Coimisiún na Scrúduithe Stáit State Examinations Commission

Scéimeanna Marcála

Fisic agus Ceimic

Scrúduithe Ardteistiméireachta, 2004

Gnáthleibhéal

Leaving Certificate Examination, 2004
Physics and Chemistry Ordinary level

Leaving Certificate Examination

2004

Physics \& Chemistry Ordinary Level

Marking Scheme

- Six questions to be answered.
- Answer any three questions from Section I and any three questions from Section II.
- All questions carry equal marks.
- However, in each section, one additional mark will be given to each of the first two questions for which the highest marks are obtained by the candidate.

In considering this marking scheme the following points should be noted:

1. In many instances only key words are given, words that must appear in the correct context in the candidate's answer in order to merit the assigned marks.
2. Words, expressions or statements separated by a solidus, /, are alternatives which are equally acceptable.
3. Answers that are separated by a double solidus, //, are answers which are mutually exclusive. A partial answer from one side of the // may not be taken in conjunction with a partial answer from the other side.
4. The descriptions, methods and definitions in the scheme are not exhaustive and alternative valid answers are acceptable.
5. The detail required in any answer is determined by the context and manner in which the question is asked and by the number of marks assigned to the answer in the examination paper. Therefore, in any instance, it may vary from year to year.
6. For lack of units, or incorrect units, one mark is deducted, when indicated.
7. Each time an arithmetical slip occurs in a calculation one mark is deducted.

QUESTION 1

Answer any eleven parts
(a) State the principle of conservation of energy Energy cannot be created // total energy 3
or destroyed / it can only be changed from one form to another // is constant 3
(b) A cyclist increases her velocity from $5 \mathrm{~m} \mathrm{~s}^{-1}$ to $8 \mathrm{~m} \mathrm{~s}^{-1}$ in 6 seconds. What is her acceleration?
$v=u+a t / 8=5+a(6) / 3\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ 3
$0.5 / 1 / 2$ 3
(c) What is the value of absolute zero on the absolute scale?

- / minus 3
273 3
(d) What is meant by a thermometric property?(property) that changes3
with temperature / heat 3
[example 3 only]
(e) Give one use of total internal reflection.optical fibres / reflectors / endoscopes / diamonds / binoculars etc.6
(f) What is meant by the diffraction of a wave?
bending / spreading (stated / implied) 3
obstacle / narrow opening 3
[diagram 6]
(g) Give one example of a longitudinal wavesound / ultrasonic / compression waves on a spring etc.6
[radio waves 0]
(h) What is the name given to (i) height X, (ii) length Y ?
(i) $\mathrm{X}=$ amplitude / maximum displacement / crest 3
(ii) $\mathrm{Y}=$ wavelength 3
(i) What is the purpose of a fuse in an electric circuit? protects // prevents // melts / blows 3
an appliance // a fire // if the current is too large 3 [safety device ... 6]
(j) Complete the statement
repel 3
negative 3

QUESTION 1(continued)

(k) State a law of electromagnetic induction emf / current 3
\propto rate of change of magnetic flux / opposes the change 3
(l) Calculate the effective capacitance of the two capacitors.
$C=C_{1}+C_{2} / C=3+4$ 3
$7(\mu \mathrm{~F}) / 1 / \mathrm{C}=7 / 12$ 3
(m) Give one use of a gold leaf electroscope
detect charge / conductor or insulator / identify type of charge / indicate size of p.d./ detect ionising ability of radioactive particles etc.
(n) In the equation $E=m c^{2}$, what does c represent?
speed / constant ... 3
of light ... 3
(o) What is nuclear fusion?
nuclei / atoms / elements
... 3
join
3
[example / energy released ... 3 only]

QUESTION 2

Define (i) acceleration, (ii) weight 4×3
(i) rate of change // change in velocity // v-u 3 of velocity (speed) // w.r.t. time 3
[$F=m a /$ units $\ldots 3$ only $]$
(ii) pull / force / attraction // measure of // m 3 of the earth // how heavy a body is $/ / \times g$.... 3 [show the difference between mass and weight ... 3]
Describe an experiment to measure the acceleration due to gravity, g. 7×3
Apparatus pendulum, string, ruler, timer, cork, stand // electromagnet, ball, ruler, timer, stand any four ... 4×3 [one item missing (-1)]
Method correct arrangement of apparatus (shown / described) set the pendulum swinging // release the ball measure the length // height time the oscillations // ball to fall correct equation any three ... 3×3
Give one precaution you should take to get an accurate result. 3 repeat //
small angle // lowest value of t length/distance not too small motion in one plane // reset the timer etc. any one ... 3
Complete the statement of Newton's law of gravitation. 3×3
product, square, distance 3×3
[correct words, wrong order ... 2×3]
Calculate (i) the weight of the package 3
$W=m g / W=5 \times 9.8 / 49 \mathrm{~N}$ 3
(ii) the velocity of the package after $\mathbf{5}$ seconds 3×3
$v=u+g t / v=3+(9.8)(5)$ 2×3
$=52\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ 3
(iii) the distance that the package falls from the helicopter in $\mathbf{5}$ seconds 2×3
$s=u t+1 / 2 a t^{2} / v^{2}=u^{2}+2 a s / s=3(5)+1 / 2(9.8)(5)^{2} /$
$(52)^{2}=(3)^{2}+2(9.8) s$ 3
$137.5(\mathrm{~m}) /$ answer consistent with formula used 3
(iv) the height of the package above the ground after 5 seconds 3
$62.5(\mathrm{~m})$ / answer consistent with distance in (iii) 3

QUESTION 3

(a) What is meant by (i) real image, (ii) magnified image? 2×6
(i) formed on a screen / inverted / rays converging /appropriate diagram /correct location for lens / correct location for mirror / correct exampleany one6
[formed / seen ...3, on a screen ...3]
(ii) bigger 6
State two properties of the image formed by a plane mirror. 2×3
virtual / laterally inverted / erect / same size as object / as far behind as object is in front $(u=v)$ / behind the mirror any two 2×3
Experiment to verify that the angle of incidence is equal to the angle of reflection. 5×3
Apparatus: mirror, ray box / pins 2×3
Procedure: correct arrangement of apparatus mirror perpendicular to the page / mark back of mirror / precaution mark incident ray mark reflected ray draw normal measure angles any three ... 3×3
(b) State the laws of refraction of light 4×3
I incident ray, normal, refracted ray 3
on the same plane 3
II $\sin i$ 3
$\propto \sin r$ 3
Complete the diagram to show the formation of the image by the lens 3×3
One ray correct to lens 3
Correct refraction 3
$2^{\text {nd }}$ ray correct 3
Is the image real or virtual? Give a reason for your answer. 6,3
Real image / consistent with the diagram 6
inverted / converging rays / formed on a screen consistent with diagram 3
Spectacles / microscope / telescope / binoculars etc any one 3

QUESTION 4

(a) State Boyle's law 3×3
fixed mass /
constant temperature / pressure

 \(/ / p V / / p_{1} V_{1}\)

 inversely proportional to volume \((\propto 1 / \mathrm{V}) / /=k / /=\mathrm{p}_{2} \mathrm{~V}_{2} \quad\) any three \(\ldots 3 \times 3\)
 Describe, with the aid of a labelled diagram, an experiment to verify Boyle's law6x3
Apparatus: pressure gauge // J-tube
pump / plunger // mercury
enclosed volume of air any two ... 2×3
[any one omitted / no labels ... 3 only]
Procedure: increase / read pressure (p)
read volume (V)
vary // repeat
pressure // different values
valid precaution any four ... 4×3
What is meant by an ideal gas? 2×3
obeys Boyle's law / obeys gas laws / satisfies K.T. assumptions 3
always / exactly / at all temperatures / at all pressures 3
(b) Give two assumptions of the kinetic theory of gases 6, 3large no. of particles / elastic collisions / rapid motion /negligible volume / random motion / straight line motion /negligible duration of collisions / temperature depends on K.E. etc.

$\mathbf{1}^{\text {st }}$ assumption	\ldots	6
$\mathbf{2}^{\text {nd }}$ assumption	\ldots	3

What is Brownian motion? 2×3
molecules / particles 3
motion 3
Describe an experiment to show Brownian motion 3×3, 6
Apparatus: smoke cell / lamp / microscope any two 2×3
Procedure: fill cell with smoke / shine light from side / focus microscope any one ... 3
Observe: describe what is observed 6
What does Brownian motion tell you about the nature of gases 3
particles of gas in motion 3

QUESTION 5

State the principle on which the moving coil galvanometer is based. 3×3
current / conductor / coil 3
in a magnetic field 3
experiences a force / moves 3
Describe an experiment to demonstrate this principle. 5×3
Apparatus: magnet, conductor, battery / power source 2×3
[any two ... 3]
Procedure: workable circuit 3
allow current to flow 3
conductor moves 3
Name three parts of a moving coil galvanometer 3×3
core / coil / needle / spring / magnet / scale any three 3×3
What does a.c. stand for? 2×3
alternating 3
current 3
(i) Name the parts of the transformer labelled A, B and C 3×3
A: primary 3
B: secondary 3
C: core 3
[reverse order for A and B (-1), correct words, wrong order $\ldots 2 \times 3$, step down 3]
(ii) How many turns are required on part B to give an output of 6 V? 3×3
$\mathrm{N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{p}}=\mathrm{V}_{\mathrm{s}} / \mathrm{V}_{\mathrm{p}}$ 3
$\mathrm{N}_{\mathrm{s}} / 460=6 / 230$ 3
12 (turns) 3
[3 turns ...3]
Name one device that uses a transformer 3
battery charger / TV etc 3
What is the advantage to the ESB in transmitting electricity at high voltages? 2×3
less heat / less energy / cheaper // more 3
lost // efficient 3[advantage of a.c. over d.c. ... 3]

QUESTION 6

Answer any two parts
(a) Define (i) kinetic energy, (ii) momentum. 4×3
(i) energy due to // work // example 3
motion // done 3
$\left[\begin{array}{lll}1 / 2 m v^{2} & \ldots & 2 \times 3\end{array}\right]$
(ii) mass 3
\times velocity (speed) 3
Calculate (i) the initial kinetic energy of sphere A 3×3
$E_{k}=1 / 2 m v^{2}$ 3
$=1 / 2(2)(4)^{2}$ 3
$=16 \mathrm{~J}$ 3
(ii) the momentum of sphere \boldsymbol{A} before the collision 2×3
$p=m v \quad / p=2 \times 4$ 3
$=8$ 3
(iii) the momentum of sphere B after the collision 2×3
$m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2} / 3 \mathrm{~m} \mathrm{~s}^{-1}$ 3
$6\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$ 3
(b) Explain the term spectrum 2×3
band / range / spread 3
of colours 3
What happens to the light as it enters the prism at W? 6
dispersed / refracted / split up 6
Name the invisible radiation on the screen at (i) region X, (ii) region Y. 4×3
(i) infra 3
red 3
(ii) ultra 3violet3[reverse order ... 2×3]
Describe how you would detect one of these invisible radiations. 3×3
thermometer (thermocouple) // fluorescent material // Zn and electroscope and shine UV 2×3
rise in temperature // glows // leaves collapse ... 3

Question 6 (continued)

(c) State Ohm's law 3×3
voltage (V) 3
\propto current (I) / = RI 3
at constant temperature 3
What is the unit of electric current? 6
Ampere / Amp / A 6
Calculate(i) the total resistance of the circuit 2×3
$R=R_{l}+R_{2} / \mathrm{R}=3+9$ 3
$=12 \Omega$ 3
(ii) the current in the circuit 3×3
$V=R I$ 3
$6=12 \times \mathrm{I}$ 3
$=0.5$ 3
(iii) the potential difference (voltage) across the 9Ω resistor 3
$\mathrm{V}=9 \times 0.5 / 4.5 \mathrm{~V}$ 3
(d) Give two properties of gamma radiation 2×6
high energy / low ionising ability / very penetrating / short wavelength / invisible etc any two 2×6
Name two other types of nuclear radiation. 2×3
alpha 3
beta 3
Give two uses of radioactive substances 2×3
medical / cancer / carbon dating/ detecting leaks etc any two ... 2×3
What fraction of a sample of radon gas is left after 12 days? 3×3
$1 / 2$ | $1 / 2$ | $1 / 2$ || $1 / 8$ 3×3

QUESTION 7

Answer any eleven parts

(a) How many (i) protons, (ii) electrons, are there in the Li ion?
(i) 3
... 3
(ii) 2
[value given in (ii) one less than (i) ... 3]
(b) Which element is represented by the electronic configuration: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Argon / element number $18 \quad \ldots 6$
(c) Sketch an s-orbital
$\begin{array}{llll}\text { Spherical shape (shown / stated) } \\ {\left[\begin{array}{lll}\text { sketch of p-orbital } \ldots & 3] & \ldots\end{array}\right.} & 6\end{array}$
(d) Give one example of a molecular crystal

Iodine / sucrose / sulphur / ice / dry ice (solid carbon dioxide)/
organic solids etc.
.. 6
[ionic / covalent crystal ... 3]
(e) Arrange the metals in order of increasing activity

Zinc, aluminium, sodium $\ldots 6$
[any two in correct order / reverse order ... 3]
(f) Name one oxide which is a major cause of atmospheric pollution
oxide of \ldots... 3
carbon / nitrogen / sulfur \ldots... 3
(g) What is meant by an amphoteric oxide?
acts as an acid
... 3
or a base
3
[example \ldots]
(h) Copy, complete and balance the equation:
$\mathrm{CaCl}_{2} / \mathrm{H}_{2} \quad \ldots .3$
$\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \quad \ldots \quad 3$
(i) Give an example of a weak acid.
vinegar / ethanoic acid / acetic acid / carbonic acid etc. ... 6
[definition of weak acid ... 3]
(j) Calculate the percentage of nitrogen by mass in ammonia $\left(\mathbf{N H}_{3}\right)$
M_{r} of $\mathrm{NH}_{3}=17$
... 3
82\%
... 3
[rain / definition ... 3]
(k) State Hess's law
heat change ... 3
independent of path \ldots... 3

Question 7 (continued)

(l) Name two gases produced when acidified water undergoes electrolysis

hydrogen	\ldots	3
oxygen	\ldots	3

(m) Calculate the number of molecules in 22 g of ethanal $(22 \mathrm{~g})=1 / 2$ a mole
... 3
$3 \times 10^{23} \quad \ldots \quad 3$
(n) Name the compound phenol 6
[benzene / aromatic alcohol / benzoic acid 3]
(o) Give the molecular formula for benzene
$\mathrm{C}_{6} / / \mathrm{CH}$
3
$\mathrm{H}_{6} / / \mathrm{C}_{6} \mathrm{H}_{6}$
3

QUESTION 8

(a) Explain the terms (i) mass number, (ii) isotope 4×3
(i) number of protons 3
and neutrons 3
(ii) same number of protons / same atomic number / atoms of the same element 3
different no. of neutrons / different mass number 3
[example 3]
(iii) State the number of neutrons in each of these isotopes 2×6
38 neutrons 6
40 neutrons 6
[difference of two 3]
(iv) calculate the relative atomic mass of gallium 3×3
$60 \times 69 / 4140$ 3
$40 \times 71 / 2840$ 3
69.8 3
(b) What is meant by (i) covalent bond, (ii) ionic bond? 4×3
(i) sharing 3
of electrons 3
[EN difference < 1.7 / example ... 3]
(ii) transfer // attraction 3
of electrons // between ions 3
[EN difference >1.7 / example ... 3]
[correct but in reverse (-1)]
Give one property of ionic compounds. 3
solid / crystalline / high m.p. / high b.p. / good conductors of electricity in molten state or in solution etc. 3
Using electronegativity values, explain why (iii) sodium chloride is an ionic compound; (iv) hydrogen chloride is a polar covalent molecule 4×3
(iii) EN difference 3
greater than 3
1.7 3
(iv) less than 3[correct but in reverse (-1)]
State the type and size of charge of the chloride ion in sodium chloride. 6
Cl^{-} 6
[minus ... 3, one ... 3]

QUESTION 9

What is meant by the molarity of a substance? 2×3
moles / concentration / M_{r} expressed in grams 3
per litre 3
Explain why an indicator is used during a titration. 2×3
show / change colour 3
end-point / point of neutralisation 3
(i) Draw a labelled diagram of the apparatus used in a titration $6,2 \times 3$
burette / flask / beaker / pipette / stand / funnel / white tile / pipette filler $1^{\text {st }}$ correct ... 6 any two 2×3
(ii) Name a suitable indicator for this experiment 6 named indicator 6
[use of an indicator 3]
(iii) Describe how the volume of sulfuric acid required for neutralisation was found. 6,3
add acid until colour change // read at end-point // three accurate titres 6
adjust (read) to zero / read volume/ subtract readings //// rough titration / average titres3
(iv) State two precautions taken to ensure an accurate result 2×6
add acid slowly (drop wise) / white tile / swirl flask / wash sides of flask / read bottom of meniscus / three accurate titres / rinse apparatus with water / rinse burette (pipette) with acid (base) any two 2×6
(v) Copy, complete and balance the equation for the reaction: 2×3
$\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ 2×3
$\left[\mathrm{Na}_{2} \mathrm{SO}_{4} / 2 \mathrm{H}_{2} \mathrm{O} \quad \ldots\right.$ 3]
(vi) Calculate the molarity of the sodium hydroxide solution. 3×3
$\underline{\mathrm{M}}_{\underline{1}} \times \mathrm{V}_{1} \quad / \quad \frac{0.1 \times 18.5}{\mathrm{n}_{1}}$ 3 3
$\underline{\mathrm{M}}_{2} \frac{\times \mathrm{V}_{2}}{\mathrm{n}_{2}} \quad / \underline{\mathrm{M}_{2}} \frac{\times 25}{2}$ 3
0.15 (M)3

QUESTION 10

(a) Define heat of formation 2×3
heat change 3
one mole is formed (from its elements) 3
Explain why the reaction is exothermic. 2×3
heat // $\Delta \mathrm{H}$ 3
given off // minus 3
Calculate(i) the quantity of heat released in the combustion of 6 moles of hydrogen 3×3
$(1$ mole $)=286$ 3
$=6 \times 286$ 3
$=1716(\mathrm{~kJ})$ 3
(ii) the number of moles of oxygen used in the combustion of 6 moles of hydrogen 2×3
1 mole H_{2} requires $1 / 2$ mole O_{2} 3
(6 moles H_{2}) 3 3
(iii) the number of moles of hydrogen required to release 1430 kJ of energy 2×3
$(1$ mole $)=286$ 3
$1430 \div 286$ / 5 3
(b) Explain oxidation and reduction in terms of electron transfer 2×6
loss (of electrons) 6
gain (of electrons) 6
[reverse order (-1)]
Identify (i) the substance oxidised, (ii) the oxidising agent 6, 3
(i) Ca
(ii) $\mathrm{F} / \mathrm{F}_{2}$ $\begin{array}{lll}\mathbf{1}^{\text {st }} \text { correct } & \ldots & 6 \\ 2^{\text {nd }} \text { correct } & \ldots & 3\end{array}$[reverse order (-1)]
Copy and complete the reaction of copper oxide with hydrogen gas 2×3
Cu 3
$\mathrm{H}_{2} \mathrm{O}$ 3Name (iii) the substance oxidised, (iv) the substance reduced2×3
(i) H_{2} 3
(ii) $\mathrm{Cu} / \mathrm{CuO}$ 3
[reverse order (-1)]

QUESTION 11

Identify the homologous series to which methane belongs 6
Alkanes 6
Name two other members of this homologous series 4×3
Ethane / propane / butane / pentane etc $1^{\text {st }}$ correct 3×3 $2^{\text {nd }}$ correct...$\quad 3$
Give one use for methane gas 6
Fuel / heat / energy source etc. 6
Give the structural formula of (i) ethene, (ii) ethanol 4×3
(i) $\mathrm{C}==\mathrm{C}$ 3H's attached3
(ii) $\mathrm{C}-\mathrm{C}-\mathrm{OH}$ 3
H's attached 3
Describe, with the aid of a labelled diagram, an experiment to produce ethene from ethanol 6×3
Apparatus: test-tube, trough, gas jar, Bunsen any three 3×3 [no diagram ... deduct 3]
Method: alcohol and glass wool in test tube$\mathrm{Al}_{2} \mathrm{O}_{3}$ / catalystsealed tubeheatcollect gas in gas jar any three ... 3×3
What happens to the solution in the test tube? 2×3
changes // becomes 3
colour // colourless 3
What does this tell you about the structure of ethene? 6
unsaturated / double bonds 6
[saturated 3]

QUESTION 12

(a) Name the gas being produced 6
carbon dioxide 6
Name liquid A and solid B 2×6
(A) acid 6
(B) suitable carbonate / hydrogen carbonate 6
[reverse order ... 9]
Give two uses of the gas produced 2×3
Fire extinguishers / special effects / fizzy drinks / refrigerant etc. any two 2×3
Describe a test to find out if the gas is acidic or basic 3×3
Named indicator 3
Give colour change 3
Conclusion (consistent with the colour change) 3
(b) Define (i) an acid, (ii) a base, in terms of the Bronsted-Lowry theory. 4×3
(i) proton $/ / \mathrm{pH}$ between $0-7 / /$ low pH 3 donor // 3
[example 3]
(ii) proton $/ / \mathrm{pH}$ between $7-14 / /$ high pH 3 acceptor//] [reverse order (-1)]
Identify (iii) two acids, (iv) two bases and (v) one acid-base pair 5×3
(iii) $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{4}{ }^{+}$ 2×3
(iv) $\mathrm{NH}_{3}, \mathrm{OH}^{-}$ 2×3[reverse order (-1)]
(v) $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+} \quad / / \quad \mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}$ 3
Name the scale used to compare the acidity of substances 6 pH 6

Question 12 (continued)

(c) Draw a diagram to show the arrangement of electrons in ammonia.

Show 1 lone pair	\ldots	3
Show 3 bond pairs	\ldots	3

Complete table

Molecule	Number of bond pairs	Number of lone pairs	Shape
$\mathbf{N H}_{3}$	3	1	
$\mathbf{B F}_{3}$	3		
$\mathbf{H}_{\mathbf{2}} \mathbf{O}$		2	V-shaped / planar

$\mathbf{1}^{\text {st }}$ two correct	\ldots	2×6
remainder	\ldots	3

Sketch the shape of any two of the molecules in the table, showing the positions of the atoms in each case.
Any two correct shapes showing correct position of atoms

$$
\begin{array}{lll}
\mathbf{1}^{\text {st }} \text { correct } & \ldots & 9 \\
\mathbf{2}^{\text {nd }} \text { correct } & \ldots & 3
\end{array}
$$

