AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

LEAVING CERTIFICATE EXAMINATION, 2000

MATHEMATICS - ORDINARY LEVEL

PAPER 1 (300 marks)

THURSDAY, 8 JUNE - MORNING, 9.30 to 12.00

Attempt **SIX QUESTIONS** (50 marks each).

Marks may be lost if all necessary work is not clearly shown.

1. (a) Express 400 grammes as a fraction of 1 kilogramme. Give your answer in its simplest form.

(b)
$$1 \text{ euro} = \text{IR} \pounds \ 0.787564$$

 $1 \text{ euro} = \text{DM} \ 1.95583$

- (i) Calculate the value of IR£ 100 in euro, correct to two places of decimals.
- (ii) Hence, calculate the value of IR£100 in Deutschmarks (DM), correct to two places of decimals.
- (c) A person has annual tax free allowances of $IR\pounds7400$.

The person pays income tax at the rate of 24% on the first IR \pounds 12 400 of taxable income and at the rate of 46% on the remainder.

- (i) Calculate the amount of income tax paid on the first IR£12 400 of taxable income.
- (ii) Calculate the person's gross income if the total annual income tax paid is IR£5138.

2. (a) Find the value of
$$5x - 3y$$
 when $x = \frac{5}{2}$ and $y = \frac{2}{3}$.

(b) Solve for x and y

$$x - 3y = 1$$
$$x^2 - y^2 = 0.$$

- (c) Write as a power of 3
 - (i) 243 (ii) $\sqrt{27}$.

Hence, solve for *x* the equation

$$\sqrt{3}(3^x) = \left(\frac{243}{\sqrt{27}}\right)^2.$$

3. (a) Express p in terms of t and k when

$$tp-k=7k, \quad t\neq 0.$$

- (b) (i) Show that x = 2 is a root of $3x^3 + 8x^2 33x + 10 = 0$.
 - (ii) Find the other roots of $3x^3 + 8x^2 33x + 10 = 0$.
- (c) (i) $f(x) = ax^2 + bx 8$, where a and b are real numbers.

If f(1) = -9 and f(-1) = 3, find the value of *a* and the value of *b*.

(ii) Using your values of *a* and *b* from (i), find the two values of *x* for which

$$ax^2 + bx = bx^2 + ax.$$

4. (a) Simplify

$$7(2+i) + i(11+9i)$$

and express your answer in the form x + yi where $x, y \in \mathbf{R}$ and $i^2 = -1$.

- **(b)** Let w = 3 i.
 - (i) Plot w and w + 6i on an Argand diagram.
 - (ii) Calculate |w + 6i|.
 - (iii) Express $\frac{1}{w+6i}$ in the form u + vi where $u, v \in \mathbf{R}$.
- (c) Let z = 2+4i.
 - (i) Express $z^2 + 28$ in the form p + qi where $p, q \in \mathbf{R}$.
 - (ii) Solve for real k

$$k(z^2 + 28) = |z|(1+i).$$

Express your answer in the form $\frac{\sqrt{a}}{b}$ where $a, b \in \mathbb{N}$ and a is a prime number.

- **5.** (a) The *n*th term of a sequence is given by $T_n = n^2 + 1$.
 - (i) Write down the first three terms of the sequence.
 - (ii) Show that $T_1 + T_2 + T_3 = T_4$.
 - (b) The first term of a geometric series is 1 and the common ratio is $\frac{11}{10}$.
 - (i) Write down the second, third and fourth terms of the series.
 - (ii) Calculate S_4 , the sum of the first four terms. Give your answer as a decimal.
 - (c) The first three terms of an arithmetic series are $5 + 10 + 15 + \dots$
 - (i) Find, in terms of n, an expression for T_n , the *n*th term.
 - (ii) Find, in terms of n, an expression for S_n , the sum to n terms.
 - (iii) Using your expression for S_n , find the sum of the natural numbers that are both multiples of 5 and smaller than 1000.
- **6.** (a) Differentiate 7x + 3 from first principles with respect to x.
 - **(b)**

The graph shows portion of a periodic function $f: x \to f(x)$ which is defined for $x \in \mathbf{R}$.

- (i) Write down the period and the range of f(x).
- (ii) Complete the following table:

X	2	8	14	20	26
f(x)					

(c) Let $g(x) = (2x+3)(x^2-1)$ for $x \in \mathbf{R}$.

- (i) For what two values of x is the slope of the tangent to the curve of g(x) equal to 10?
- (ii) Find the equations of the two tangents to the curve of g(x) which have slope 10.

7.

- (a) Differentiate with respect to x
 - (i) $4x^2 + 5$
 - (ii) $9x x^3$.

(b) (i) Find
$$\frac{dy}{dx}$$
 when $y = \frac{2x-7}{x-1}$, $x \neq 1$.

(ii) Find
$$\frac{dy}{dx}$$
 when $y = (x^2 + 5x - 1)^3$.

- (c) A car, starting at t = 0 seconds, travels a distance of *s* metres in *t* seconds where $s = 30t - \frac{9}{4}t^2$.
 - (i) Find the speed of the car after 2 seconds.
 - (ii) After how many seconds is the speed of the car equal to zero?
 - (iii) Find the distance travelled by the car up to the time its speed is zero.

8. (a) Let
$$p(x) = 3x - 12$$
.

For what values of x is p(x) < 0 where x is a positive whole number?

$$g(x) = \frac{1}{x}$$
 for $-3 \le x \le 3$, $x \in \mathbf{R}$ and $x \ne 0$.

(ii) Using the same axes and the same scales, draw the graph of

$$h(x) = x + 1$$
 for $-3 \le x \le 3$, $x \in \mathbf{R}$.

(iii) Use your graphs to estimate the values of x for which

$$\frac{1}{x} = x + 1.$$

(c) Let $f(x) = x^3 - 3x^2 + ax + 1$ for all $x \in \mathbf{R}$ and for $a \in \mathbf{R}$.

f(x) has a turning point (a local maximum or a local minimum) at x = -1.

- (i) Find the value of *a*.
- (ii) Is this turning point a local maximum or a local minimum? Give a reason for your answer.
- (iii) Find the co-ordinates of the other turning point of f(x).

AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

LEAVING CERTIFICATE EXAMINATION, 2000

MATHEMATICS – ORDINARY LEVEL – PAPER 2 (300 marks)

FRIDAY, 9 JUNE — MORNING, 9.30 to 12.00

Attempt 5 **Questions** from Section **A** and **ONE Question** from Section **B**. Each question carries 50 marks.

Marks may be lost if necessary work is not clearly shown.

SECTION A

1. (a) Calculate the area of the shaded region in the diagram.

(b) The sketch shows a piece of land covered by forest which lies on one side of a straight road.

At equal intervals of 50 m along the road, perpendicular measurements of 130 m, 185 m, 200 m, 210 m, 190 m, 155 m and 120 m are made to the forest boundary.

Use Simpson's Rule to estimate the area of land covered by the forest.

[See Tables, page 42.]

Give your answer in hectares. [Note: 1 hectare = $10\ 000\ m^2$.]

- (c) A candle is in the shape of a cylinder surmounted by a cone, as in the diagram.
 - (i) The cone has height 24 cm and the length of the radius of its base is 10 cm.

Find the volume of the cone in terms of π .

(ii) The height of the cylinder is equal to the slant height of the cone.

Find the volume of the cylinder in terms of π .

(iii) A solid spherical ball of wax with radius of length r cm was used to make the candle.

Calculate *r*, correct to one decimal place.

- (b) a(-2, -1), b(1, 0) and c(-5, 2) are three points.
 - (i) Show that $|ab| = \sqrt{10}$.
 - (ii) Find | *bc* |.
 - (iii) Hence, find the ratio | ab | : | bc |.Give your answer in the form m : n where m and n are whole numbers.
- (c) (i) The line *L* has equation 3x 4y + 20 = 0. *K* is the line through p(0, 5) which is perpendicular to *L*.
 Find the equation of *K*.
 - (ii) L cuts the x-axis at the point t.K cuts the x-axis at the point r.Calculate the area of the triangle *ptr*. Give your answer as a fraction.
- 3. (a) The circle C has equation $x^2 + y^2 = 16$.
 - (i) Write down the length of the radius of *C*.
 - (ii) Show, by calculation, that the point (3, 1) is inside the circle.
 - (b) (i) Find the slope of the tangent to the circle $x^2 + y^2 = 29$ at the point (2, 5).
 - (ii) Hence, find the equation of the tangent.
 - (c) (i) The end points of a diameter of a circle are (-2, -3) and (-4, 3).
 Find the equation of the circle.
 - (ii) The circle cuts the y-axis at the points a and b. Find |ab|.
 - (iii) c and d are points on the circle such that abcd is a rectangle.Find the area of the rectangle abcd.

- 4. (a) In the diagram, |ab| = |ac| and $| \angle bad | = 102^{\circ}$.
 - (i) Find $| \angle cab |$.
 - (ii) Find $| \angle abc |$.

- (b) Prove that in a right-angled triangle, the square of the length of the side opposite to the right-angle is equal to the sum of the squares of the lengths of the other two sides.
- (c) The triangle *cde* is the image of the triangle *cab* under an enlargement with centre *c*. |ca| = 12, |ad| = 9 and |cb| = 8.
 - (i) Find the scale factor of the enlargement.
 - (ii) Find | *be* |.
 - (iii) The area of the triangle *cde* is 98 square units. Find the area of the triangle *cab*.

5. (a) In the triangle abc, |ab| = 7 m, |bc| = 8 m and $|\angle abc| = 42^{\circ}$.

Calculate the area of the triangle, correct to one place of decimals.

(b) The diagram shows a vertical pole which stands on level ground.

A cable joins the top of the pole to a point on the ground which is 50 m from the base of the pole.

The cable makes an angle of $66^{\circ}25'$ with the ground.

- (i) Find the height of the pole, correct to the nearest metre.
- (ii) Find the length of the cable, correct to the nearest metre.
- (c) (i) In the diagram, the triangle zxy is right-angled. |zx| = 8 m and |zy| = 15 m.Find |xy|.
 - (ii) xp is parallel to zy.
 |xp | = |xy |, as shown.
 Calculate | py /, correct to the nearest metre.

- 6. (a) To go to work, a woman can walk or travel by bus or travel by car with a neighbour. To return home, she can walk or travel by bus.
 - (i) In how many different ways can the woman go to and return from work on any one day?
 - (ii) List all of these different ways.
 - (b) In a class, there are 15 boys and 13 girls. Four boys wear glasses and three girls wear glasses.A pupil is picked at random from the class.
 - (i) What is the probability that the pupil is a boy?
 - (ii) What is the probability that the pupil wears glasses?
 - (iii) What is the probability that the pupil is a boy who wears glasses?

A girl is picked at random from the class.

- (iv) What is the probability that she wears glasses?
- (c) (i) How many different five-digit numbers can be formed from the digits 2, 3, 4, 5, 6? Each digit can be used once only in each number.
 - (ii) How many of the numbers are even?
 - (iii) How many of the numbers are less than 40 000?
 - (iv) How many of the numbers are both even and less than 40 000?
- 7. (a) Find the weighted mean of 11, 15, 19 and 21 if the weights are 2, 3, 1 and 2 respectively.
 - (b) The table shows the distribution of points obtained by 50 people who took a driving test.

Points obtained	0-20	20 - 40	40 - 80	80 - 100
Number of people	4	8	28	10

- (i) Draw a histogram to illustrate the data.
- (ii) To pass the driving test a person must obtain 65 points or more. What is the greatest possible number of people who passed the test?
- (c) The table below refers to the number of emergency calls recorded at a fire station each week for 52 weeks.

Number of emergency calls	0 – 10	11 – 20	21 - 30	31 - 40	41 - 50	51 - 60	61 – 70
Number of weeks	6	8	11	12	7	5	3

(i) Copy and complete the following cumulative frequency table:

Number of emergency calls	≤ 10	≤ 20	≤ 30	≤ 40	≤ 50	≤ 60	≤ 70
Number of weeks	6						52

- (ii) Draw the cumulative frequency curve.
- (iii) Use your graph to estimate the interquartile range.
- (iv) Use your graph to estimate the number of weeks during which more than 56 emergency calls were recorded.

SECTION B

Attempt ONE question.

- 8. (a) In the diagram, [pt] is a diameter of the circle. sr is parallel to pt and $|\angle ptr| = 56^{\circ}$.
 - (i) Write down the value of $| \angle prt |$.
 - (ii) Find the value of $| \angle prs |$.

- (b) Prove that the degree-measure of an angle subtended at the centre of a circle by a chord is equal to twice the degree-measure of any angle subtended by the chord at a point of the arc of the circle which is on the same side of the chordal line as is the centre.
- (c) In the diagram, *o* is the centre of the circle.

a, b, c and d are points on the circle.

|da| = |dc| and $|\angle abc| = 62^{\circ}$.

- (i) Find $| \angle aoc |$, where $\angle aoc$ is obtuse.
- (ii) Find $| \angle adc |$.
- (iii) Find $| \angle oad |$.
- 9. (a) Let $\vec{x} = \vec{i} + \vec{j}$ and $\vec{y} = 2\vec{i} + 5\vec{j}$.

Express, in terms of \vec{i} and \vec{j} ,

- (i) $3\vec{x} + \vec{y}$
- (ii) \overrightarrow{xy} .
- (b) osrp is a parallelogram where o is the origin.
 - (i) Copy the diagram and show on it \vec{k} and \vec{m} such that $\vec{k} = \vec{s} + 2 \vec{p}$ and $\vec{m} = 2 \vec{s} + \vec{p}$.
 - (ii) Express $\vec{k} + \vec{m}$ in terms of \vec{r} .

(c)
$$\vec{a} = 5\vec{i} + 12\vec{j}$$
 and $\vec{b} = 3\vec{i} - 4\vec{j}$.

- (i) Write down \vec{a}^{\perp} and \vec{b}^{\perp} in terms of \vec{i} and \vec{j} .
- (ii) Evaluate $|\vec{a}^{\perp}|$ and $|\vec{b}^{\perp}|$.
- (iii) Find the scalar k such that $|\vec{a}^{\perp} + \vec{b}^{\perp}| = k (|\vec{a}^{\perp} / / \vec{b}^{\perp} /)$. Give your answer in the form \sqrt{n} , where $n \in \mathbb{N}$.

10. (a) Expand $(1 + x)^3$ in ascending powers of x.

Show that $(1 + \sqrt{3})^3 = 10 + 6\sqrt{3}$.

(b) (i) Find the sum to infinity of the geometric series

$$\frac{4}{5} + \frac{4}{50} + \frac{4}{500} + \cdots$$

(ii) Hence, show that
$$1.8 = \frac{17}{9}$$

(c) A person invests IR£1000 at the beginning of each year for 3 consecutive years at 8% per annum compound interest. Tax at 24% is deducted at the end of each year from the interest earned.

Find

- (i) the value of the first investment at the end of the third year, correct to the nearest penny
- (ii) the total value of all the investments at the end of the third year, correct to the nearest penny.
- **11.** (a) The line K passes through the points (2, 0) and (0, 4).
 - (i) Find the equation of the line *K*.
 - (ii) Write down three inequalities which define the shaded region in the diagram.

(b) Two types of machines, type A and type B, can be purchased for a new factory. Each machine of type A costs IR£1600. Each machine of type B costs IR£800. The purchase of the machines can cost, at most, IR£27 200.

Each machine of type A needs 90 m² of floor space in the factory.

Each machine of type B needs 54 m^2 of floor space.

The maximum amount of floor space available for the machines is 1620 m².

- (i) If *x* represents the number of machines of type A and *y* represents the number of machines of type B, write down two inequalities in *x* and *y* and illustrate these on graph paper.
- (ii) The daily income from the use of each machine of type A is IR£75. The daily income from the use of each machine of type B machine is IR£42. How many of each type of machine should be purchased so as to maximise daily income?
- (iii) What is the maximum daily income?