot (0.2256)$
$n = \sin i \div \sin r / - (\sin 30) \div (\sin 19) / =$	$(0.5) \div (0.5250) \dots 0$
1.5	3

Name the type of lens shown.

,		
convex /	converging	3
	000000	

Copy and complete the diagram showing the paths of the rays after they pass through the lens.

show rays bending as they pass through the lens	3
show rays meeting at a point	3

Give one use of this type of lens.

camera / telescope / microscope / spectacles etc **any one** ...6 [use of curved mirror ...3]

Draw a ray diagram showing how a lens can form a magnified image.

lens	3
object	3
two correct rays	3

(a) State Bo	yle's law.	
fixed mass /	constant temperature /	
pressure	// pV // p_1V_1	
inversely pr	oportional to volume ($\alpha 1/V$) //= k // = p_2V_2	any three $\dots 3 \times 3$
Describe ar	experiment to verify Boyle's law.	
Apparatus:	pressure gauge // J tube	
	pump / plunger // mercury	
	enclosed volume of air	any two $\dots 2 \times 3$
Method:	correct arrangement	
	read pressure (p)	
	read volume (V)	
	vary pressure	
	repeat (for different values) // any valid precaution	any three $\dots 3 \times 3$
The balloor height when	n contains 2 m ³ of helium gas when the pressure is 10 re the pressure is 50 kPa. Calculate the volume of the	0 kPa. The balloon reaches a e balloon at this height.
$p_1 V_1 = p_2$	$V_2 / 100 \times 2 = 50 \times V_2$	3
$4(m^3)$		3

[1 m³...3]What happens to the volume of the balloon as it continues to rise? increases

3

(b) "Two <u>fixed points</u> and a <u>thermometric property</u> are needed to temperature scale." Explain the underlined terms.	set up a	
freezing and boiling points		3
changes		3
with temperature (heat)		3
What are the values of the fixed points on the Celsius scale?		
0°C		3
100°C		3
Give <u>one</u> example of a thermometric property.		
length / emf (voltage) / colour / volume / pressure/ resistance etc.	any one	e6
Describe an experiment to mark the position of the lower fixed po mercury thermometer.	int on a	
Annaratus: mercury thermometer / heaker / ice	any two	2×3

Apparatus. Inercury incrinionicier / beaker / ice	
Method: place thermometer in ice wait until mercury has stopped moving	
mark the position of the mercury	any two $\dots 2 \times 3$
[steam point \dots (-3)]	

(<i>a</i>) Copy and complete the following statement of <i>Coulon</i> "The force between two point charges is directly proport	<i>b's law</i> : ional to the of the
charges and inversely proportional to the \ldots . of the \ldots	between them."
product	
square	
distance	1^{st} correct6
	remaining two2×3
Draw a labelled diagram of a gold leaf electroscope.	
cap / leaves / case / metal rod / insulating plug	1 st correct6
	two additional parts3
[no labels (-1)]	r r
Give <u>one</u> use for a gold leaf electroscope.	
detect charge / show size (type) of the charge / measure p.d.	/
test if an object is an insulator or conductor etc.	6
Name a suitable material for the handle. What will be ob brought close to an uncharged electroscope?	oserved as the charged disc
any named insulator e.g wood / plastic etc.	
leaves will separate (rise)	1^{st} correct6
	2^{nd} correct3
(b) "An electric current is a flow of charge in a circuit."	Give <u>two</u> ways of
increasing the current in a circuit.	·
reduce the resistance / adjust the rheostat	
increase the p.d.	1^{st} correct6
Ĩ	2^{nd} correct3
Name a device used to measure electric current.	
ammeter	3
In diagram A the resistors are arranged in series.	
How are the resistors arranged in diagram B?	
parallel	9
Calculate the effective resistance of the combined resistor	rs.
one correct equation / substitution	6
(i) $\mathbf{A} \mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2$ / $\mathbf{R} = 6 + 12$	
(ii) B $1/R = !/R_1 + 1/R_2 / 1/R = 1/6 + 1/12$	
18 (ohms)	3
4 (ohms)	3
[18 (ohms) only6]	

(a) Describe an experiment to measure the acceleration due to gravity, g.

apparatus:	pendulum /string / stand / cork / ruler / time electromagnet / ball / stand / ruler / timer	er // 1 st correct6 two additional parts2×3
method:	arrangement of apparatus set the pendulum swinging // release the ba measure the length / height time the oscillations // time for ball to fall correct equation	any three3×3
What do t Gravitation mass distance / r	he symbols G, M and r stand for? a constant adius	1 st correct6 remainder2×3
(b) The dia increas distance between tw	agram shows part of the electromagnetic s sing <u>wavelength</u> . Explain the underlined 70 crests (troughs)	spectrum in order of term. 3 3
Give <u>two</u> J speed / ref	properties common to all regions of the el lection / refraction / polarisation / diffraction	ectromagnetic spectrum.

nee,	010	
1^{st}	correct	9
2^{nd}	correct	3

Name the regions labelled (i) A, (ii) B.	
(i) ultra violet (ii) infra red	1^{st} correct6 2^{nd} correct3
[reverse order3]	

How would you detect the radiation found at A?

causes substances to fluoresce / effects photographic plates /	
causes sunburn / causes photoemission etc	any one6

Question 6 (continued)

(c) What is meant by a.c.? alternating current	3 3
The diagram shows a transformer which converts a 2 4600 V a.c. Name the parts labelled A, B, C. (i) A primary (ii) B core/ frame / structure	230 V a.c. supply into
(iii) C secondary[coil for A / C3]	1 st correct6 remaining two3
If part A has 1500 turns calculate the number of turn $N_s/N_p = V_s/V_p$ / $N_s/4600 = 1500/230$ 30 000	ns on part C. 6 3
Name <u>one</u> device that uses a transformer. battery charger / TV etc	6
Why does a transformer become warm during use? energy / eddy currents / heat etc.	3
(d) " <u>Ionisation</u> can be caused by the radiations emitter Explain the underlined terms.	ed from <u>radioactive</u> substances."

loss of	// formation	3
electrons	// of ions	3
decay (disi of nuclei (a	ntegration) atoms)	3

Name the radiation emitted from radioactive substances which causes the greatest amount of ionisation? Give <u>one</u> other property of this radiation.

alpha	
low penetrating power / helium nucleus / charge of +2 etc	1^{st} correct6
	2^{nd} correct3

Give two uses for radioactive substances.

medical / cancer / carbon dating / detecting leaks / smoke detectors etc

 1^{st} correct ...9 2^{nd} correct ...3

QUESTION 7

(a) What is an isotope?	
•	same number of protons/ same atomic number/ atoms of the same element	3
	different number of neutrons / different mass number	3
	[reverse3]	
(b)	Name the <u>two</u> elements found in a molecule of methane.	
	carbon	3
	hydrogen	3
(c)	In the equation $E = hf$, what does f represent?	
	frequency	6
(<i>d</i>)	Name the type of bonding which exists between the particles in a salt of	erystal.
	ionic	6
	[chemical3]	
(e)	Define electronegativity.	
	attraction // EN difference	3
	for electrons $// > 1.7$	3
	[determines the type of bond formed3]	
(f)	Calculate the percentage of carbon by mass in methanol (CH ₃ OH).	
	$M_r = 12 + 4 + 16$ / $M_r = 32$	3
	% C = 37.5	3
(g)	What is meant by an <i>endothermic reaction</i> ?	
	heat/energy // ΔH	3
	taken in // negative	3
(<i>h</i>)	State Hess's law.	
	heat change	3
	independent of the path	3
(i)	Give <u>one</u> example of a <i>weak acid</i> .	
	vinegar / ethanoic (acetic) acid / carbonic acid / organic acid etc.	6
	[definition / orange (lemon) juice3]	
(j)	Calculate the pH of a 0.01 M solution of hydrochloric acid (HCl).	
	$pH = -log_{10}[H^+] / pH = -log_{10}[0.01]$	3
	2	3

(k) List the following elements in their order in the electroche	emical serie	es.
potassium zinc copper		6
[reverse / any one correct3]		
(l) Give two uses of <i>electrolysis</i> .		
electroplating / extraction of metals / purification of metals /		
anodising / manufacture of chemicals etc	any two	2×3
(<i>m</i>)The relative molecular mass of oxygen gas (O ₂) is 32. Calculate the number of molecules in 64 g of oxygen gas.		
2 moles		3
12×10^{23} molecules		3
(<i>n</i>) Give <u>one</u> example of a neutral oxide.		
carbon / nitrogen // dinitrogen		3
monoxide // oxide		3
(o) Give <u>one</u> example of an aromatic compound.		
benzene / methylbenzene (toluene) / phenol / benzoic acid /		
benzaldehyde etc.	any one	e6

Sketch the shape of (i) an s-orbital, (ii) a p-orbital. (i) spherical shape (shown / stated)	
(ii) dumb-bell shape (shown / stated)	1 st correct9
	2^{nd} correct3
[reverse6]	
Name <u>two</u> other subatomic particles. proton	
neutron	1 st correct9
	2^{nd} correct3
Give the electronic (s, p) configuration of (i) neon, (ii) chlor (i) 1s ²	ine.
$2s^2 2p^6$	
(ii) $1s^2 2s^2$	
$2p^6 3s^2 3p^5$	1 st correct6
	2^{nd} correct3
[any two parts correct2×3]	
Will the element neon form a bond with other elements? Give <u>one</u> reason for your answer.	2
	3
it has a full outer shell / all valencies are satisfied / stable / iner	t gas / noble gas $\dots 3$
Name the type of bond in a molecule of chlorine.	
covalent	3
Give <u>two</u> properties of this type of bond. liquids or gases / poor conductors of heat / poor conductors of	electricity /
insoluble in water / slower reactions / shares electrons / weak b	bond etc.1 st correct6
	2^{nd} correct3
Draw a diagram showing how this bond is formed in a mole two atoms	ecule of chlorine.
one pair of shared electrons / single bond	3
Give (i) the formula for the chloride of carbon (ii)the shape of a molecule of the chloride of carbon. (i) CCl 4	
(ii) tetrahedral	1 st correct6
	2 nd correct3

Define (i) a base, (ii) a conjugate acid-base pair, using the Brønsted-Lowry theory.

(i) proton // pH between 7 - 14 // high pH acceptor	6
[example not in the question3]	
(ii) acid and a base (two species) which differ by a proton / example not in the question	3

Identify two bases and one acid-base pair in the following reaction:

$H_2SO_4 + H_2O \implies H_3O^+ + HSO_4^-$		
bases: H ₂ O and HSO ₄		
conjugate pairs: H_2SO_4 and HSO_4 / H_2O and H_3O^+	1^{st} correct9	
	2 nd correct6	
	3 rd correct3	
Water is an <u>amphoteric</u> substance. Explain the underlined term.		
acts as an acid	3	
or a base	3	
Give the chemical formula for an oxide of each of these elements.		
sodium magnesium sulphur		

MgO	
SO_2 / SO_3	1 st correct6
	remaining two3

From these oxides, name (i) an acidic oxide, (ii) a basic oxide.

(i) SO ₂ / SO ₃	
(ii) Na ₂ O / Na ₂ O ₂ / MgO	1^{st} correct9
	2^{nd} correct3

[reverse order ...6]

 Na_2O / Na_2O_2

Describe a test to find out if an oxide is acidic or basic.

add indicator	
observe colour change	1 st correct6
	2 nd correct3

In a titration, a student used a <u>standard solution</u> of hydrochloric acid (HCl) to find the <u>concentration</u> of a potassium hydroxide (KOH) solution. Explain the underlined terms.

s. soluti	on: molarity / concentration	
	known	
conc:	amount / moles / grams present	1^{st} correct6
		remainder2×3
Name t	he pieces of glassware labelled (i) A, (ii) B.	
burette /	/ tap funnel	
pipette		1^{st} correct9
		2^{nd} correct3
[reverse	e order6]	
Describ	e the procedure used in preparing A to hold th	e acid.
place in	(retort) stand / wash with water / wash with acid	/
close th	e tap / fill (using a funnel) etc	1^{st} correct6
		2^{nd} correct3
Explain	1 how 20 cm ³ portions of the potassium hydroxi	de solution can be accurately
measur	ed out.	
pipette f	filler / fill pipette with base / no air bubbles /	
meniscu	us / level with the mark /	
allow ba	ase to run into flask /	
don't bl	ow out the last drop etc.	1^{st} correct6
		2^{nd} correct3
Why is	an indicator used in a titration?	
show er	nd-point / show point of neutralisation etc	3
Nama a	suitable indicator for this titration	
a named	l indicator	6
u numee	indicator	0
Give <u>on</u>	<u>e</u> precaution taken to improve the accuracy of	the titration.
add the	acid slowly (drop-wise) / white tile /	
swirl the	e flask / read bottom of the meniscus /	
wash sie	des of flask / three accurate titrations /	
rinse pij	pette with water (base)	any one6
[rough t	itre3]	
Calcula	te the molarity of the potassium hydroxide solu	ition.
$\underline{V_1} \times \underline{M_1}$	/ <u>17.5 × 0.15</u>	3
n_1	1	
$\underline{V_2 \times M_2}$	\underline{p} / $\underline{20 \times M_2}$	3
n_2	1	
$M_2 = 0.1$	13 (M / moles per litre (dm ³))	3

The gas ethyne (acetylene) (C_2H_2) is an <u>unsaturated hydroca</u> Explain the underlined terms.	<u>rbon</u> .
<i>unsaturated</i> : double / triple	3
bonds	3
[not all valencies satisfied3]	
<i>hydrocarbon</i> : carbon	3
hydrogen compound (only)	3
[named example3]	
Describe a chemical test to show that ethyne is unsaturated. decolourises	
bromine / potassium permanganate	1 st correct 9
oronnine / potassium permanganate	2^{nd} correct3
Draw the structural formula of ethyne (C ₂ H ₂).	
correct functional group	
H's attached (implied)	1^{st} correct6
	2^{nd} correct3
Name the homologous series to which ethyne belongs. alkynes	6
Name another homologous series of 'unsaturated hydrocarb alkenes / aromatic	ons'. 6
[saturated organic compound3]	
Carbon dioxide is produced when ethyne reacts with oxygen Name the other substance produced during this reaction. water	. 6
Write an equation to show this reaction.	
$C_2H_2 + O_2 = CO_2 + H_2O$	6
[any one correct3]	
Describe a test for the presence of carbon dioxide gas.	
limewater	. st
turns milky	$1^{\circ\circ}$ correct6

 2^{nd} correct ...3

(a) Define (i) oxidation, (ii) reduction, in terms of electron transfer.

(i) loss

(ii)gain 1st correct ...6 2nd correct ...3 of electrons ...3 [reverse order ...9: gain / loss of oxygen ...3]

State the substance oxidised in <u>each</u> the following reactions:

 $\begin{array}{l} CuO + H_2 \rightarrow Cu + H_2O \\ 2KI + Cl_2 \rightarrow 2KCl + I_2 \end{array}$ hydrogen $KI \qquad \qquad 1^{st} \text{ correct } \dots 6 \\ 2^{nd} \text{ correct } \dots 3 \end{array}$

[reverse ...6]

Copy, complete and balance the following reaction of calcium with hydrochloric acid: $Ca + HCl \rightarrow __+__$

CaCl ₂	
H ₂	1^{st} correct6
	2^{nd} correct3
[incorrect subscript / not balanced (-1)]	
Identify the oxidising agent in this reaction.	
HCl	3
(b) What is the purpose of a catalyst?	
alters	3
the rate of the reaction	3
Name a suitable catalyst for this reaction.	
manganese dioxide	6
Write a balanced equation for the reaction.	
$2H_2O_2 \rightarrow 2H_2O + O_2$	any one part correct6
	remainder3
How would you identify the gas produced?	
relights	
glowing splint	1^{st} correct6
	2^{nd} correct3
Give <u>one</u> use for the gas produced.	
hospitals / mountain climbing / diving etc	3

Question12 (continued)

(c) Define heat of combustion. heat change one mole burned

1st correct ...6 remainder ...3

Propane (C_3H_8) is a gas used as a camping fuel. Propane burns in air and the equation for the reaction is:

 $C_{3}H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_{2}O_{(g)} \Delta H = -2220 \text{ kJ mol}^{-1}$

Calculate:(i) the quantity of heat released in the combustion of *two* moles of propane

2×2220 / 4440

(ii) the number of moles of oxygen needed for the combustion of *two* moles of propane

 $2 \times 5 / 10$

(iii) the quantity of heat released in the combustion of 22 g of propane. 1110[M_r = 44 / 0.5 mole ...6]

1st correct ...12 2nd correct ...9 remainder ...3