

# **Coimisiún na Scrúduithe Stáit** State Examinations Commission

# **Leaving Certificate 2012**

# **Marking Scheme**

## Mathematics (Project Maths – Phase 1)

**Higher Level** 

## Contents

| Introduction                                         | 4  |
|------------------------------------------------------|----|
| Marking scheme for Paper 1                           | 5  |
| Question 1                                           | 6  |
| Question 2                                           | 14 |
| Question 3                                           |    |
| Question 4                                           |    |
| Question 5                                           |    |
| Question 6                                           |    |
| Question 7                                           |    |
| Question 8                                           |    |
| Model Solutions – Paper 2                            | 44 |
| Marking Scheme – Paper 2                             | 63 |
| Structure of the marking scheme                      |    |
| Summary of mark allocations and scales to be applied |    |
| Detailed marking notes                               |    |
| Marcanna Breise as ucht Freagairt trí Ghaeilge       | 75 |

### Introduction

The Higher Level Mathematics examination for candidates in the initial schools for *Project Maths* shared a common Paper 2 with the examination for all other candidates. The marking scheme used for the shared content was identical for the two groups.

This document contains the complete marking scheme for both papers for the candidates in all schools other than the initial schools. That is, it contains the marking scheme for Phase 1 of Project Maths.

Readers should note that, as with all marking schemes used in the state examinations, the detail required in any answer is determined by the context and the manner in which the question is asked, and by the number of marks assigned to the question or part. Requirements and mark allocations may vary from year to year.

## Marking scheme for Paper 1

#### **GENERAL GUIDELINES FOR EXAMINERS – PAPER 1**

- 1. Penalties of three types are applied to candidates' work as follows:
  - Blunders - mathematical errors/omissions (-3) (-1)
  - Slips - numerical errors
  - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
  - any *correct*, *relevant* step in a part of a question merits at least the attempt mark for that part
  - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
  - a mark between zero and the attempt mark is never awarded.
- 3 Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2, ... etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work of merit is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists – there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts – even when attempts have been cancelled.
- 9. The same error in the same section of a question is penalised once only.
- Particular cases, verifications and answers derived from diagrams (unless requested) qualify for 10. attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50. 12.

## QUESTION 1

| Part (a) | 10 (5, 5) marks       | Att (2, 2)       |
|----------|-----------------------|------------------|
| Part (b) | 20 (5, 5, 5, 5) marks | Att (2, 2, 2, 2) |
| Part (c) | 20 (5, 5, 5, 5) marks | Att (2, 2, 2, 2) |
|          |                       |                  |

| Par | t (a) | 10 (5, 5) marks                                                    | Att (2, 2) |
|-----|-------|--------------------------------------------------------------------|------------|
| 1.  | (a)   | The following equation is true for all <i>x</i> .                  |            |
|     |       | $ax^{2} + bx(x-4) + c(x-4) = x^{2} + 13x - 20.$                    |            |
|     |       | Find the value of the constants <i>a</i> , <i>b</i> and <i>c</i> . |            |

| Equating coefficients<br>Values | 5 marks<br>5 marks                                | Att 2<br>Att 2 |
|---------------------------------|---------------------------------------------------|----------------|
| 1 (a)                           |                                                   |                |
| $ax^2$                          | $+ bx^2 - 4bx + cx - 4c = x^2 + 13x - 20.$        |                |
| $x^2(a)$                        | (a+b-1) + x(-4b+c-13) + (-4c+20) = 0.             |                |
|                                 | $4c + 20 = 0 \implies c = 5.$                     |                |
| $\therefore -4$<br>a-2          | $b-8=0 \implies b=-2.$<br>$b-1=0 \implies a=3$    |                |
|                                 | a = 3, b = -2, c = 5.                             |                |
|                                 | <u>OR</u>                                         |                |
| $ax^2$                          | $+ bx(x-4) + c(x-4) = x^{2} + 13x - 20$           |                |
| True                            | for all values of <i>x</i>                        |                |
| Let <i>x</i>                    | c = 0: $0 + 0 + c(-4) = 0 + 0 - 20$               |                |
|                                 | -4c = -20                                         |                |
|                                 | c = 5(i)                                          |                |
| Let <i>x</i>                    | c = 1: $a + b(-3) + c(-3) = 1 + 13 - 20$          |                |
|                                 | a-3b-3c=-6                                        |                |
|                                 | a - 3b - 15 = -6                                  |                |
|                                 | $a-3b=9.\ldots(ii)$                               |                |
| Let <i>x</i>                    | $c = 2$ : $a(2)^2 + 2b(-2) + c(-2) = 4 + 26 - 20$ |                |
|                                 | 4a - 4b - 2c = 10                                 |                |
|                                 | 4a - 4b - 10 = 10                                 |                |
|                                 | 4a - 4b = 20                                      |                |
|                                 | a - b = 5( <i>iii</i> )                           |                |
|                                 |                                                   |                |
|                                 |                                                   |                |
|                                 |                                                   |                |

(*ii*): 
$$a-3b=9$$
  
(*iii*):  $\underline{a-b=5}$   
 $-2b=4$   
 $b=-2$   
(*iii*):  $a-b=5$   
 $a+2=5$   
 $a=3$ 

- Blunders (-3)B1 Not like-to-like when equating coefficientsB2 Indices

*Slips (-1)* S1 Numerical

| Part (b)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 (5, 5, 5, 5) marks                                                                 | Att (2, 2, 2, 2)           |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------|
| 1. (b)                 | The function $f(x) = x^3$ -<br>(i) Find the three roots<br>(ii) Find a cubic equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-2x^2 - 5x + 6$ has three integer roc<br>s.<br>on whose roots are 1 less than the re | ots.<br>Dots of <i>f</i> . |
| (b)(i) Ro<br>Qu<br>Roc | ot<br>adratic factor<br>ots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 marks<br>5 marks<br>5 marks                                                         | Att 2<br>Att 2<br>Att 2    |
| 1 (b) (i)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 ( 1)                                                                                |                            |
|                        | f(1) = 1 - 2 - 5 + 6 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Rightarrow x = 1 \Rightarrow (x - 1)$ is a factor.                                  |                            |
|                        | $ \frac{x^{2} - x - 6}{x - 1)x^{3} - 2x^{2} - 5x + 6} \\ \frac{x^{3} - x^{2}}{-x^{2} - 5x + 6} \\ \frac{-x^{2} + x}{-6x + 6} \\ \frac{-6x + 6}{0} \\ x^{2} - x - 6 - 0 \xrightarrow{\sim} (x - 3)(x $ | $(r+2)=0 \implies r=3, r=-2$                                                          |                            |
|                        | $x^2 - x - 6 = 0 \implies (x - 3)(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(x+2)=0 \implies x=3, x=-2.$                                                         |                            |
| 1110                   | unce 10015 are 1, 5, and – 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ۷.                                                                                    |                            |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OR                                                                                    |                            |

| 0 | R |
|---|---|
|   |   |

| (b)(i) Root<br>Quadratia factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 marks<br>5 marks              | Att 2          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|
| Roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 marks                         | Att 2<br>Att 2 |
| 1 (b) (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                |
| $f(x) = x^3 - 2x^2 - 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>x</i> + 6                    |                |
| f(1) = 1 - 2 - 5 + 6 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 0                             |                |
| $\Rightarrow$ (x-1) is a factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                |
| $f(x) = x^3 - 2x^2 - 5x^2 - 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $x + 6 = (x - 1)(x^2 + ax - 6)$ |                |
| $x^3 - (-a+1)x^2 - (a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $+6)x+6 = x^3 - 2x^2 - 5x + 6$  |                |
| Equating coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s:                              |                |
| -a+1=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                |
| a = -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                |
| $f(x) = (x-1)(x^2 - x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (x-6)                           |                |
| =(x-1)[(x+2)(x+2)(x+2)(x+2)(x+2)(x+2)(x+2)(x+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3)]                            |                |
| $\Rightarrow x = 1 \text{ or } x = -2 \text{ or } x =$ | or $x = 3$                      |                |
| The three roots are 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , 3, and – 2.                   |                |

| (b)(i) 1 <sup>st</sup> root<br>2 <sup>nd</sup> root | 5 marks<br>5 marks          | Att 2<br>Att 2 |
|-----------------------------------------------------|-----------------------------|----------------|
| 3 <sup>rd</sup> root                                | 5 marks                     | Att 2          |
| 1 (b) (i)                                           |                             |                |
| $f(x) = x^3 - 2$                                    | $2x^2 - 5x + 6$             |                |
| $6 \Rightarrow (\pm 1), (\pm 2)$                    | 2),(±3),(±6)                |                |
| $f(1) = (1)^3 -$                                    | $2(1)^2 - 5(1) + 6 = 0$     |                |
| x = 1 is                                            | a root.                     |                |
| $f(2) - (2)^3$                                      | $-2(2)^2 - 5(2) + 6$        |                |
| $\int (2) - (2)$                                    | 2(2) - 3(2) + 0             |                |
|                                                     | 3-10+0                      |                |
| ≠ 0                                                 |                             |                |
| f(-2) = (-2)                                        | $(3^{3}-2(-2)^{2}-5(-2)+6)$ |                |
| = -8 -                                              | -8 + 10 + 6                 |                |
| = 0                                                 |                             |                |
| x = -2 i                                            | s a root.                   |                |
| $f(3) = (3)^3 -$                                    | $(-2(3)^2 - 5(3) + 6)$      |                |
| = 27 - 1                                            | 8-15+6                      |                |
| -0                                                  |                             |                |
| x = 3 is                                            | a root.                     |                |
| Desta (1 2                                          | 2)                          |                |
| KOOUS: $\{1, -2\}$                                  | , )}                        |                |

<u>OR</u>

Blunders (-3)

- Test for root B1
- Deduction of factor from root, or no deduction B2
- Indices B3
- B4
- B5
- Factors (once only) Root formula (once only) Deduction of root from factor, or no deduction Not like-to-like when equating coefficients B6
- B7

#### Slips (-1)

- S1 Numerical
- S2 Not changing sign when subtracting in division

#### Attempts

A1 Att2 once only for testing of incorrect values if no other work of merit

#### Worthless

W1  $x(x^2 - 2x - 5) = -6$ , with or without further work

NOTE: if there is a remainder after division, or incomplete division, candidates can only get Att at most for remaining factor and roots.

| (b) (ii)   | 5 marks                                                                       | Att 2 |
|------------|-------------------------------------------------------------------------------|-------|
| 1 (b) (ii) |                                                                               |       |
|            | New cubic equation has roots $0, 2$ and $-3$ .                                |       |
|            | $\therefore x(x-2)(x+3) = 0 \implies x(x^2+x-6) = 0 \implies x^3+x^2-6x = 0.$ |       |
|            |                                                                               |       |

- *Blunders (-3)* B1 New roots
- Indices B2
- B3 Factor from roots, or no factor

Slips (-1) S1 " $\neq$ " 0 i.e. not as equation

| Part | t (c) |               | 20 (5, 5, 5, 5) marks                                                                                                                  | Att (2, 2, 2, 2) |
|------|-------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1.   | (c)   | (i)           | Show that $kx - t$ is a factor of $k^3x^3 - k^2tx^2 + ktx - t^2$ ,<br>where <i>k</i> and <i>t</i> are non-zero real constants.         |                  |
|      |       | ( <b>ii</b> ) | Given any value of $k \neq 0$ , find the set of values of t for whic $k^3x^3 - k^2tx^2 + ktx - t^2 = 0$ has three distinct real roots. | h the equation   |

| (c)(i) Division                                                         | 5 marks | Att 2 |
|-------------------------------------------------------------------------|---------|-------|
| Remainder = 0                                                           | 5 marks | Att 2 |
| 1 (c) (i)                                                               |         |       |
| $\frac{k^{2}x^{2} + t}{(kx - t)k^{3}x^{3} - k^{2}tx^{2} + ktx - t^{2}}$ |         |       |
| $\frac{k^3x^3 - k^2tx^2}{4t^2}$                                         |         |       |
| $ktx - t^2$                                                             |         |       |
| $\underline{ktx-t^2}$                                                   |         |       |
| 0                                                                       |         |       |
| No remainder;                                                           |         |       |
| $\therefore$ $(kx-t)$ is a factor.                                      |         |       |

(c) (i) 
$$\frac{t}{k}$$
 5 marks Att 2  
 $f\left(\frac{t}{k}\right) = 0$  5 marks Att 2  
1 (c) (i)  
If  $(kx-t)$  is a factor,  $f\left(\frac{t}{k}\right) = 0$   
 $f(x) = k^3x^3 - k^2tx^2 + ktx - t^2$   
 $f\left(\frac{t}{k}\right) = k^3\left(\frac{t}{k}\right)^3 - k^2t\left(\frac{t}{k}\right)^2 + kt\left(\frac{t}{k}\right) - t^2$   
 $= t^3 - t^3 + t^2 - t^2$   
 $= 0$   
 $\therefore (kx-t)$  is a factor.

| (c) (i) Other factor | 5 marks | Att 2 |
|----------------------|---------|-------|
| Finish               | 5 marks | Att 2 |
| 1 (c) (i)            |         |       |

If 
$$(kx-t)$$
 is a factor, other factor is  $(k^2x^2 + bx + t)$   
 $k^3x^3 - k^2tx^2 + ktx - t^2 = (kx-t)(k^2x^2 + bx + t)$   
 $k^3x^3 - k^2tx^2 + ktx - t^2 = k^3x^3 + bkx^2 + ktx - k^2tx^2 - btx - t^2$   
 $= k^3x^3 - (k^2t - bk)x^2 + (kt - bt)x - t^2$ 

Equating coefficients

(1): 
$$k^{2}t = k^{2}t - bk$$
  
 $bk = 0$   
 $k \neq 0 \Longrightarrow b = 0$   
 $\Rightarrow f(x) = (kx - t)(k^{2}x^{2} + t)$ 

Blunders (-3)

B1 Indices

- B2 Not like-to-like when equating coefficients
- B3 Deduction root from factor
- B4 Incorrect deduction from bk=0, or no deduction

#### Slips (-1)

S1 Not changing sign when subtracting in division

NOTE: If there is a remainder after division, or incomplete division, candidates can only get Att at most in  $2^{nd}$  part.

| (c) (ii) Roots                        | 5 marks                                                 | Att 2 |
|---------------------------------------|---------------------------------------------------------|-------|
| Values of t                           | 5 marks                                                 | Att 2 |
| 1 (c) (ii)                            |                                                         |       |
| $k^3x^3 - k^2tx^2 + ktx$              | $-t^{2} = (kx-t)(k^{2}x^{2}+t) = 0.$                    |       |
| $\therefore x = \frac{t}{k}$ or $x =$ | $\pm \sqrt{\frac{-t}{k^2}} = \pm \frac{\sqrt{-t}}{ k }$ |       |
| For real roots, $t \leq$              | 0                                                       |       |
| For three distinct                    | real roots, $t < 0$ and $t \neq -1$ .                   |       |
|                                       |                                                         |       |

*Blunders (-3)* B1 Deduction root from factor

B2 Not 3 roots

B3 Omission of  $t \neq -1$ 

NOTE: Accept 
$$\pm \frac{\sqrt{-t}}{k}$$

|          | <b>QUESTION 2</b>                                                      |                     |
|----------|------------------------------------------------------------------------|---------------------|
| Part (a) | 10 (5, 5) marks                                                        | Att (2, 2)          |
| Part (b) | 25 (5, 5, 5, 5, 5) marks                                               | Att (2, 2, 2, 2, 2) |
| Part (c) | 15 (5, 5, 5) marks                                                     | Att (2, 2, 2)       |
| Part (a) | 10 (5, 5) marks                                                        | Att (2, 2)          |
| 2. (a)   |                                                                        |                     |
|          | Solve for <i>x</i> : $\sqrt{2x+3} = 2x-3$ , where $x \in \mathbf{R}$ . |                     |
| Quadrati | 5 marks                                                                | A ## 2              |
| Solution | 5 marks                                                                | Att 2               |
| 2 (a)    | 5 mar Ky                                                               | 1111 2              |
| 2 (a)    | $\sqrt{2r+3} - 2r = 3$                                                 |                     |
|          | $\sqrt{2x+5} = 2x-5$                                                   |                     |
|          | $2x + 3 = 4x^2 - 12x + 9$                                              |                     |
|          | $4x^2 - 14x + 6 = 0$                                                   |                     |
|          | $2x^2 - 7x + 3 = 0$                                                    |                     |
|          | $(2x-1)(x-3) = 0 \implies x = 3, x = \frac{1}{2}.$                     |                     |
|          | Check $x = 3$ : $\sqrt{9} = 3$ $\checkmark$                            |                     |
|          | Check $x = \frac{1}{2}$ ; $\sqrt{4} = -2$ <b>x</b>                     |                     |
|          | $\therefore$ Solution is $x = 3$ .                                     |                     |
|          |                                                                        |                     |

- B1 Indices
- B2 Expansion of  $(2x-3)^2$  once only
- B3 Factors once only
- B4 Roots formula once only
- B5 Deduction root from factor
- B6 Excess values

Slips (-1)

S1 Numerical

#### Attempts

- A1 x = 3 and no other work merits Att2 only
- A2 x = 3 by trial and error merits Att2 only

| Part (b)                          | )                             | 25 (5, 5, 5, 5, 5) marks                                                               | Att (2, 2, 2, 2, 2)       |  |
|-----------------------------------|-------------------------------|----------------------------------------------------------------------------------------|---------------------------|--|
| 2. (b                             | ) $\alpha$ and $\dot{\alpha}$ | Ind $\beta$ are the roots of the equation $x^2 - 2x + 5 = 0$ .                         |                           |  |
|                                   | (1)                           | Find the value of $\alpha^2 + \beta^2$ .                                               |                           |  |
|                                   | (ii)                          | Find a quadratic equation whose roots are $\alpha + \frac{1}{\alpha}$ and              | $\beta + \frac{1}{\beta}$ |  |
| (b)(i) Value of sum 5 marks Att 2 |                               |                                                                                        |                           |  |
| V                                 | alue of r                     | product 5 marks                                                                        | Att 2                     |  |
| Fi                                | inish                         | 5 marks                                                                                | Att 2                     |  |
| 2 (b) (i)                         |                               |                                                                                        |                           |  |
|                                   |                               | $\alpha + \beta = -\frac{b}{a} = 2$ and $\alpha\beta = \frac{c}{a} = 5$ .              |                           |  |
|                                   |                               | $(\alpha + \beta)^2 = 4 \implies \alpha^2 + \beta^2 = 4 - 2\alpha\beta = 4 - 10 = -6.$ |                           |  |
|                                   |                               |                                                                                        |                           |  |

| (b)(ii) Values of sum and product                           | 5 marks                                                               | Att 2 |
|-------------------------------------------------------------|-----------------------------------------------------------------------|-------|
| Finish                                                      | 5 marks                                                               | Att 2 |
| 2 (b) (ii)                                                  |                                                                       |       |
| Sum of roots $= \alpha + \frac{1}{\alpha} + \beta + \beta$  | $+\frac{1}{\beta}$                                                    |       |
| $= \alpha + \beta + \frac{\alpha}{\alpha}$                  | $\frac{+\beta}{\beta}$                                                |       |
| $=2+\frac{2}{5}=\frac{12}{5}$                               |                                                                       |       |
| Product of roots = $\left(\alpha + \frac{1}{\alpha}\right)$ | $\left(\frac{1}{\alpha}\right)\left(\beta+\frac{1}{\beta}\right)$     |       |
| $= \alpha \beta + \frac{\alpha}{\beta}$                     | $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + \frac{1}{\alpha\beta}$ |       |
| $=5+\frac{\alpha^2}{\alpha}$                                | $\frac{(+\beta^2)}{\alpha\beta} + \frac{1}{5}$                        |       |
| $=5+\frac{-6}{5}$                                           | $+\frac{1}{5}=4$                                                      |       |
| $\therefore$ equation is $x^2 - \frac{12}{5}x + 4$          | $x = 0$ or $5x^2 - 12x + 20 = 0$ .                                    |       |

| (b)(ii) Values of sum and product 5 marks                                                                                                                                                                            | Att 2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Finish 5 marks                                                                                                                                                                                                       | Att 2 |
| 2 (b) (ii)<br>New roots: $\alpha + \frac{1}{\alpha} = \frac{\alpha^2 + 1}{\alpha}$<br>$\beta + \frac{1}{\beta} = \frac{\beta^2 + 1}{\beta}$                                                                          |       |
| Sum: $\frac{\alpha^2 + 1}{\alpha} + \frac{\beta^2 + 1}{\beta} = \frac{\alpha^2 \beta + \beta + \alpha \beta^2 + \alpha}{\alpha \beta}$ $= \frac{(\alpha^2 \beta + \alpha \beta^2) + (\alpha + \beta)}{\alpha \beta}$ |       |
| $= \frac{\alpha\beta(\alpha+\beta) + (\alpha+\beta)}{\alpha\beta}$ $= \frac{(5 \times 2) + 2}{5}$ $= \frac{12}{5}$                                                                                                   |       |
| Product: $\left(\frac{\alpha^2+1}{\alpha}\right)\left(\frac{\beta^2+1}{\beta}\right) = \frac{\alpha^2\beta^2+\beta^2+\alpha^2+1}{\alpha\beta}$                                                                       |       |
| $=\frac{(\alpha\beta)^2 + (\alpha^2 + \beta^2) + 1}{\alpha\beta}$ $=\frac{(5)^2 + (-6) + 1}{5}$ $=4$                                                                                                                 |       |
| : equation is $x^2 - \frac{12}{5}x + 4 = 0$ or $5x^2 - 12x + 20 = 0$ .                                                                                                                                               |       |

- B1 Indices
- B2 Incorrect statement
- B3 Incorrect sum
- B4
- Incorrect product Factors once only B5

Slips (-1)

- S1 Numerical
- " $\neq$ " 0 i.e. not as equation S2

Part (c)15 (5, 5, 5) marksAtt (2, 2, 2)2. (c) (i)Show that if x is a positive real number, then  $x + \frac{1}{x} \ge 2$ .(ii)Show that is x is a negative real number, then  $x + \frac{1}{x} \le -2$ .(iii)Show that, for all  $x \in \mathbb{R} \setminus \{0\}, |x^3 + \frac{1}{x^3}| \ge 2$ .

| (c) (i)   | 5 marks                                                                        | Att 2 |
|-----------|--------------------------------------------------------------------------------|-------|
| 2 (c) (i) |                                                                                |       |
|           | $x + \frac{1}{x} \ge 2  \Leftrightarrow  x^2 - 2x + 1 \ge 0$ , since $x > 0$ . |       |
|           | i.e., $(x-1)^2 \ge 0$ , which is true.                                         |       |

| (c) (ii)   | 5 marks                                                                         | Att 2 |
|------------|---------------------------------------------------------------------------------|-------|
| 2 (c) (ii) |                                                                                 |       |
|            | $x + \frac{1}{x} \le -2  \Leftrightarrow  x^2 + 2x + 1 \ge 0$ , since $x < 0$ . |       |
|            | i.e., $(x+1)^2 \ge 0$ , which is true.                                          |       |

| (c) (iii)   | 5 marks                                                                                                                     | Att 2 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------|-------|
| 2 (c) (iii) |                                                                                                                             |       |
|             | If x is positive, then $x^3$ is positive, so part (i) implies $x^3 + \frac{1}{x^3} \ge 2$ .                                 |       |
|             | If x is negative, then $x^3$ is negative, so part (ii) implies $x^3 + \frac{1}{x^3} \le -2$ .                               |       |
|             | So, the result holds in both cases.                                                                                         |       |
|             | OR                                                                                                                          |       |
|             | $\left x^{3} + \frac{1}{x^{3}}\right  = \left \left(x + \frac{1}{x}\right)\left(x^{2} - 1 + \frac{1}{x^{2}}\right)\right .$ |       |
|             | From parts (i) and (ii), $\left x + \frac{1}{x}\right  \ge 2 \implies x^2 + \frac{1}{x^2} + 2 \ge 4.$                       |       |
|             | $\therefore x^2 + \frac{1}{x^2} \ge 2 \implies x^2 + \frac{1}{x^2} - 1 \ge 1.$                                              |       |
|             | $\therefore \left  x^3 + \frac{1}{x^3} \right  \ge 2.$                                                                      |       |
|             | <u>OR</u>                                                                                                                   |       |
|             |                                                                                                                             |       |

$$\begin{vmatrix} x^{3} + \frac{1}{x^{3}} \end{vmatrix} \ge 2$$

$$\left( x^{3} + \frac{1}{x^{3}} \right)^{2} \ge 4$$

$$x^{6} + 2 + \frac{1}{x^{6}} \ge 4$$

$$x^{6} - 2 + \frac{1}{x^{6}} \ge 0$$
Multiply across by  $x^{6}$ 

$$x^{12} - 2x^{6} + 1 \ge 0$$

$$\left( x^{6} - 1 \right)^{2} \ge 0$$
True

 $(x+\frac{1}{x})^p$  incorrect once only B1 Inequality sign B2 B3 Incorrect deduction or no deduction B4 Factors B5 Modulus

*Slips* S1 Not '≥'

## **QUESTION 3**

| Part (a) | 10 marks              | Att 3            |
|----------|-----------------------|------------------|
| Part (b) | 20 (10, 5, 5) marks   | Att (3, 2, 2)    |
| Part (c) | 20 (5, 5, 5, 5) marks | Att (2, 2, 2, 2) |

| Par | t (a) | 10 marks                                                                               | Att 3 |
|-----|-------|----------------------------------------------------------------------------------------|-------|
| 3.  | (a)   | Verify that $z = 2 - 3i$ satisfies the equation $z^3 - z^2(2 - 3i) + z - 2 + 3i = 0$ , |       |
|     |       | where $i^2 = -1$ .                                                                     |       |

| (a)   | 10 marks                                                                                                                                                                                        | Att 3 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3 (a) | $z = 2 - 3i \implies (2 - 3i)^3 - (2 - 3i)^2 (2 - 3i) + 2 - 3i - 2 + 3i = 0$<br>(2 - 3i) <sup>3</sup> - (2 - 3i) <sup>3</sup> + 2 - 3i - 2 + 3i = 0<br>$\therefore z = 2 - 3i$ is a solution.   |       |
|       | <u>OR</u>                                                                                                                                                                                       |       |
|       | z = 2 - 3i<br>$z^{3} - z^{2} (2 - 3i) + z - 2 + 3i = 0$<br>$z^{3} - z^{2} (z) + z - (2 - 3i) = 0$<br>$z^{3} - z^{3} + z - z = 0$                                                                |       |
|       | True $\therefore z = 2 - 3i$ is a solution.                                                                                                                                                     |       |
|       | <u>OR</u>                                                                                                                                                                                       |       |
|       | z = 2 - 3i<br>$z^{2} = (2 - 3i)^{2} = 4 - 12i + 9i^{2} = -5 - 12i$<br>$z^{3} - z^{2}(2 - 3i) + z - 2 + 3i$<br>= (-5 - 12i)(2 - 3i) - (-5 - 12i)(2 - 3i) + (2 - 3i) - (2 - 3i)<br>= 0 - 0<br>= 0 |       |
|       | True $\therefore z = 2 - 3i$ is a solution.                                                                                                                                                     |       |

Blunders (-3)B1 $i^2$ B2 $z^2$  once onlyB3 $z^3$  once onlyB4Incorrect deduction or no deduction

| Part | t <b>(b)</b> | 20 (10, 5, 5) marks                                                                                                                               | Att (3, 2, 2) |
|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 3.   | (b)          | Let $A = \begin{pmatrix} 2y & y \\ x^2 & x \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix}$ , where $x, y \in \mathbf{R}$ . |               |
|      |              | (i) Find $AB$ in terms of x and y.                                                                                                                |               |
|      |              | (ii) Solve for x and y the equation $AB = \begin{pmatrix} -4 & 5\\ 15 & -24 \end{pmatrix}$ .                                                      |               |

| 3 (b) (i)<br>$AB = \begin{pmatrix} 2y & y \\ x^2 & x \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 4y & -5y \\ x^2 + 2x & -3x^2 + x \end{pmatrix}.$ | (b) (i)   | 10 marks                                                                                                                                                               | Att 3 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                                                                                     | 3 (b) (i) | $AB = \begin{pmatrix} 2y & y \\ x^2 & x \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 4y & -5y \\ x^2 + 2x & -3x^2 + x \end{pmatrix}.$ |       |

B1 Each incorrect element

| (b)(ii) Equations | 5 marks                                                                                                                  | Att 2 |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|-------|
| Solutions         | 5 marks                                                                                                                  | Att 2 |
| <b>3 (b) (ii)</b> |                                                                                                                          |       |
|                   | $AB = \begin{pmatrix} 4y & -5y \\ x^2 + 2x & -3x^2 + x \end{pmatrix} = \begin{pmatrix} -4 & 5 \\ 15 & -24 \end{pmatrix}$ |       |
|                   | 4y = -4 and $-5y = 5$ , so $y = -1$ .                                                                                    |       |
|                   | $x^2 + 2x = 15$ and $-3x^2 + x = -24$ .                                                                                  |       |
|                   | $\therefore x^2 + 2x - 15 = 0$ and $3x^2 - x - 24 = 0$ .                                                                 |       |
|                   | (x-3)(x+5) = 0 and $(3x+8)(x-3) = 0$ .                                                                                   |       |
|                   | $\therefore x = 3$                                                                                                       |       |

Blunders (-3)

- B1 Not like-to-like
- B2 Extra values of x
- B3 Factors
- B4 Deduction root from factor or no deduction
- B5 Indices

Must state x=3

A1 No common value

NOTE: 2 quadratic equations needed in b(ii), otherwise Att2 + Att2

| Par                                                          | t (c) |                       | 20 (5, 5, 5, 5) marks                                                                                                                                                                                                                                      | Att (2, 2, 2, 2)        |
|--------------------------------------------------------------|-------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 3.                                                           | (c)   | z is a<br>(i)<br>(ii) | complex number such that $z^2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ .<br>Find the two possible values of <i>z</i> .<br>On the Argand diagram the points representing $-z$ , <i>z</i> and collinear, where $k \in \mathbf{R}$ . Find the value of <i>k</i> . | $z^2 + k$ are           |
| (c)(i) $z^2$ in polar form5 marksATwo values of $z$ 5 marksA |       |                       | Att 2<br>Att 2                                                                                                                                                                                                                                             |                         |
| 3 (c                                                         | ) (i) | _2                    | $\sqrt{1+3}$ 1 $\tan \theta = \frac{\sqrt{3}}{2} = \sqrt{3} + \theta = \pi$ 1                                                                                                                                                                              | <b>↓</b> - <sup>2</sup> |



- B1 Formula for De Moivre once only
- B2 Application of De Moivre
- B3 Argument
- B4 Modulus
- B5 Polar formula once only
- B6 *i*
- B7 Not two values of z
- B8 Left in polar form

| (c) (i) Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 marks                                                                              | Att 2 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------|
| Two values of z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 marks                                                                              | Att 2 |
| 3 (c) (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      |       |
| $z^{2} = \frac{1}{2} + \frac{\sqrt{3}}{2}i = (a - \frac{1}{2})i = \frac{1}{2}i = \frac{1}$ | $(+ bi)^2$                                                                           |       |
| $\frac{1}{2} + \frac{\sqrt{3}}{2}i = (a^2 - b^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) + (2ab)i                                                                           |       |
| Equating coefficien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ts: (i): $a^2 - b^2 = \frac{1}{2}$                                                   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ii): $2ab = \frac{\sqrt{3}}{2} \Longrightarrow b = \frac{\sqrt{3}}{4a}$             |       |
| (i): $a^2 - b^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $=\frac{1}{2}$                                                                       |       |
| $a^2 - \left(\frac{\sqrt{4}}{4}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left(\frac{3}{a}\right)^2 = \frac{1}{2}$                                           |       |
| $a^2 - \frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{3}{6a^2} = \frac{1}{2}$                                                       |       |
| Let $p = a^2 \Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $p \in \mathbf{R}$                                                                   |       |
| $p = \frac{p}{16p}$ $16p^2 = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{5}{2} = \frac{7}{2}$                                                          |       |
| $16p^2 - 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3p - 3 = 0                                                                           |       |
| $\Rightarrow p = -\frac{1}{4} \text{ or}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (4p-3) = 0<br>r $p = \frac{3}{4}$                                                    |       |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                    |       |
| But, $p = a^2 \neq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                      |       |
| $\Rightarrow a^{-} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\overline{4}$ $\sqrt{3}$                                                            |       |
| a =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\pm \frac{1}{2}$                                                                    |       |
| (ii): $b = \frac{\sqrt{3}}{4a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |       |
| $a = \frac{\sqrt{3}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Rightarrow b = \frac{1}{2};  a = -\frac{\sqrt{3}}{2} \Rightarrow b = -\frac{1}{2}$ |       |
| a+bi =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$                                 |       |

- B1 Expansion of  $(a + ib)^2$
- B2 Indices
- B3 *i*
- B4 Not like-to-like
- B5 Factors once only
- B6 Quadratic formula once only
- B7 Excess values (not real)
- B8 Not two values of z
- B9 Incorrect deduction root from factor or no deduction



#### <u>OR</u>

| (c)(ii) f(z) k | = lz 5 marks<br>5 marks                                                                   | Att2<br>Att2 |
|----------------|-------------------------------------------------------------------------------------------|--------------|
| 3(c)(ii)       |                                                                                           |              |
|                | $z^2 + k$ is a multiple of z, so $z^2 + k = lz$ .                                         |              |
|                | Equate imaginary parts to give $\frac{\sqrt{3}}{2} = \frac{l}{2} \implies l = \sqrt{3}$ . |              |
|                | Then equate real parts to give $\frac{1}{2} + k = \frac{3}{2} \implies k = 1$ .           |              |

| (c) (ii) Tri | angle area 5 marks                                                                                                                                                            | Att2 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| k            | 5 marks                                                                                                                                                                       | Att2 |
| 3(c)(ii)     |                                                                                                                                                                               |      |
|              | Since collinear, the triangle with vertices $z$ , $-z$ and $z^2 + k$ has area = 0.                                                                                            |      |
|              | Vertices are $\left(\frac{-\sqrt{3}}{2}, \frac{-1}{2}\right)$ , $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ , $\left(\frac{1}{2} + k, \frac{\sqrt{3}}{2}\right)$ .         |      |
|              | Translating vertex $\left(\frac{-\sqrt{3}}{2}, \frac{-1}{2}\right)$ to $(0, 0)$ gives vertices                                                                                |      |
|              | $(0,0), (\sqrt{3},1), (\frac{\sqrt{3}}{2} + \frac{1}{2} + k, \frac{\sqrt{3}}{2} + \frac{1}{2})$                                                                               |      |
|              | $\therefore \frac{1}{2} \left  \left( \sqrt{3} \right) \left( \frac{\sqrt{3}}{2} + \frac{1}{2} \right) - (1) \left( \frac{\sqrt{3}}{2} + \frac{1}{2} + k \right) \right  = 0$ |      |
|              | $\Rightarrow \left  \frac{3}{2} + \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} - \frac{1}{2} - k \right  = 0$                                                                      |      |
|              | $\Rightarrow  1-k  = 0.$                                                                                                                                                      |      |
|              | $\therefore k=1.$                                                                                                                                                             |      |
|              |                                                                                                                                                                               |      |

| (c) (ii) Equation of line                                                                             | 5 marks<br>5 marks                                                                            | Att2 |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------|
| 3(c)(ii)                                                                                              | Jillarks                                                                                      | Au2  |
| Slope of line through $m = \frac{\frac{1}{2} + \frac{1}{2}}{\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}}$ | ugh z and (-z) is<br>$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$                                |      |
| Equation of line the                                                                                  | hrough $z\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ with slope $m = \frac{1}{\sqrt{3}}$ is |      |
| $\left(y - \frac{1}{2}\right) = \frac{1}{\sqrt{3}} \left($                                            | $\left(x-\frac{\sqrt{3}}{2}\right)$                                                           |      |
| $y\sqrt{3} - \frac{\sqrt{3}}{2} = x - \frac{\sqrt{3}}{2}$                                             | $\sqrt{3}$                                                                                    |      |
| $y\sqrt{3} = x$ $y = \frac{x}{\sqrt{3}}$                                                              |                                                                                               |      |
| $z^2 + k = \left(\frac{1}{2} + \right)$                                                               | $k\left( \right) + \frac{\sqrt{3}}{2}i$                                                       |      |
| When $(z^2 + k)$ is c                                                                                 | on the line $y = \frac{x}{\sqrt{3}}$ ,                                                        |      |
|                                                                                                       | $\frac{\sqrt{3}}{2} = \frac{\frac{1}{2} + k}{\sqrt{3}}$                                       |      |
|                                                                                                       | 3 = 1 + 2k                                                                                    |      |
|                                                                                                       | $\begin{aligned} &\mathcal{L} = \mathcal{L}\kappa \\ &k = 1 \end{aligned}$                    |      |

- B1 Argument
- B2 Incorrect  $z^2 + k$
- B3  $(z^2 + k)$  not a multiple of z
- B4 Not like-to-like
- B5 Formula for area of triangle
- B6 Area of triangle  $\neq 0$
- B7 Translating points
- B8 Indices
- B9 Slope
- B10 Equation of line
- B11 Points not collinear

## **QUESTION 4**

| Part (a) | 10 (5, 5) marks       | Att (2, 2)       |
|----------|-----------------------|------------------|
| Part (b) | 20 (5, 5, 5, 5) marks | Att (2, 2, 2, 2) |
| Part (c) | 20 (5, 5, 5, 5) marks | Att (2, 2, 2, 2) |
| Part (a) | 10 (5, 5) marks       | Att (2, 2)       |

| 4. | (a) | $\frac{1}{a}$ , $\frac{1}{b}$ and $\frac{1}{c}$ are three consecutive terms of an arithmetic sequence, |
|----|-----|--------------------------------------------------------------------------------------------------------|
|    |     | where $a, b, c \in \mathbf{R} \setminus \{0\}$ .                                                       |
|    |     | Express <i>b</i> in terms of <i>a</i> and <i>c</i> . Give your answer in its simplest form.            |

| Statement AP | 5 marks<br>5 marks                                                                                                       | Att 2 |
|--------------|--------------------------------------------------------------------------------------------------------------------------|-------|
|              | 5 marks                                                                                                                  | Att 2 |
| 4 (a)        |                                                                                                                          |       |
|              | $\frac{1}{b} = \frac{1}{2} \left( \frac{1}{a} + \frac{1}{c} \right) = \frac{a+c}{2ac}  \therefore  b = \frac{2ac}{a+c}.$ |       |

Blunders (-3)

- B1 Definition of AP
- B2 Algebra
- B3 Answer not in simplest form

#### Worthless

- W1 Geometric sequence
- W2 Puts in values for *a*, *b*, *c*

| Part | t (b) |       | 20 (5, 5, 5, 5) marks                                                                 | Att (2, 2, 2, 2) |
|------|-------|-------|---------------------------------------------------------------------------------------|------------------|
| 4.   | (b)   | (i)   | Show that $\frac{1}{\sqrt{r+1} + \sqrt{r}} = \sqrt{r+1} - \sqrt{r}$ , for $r \ge 0$ . |                  |
|      |       | (ii)  | Find $\sum_{r=1}^{n} \frac{1}{\sqrt{r+1} + \sqrt{r}}.$                                |                  |
|      |       | (iii) | Evaluate $\sum_{r=1}^{99} \frac{1}{\sqrt{r+1} + \sqrt{r}}.$                           |                  |

| 5 marks                                                                                                         | Att 2                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                 |                                                                                                                                                                                                           |
| 1 $\sqrt{r+1} - \sqrt{r}$                                                                                       |                                                                                                                                                                                                           |
| $\overline{\sqrt{r+1} + \sqrt{r}} = \overline{\left(\sqrt{r+1} + \sqrt{r}\right)} \sqrt{\sqrt{r+1} - \sqrt{r}}$ |                                                                                                                                                                                                           |
| $= \frac{\sqrt{r+1} - \sqrt{r}}{r+1 - r} = \sqrt{r+1} - \sqrt{r}.$                                              |                                                                                                                                                                                                           |
|                                                                                                                 | $\frac{1}{\sqrt{r+1} + \sqrt{r}} = \frac{\sqrt{r+1} - \sqrt{r}}{\left(\sqrt{r+1} + \sqrt{r}\right)\left(\sqrt{r+1} - \sqrt{r}\right)}$ $= \frac{\sqrt{r+1} - \sqrt{r}}{r+1 - r} = \sqrt{r+1} - \sqrt{r}.$ |

| (b)(ii) Set up cancellation         | 5 marks                                                                                   | Att 2 |
|-------------------------------------|-------------------------------------------------------------------------------------------|-------|
| Finish                              | 5 marks                                                                                   | Att 2 |
| 4 (b) (ii)                          |                                                                                           |       |
| $\sum_{r=1}^n \frac{1}{\sqrt{r+r}}$ | $\frac{1}{\overline{1} + \sqrt{r}} = \sum_{r=1}^{n} \left( \sqrt{r+1} - \sqrt{r} \right)$ |       |
| $u_1 = \sqrt{2}$                    | -1                                                                                        |       |
| $u_2 = \sqrt{3}$                    | - 2                                                                                       |       |
| $u_3 = \sqrt{4}$                    | $\sqrt{-\sqrt{3}}$                                                                        |       |
|                                     |                                                                                           |       |
| $u_{n-2} = \sqrt{n}$                | $\overline{1} - \sqrt{n-2}$                                                               |       |
| $u_{n-1} = \sqrt{n}$                | $-\sqrt{n-1}$                                                                             |       |
| $u_n = \sqrt{n+1}$                  | $\overline{1} - \sqrt{n}$                                                                 |       |
| $S_n = \sqrt{n+1}$                  | 1-1                                                                                       |       |



- B1 Not conjugate
- B2 Indices
- B3 Cancellation must be shown or implied
- B4 Term omitted
- B5 Gets  $S_r$

Slips (-1) S1 Numerical

NOTE: Must show two terms at start and one term at finish, or vice versa.

| Part (c)                                    | 20                                                                                                                                                                                            | (5, 5, 5, 5) marks                                                              | Att (2, 2, 2, 2)     |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|
| 4. (c)                                      | <i>a, b</i> and <i>c</i> are consecutive term<br>where $a + b \neq 0$ and $b + c \neq$<br>Show that $\frac{2ab}{a+b}$ , <i>b</i> and $\frac{2b}{b+c}$                                         | rms in a geometric sequence,<br>0.<br>$\frac{c}{c}$ are consecutive terms in an | arithmetic sequence. |
| $\frac{2ab}{a+b}$ in te                     | erms of <i>r</i>                                                                                                                                                                              | 5 marks                                                                         | Att 2                |
| $\frac{2bc}{b+c}$ in te                     | erms of <i>r</i>                                                                                                                                                                              | 5 marks                                                                         | Att 2                |
| Definition of arithmetic sequence<br>Finish |                                                                                                                                                                                               | 5 marks<br>5 marks                                                              | Att 2<br>Att 2       |
| 4 (c)                                       | As $a, b, c$ are in geometric so<br>$\frac{2ab}{a+b} = \frac{2a^2r}{a+ar} = \frac{2ar}{1+r}.$ $\frac{2bc}{b+c} = \frac{2a^2r^3}{ar+ar^2} = \frac{2ar^2}{1+r}.$ Arithmetic sequence if and $c$ | equence, then let $b = ar$ and $c =$<br>only if                                 | $=ar^2$ .            |

$$b = \frac{1}{2} \left[ \frac{2ab}{a+b} + \frac{2bc}{b+c} \right] = \frac{1}{2} \left[ \frac{2ar}{1+r} + \frac{2ar^2}{1+r} \right] = \frac{ar(1+r)}{1+r} = ar = b.$$

True. : An arithmetic sequence.

| Value of <i>b</i> <sup>2</sup><br>Definition of arithmetic sequence<br>Cross-multiplication | 5 marks<br>5 marks<br>5 marks    | Att 2<br>Att 2<br>Att 2 |
|---------------------------------------------------------------------------------------------|----------------------------------|-------------------------|
| Finish                                                                                      | 5 marks                          | Att 2                   |
| <b>4 (c)</b> <i>a, b, c</i> in geometric sequence                                           | ce                               |                         |
| $\frac{b}{a} = \frac{c}{b} \Longrightarrow b^2 = ac$                                        |                                  |                         |
| To show: $\frac{2ab}{a+b}$ , $b$ , $\frac{2bc}{b+c}$ in                                     | arithmetic sequence              |                         |
| $\left(b - \frac{2ab}{a+b}\right) = \left(\frac{2}{b}\right)$                               | $\left(\frac{2bc}{b+c}-b\right)$ |                         |
| $\frac{ba+b^2-2ab}{ab}=\frac{2b}{ab}$                                                       | $bc-b^2-bc$                      |                         |
| <i>a</i> + <i>b</i>                                                                         | b+c                              |                         |
| $\frac{b^2 - ab}{a} = \frac{bc}{a}$                                                         | $\underline{-b^2}$               |                         |
| a+b $b$                                                                                     | +c                               |                         |
| b(b-a)(b+c) = b(a)                                                                          | (c-b)(a+b)                       |                         |
| $b^2 - ba + bc - ac = ac$                                                                   | $-ab+bc-b^2$                     |                         |
| $2b^2 = 2a$                                                                                 | C                                |                         |
| $b^2 = ac$                                                                                  |                                  |                         |

- Blunders (-3)
  B1 Definition of geometric sequence
  B2 Definition of arithmetic sequence
- B3 Indices

## **QUESTION 5**

| Part (a) | 10 (5, 5) marks       | Att (2, 2)       |
|----------|-----------------------|------------------|
| Part (c) | 20 (5, 5, 5, 5) marks | Att (2, 2, 2, 2) |
| Part (b) | 20 (5, 5, 5, 5) marks | Att (2, 2, 2, 2) |
| Part (a) | 10 (5, 5) marks       | Att (2, 2)       |

| 5. | <b>(a)</b> | Solve for $x \in \mathbf{R}$ : | $\log_4 (2x+6) - \log_4 (x-1) = 1.$ |
|----|------------|--------------------------------|-------------------------------------|
|    |            |                                |                                     |

| $\log f(x) = 1$ | 5 marks                                                          | Att 2 |
|-----------------|------------------------------------------------------------------|-------|
| Value of x      | 5 marks                                                          | Att 2 |
| 5 (a)           |                                                                  |       |
| ]               | $og_4(2x+6) - log_4(x-1) = 1.$                                   |       |
|                 | $\therefore \log_4 \frac{2x+6}{x-1} = 1 \implies 2x+6 = 4(x-1).$ |       |
| ,               | $2x = 10 \implies x = 5.$                                        |       |

Blunders (-3)B1Log lawsB2Indices

## Worthless W1 Drops "log"

| Part | : <b>(b)</b> |                                                                                  | 20 (5, 5, 5, 5) marks | Att (2, 2, 2, 2)               |
|------|--------------|----------------------------------------------------------------------------------|-----------------------|--------------------------------|
| 5.   | (b)          | Consider the binomial expansion of $\left(3x^2 + \frac{1}{2x}\right)^{10}$ in de |                       | the descending powers of $x$ . |
|      |              | (i) Find an expression for the general term.                                     |                       |                                |
|      |              | (ii) Find the coefficient of $x^8$ .                                             |                       |                                |
|      |              | (iii) Show that there is no term independent of $x$ .                            |                       |                                |

| (b) (i) Ger | neral term                                | 5 marks                                                                                     | Att 2 |
|-------------|-------------------------------------------|---------------------------------------------------------------------------------------------|-------|
| 5 (b) (i)   |                                           |                                                                                             |       |
|             | General term $= t_{r+1} = {}^{10}C_r (3.$ | $(x^2)^{10-r} \left(\frac{1}{2x}\right)^r = {}^{10}C_r x^{20-3r} (3)^{10-r} \frac{1}{2^r}.$ |       |

| (b)(ii) Val | ue of <i>r</i><br>fficient                                                           | 5 marks<br>5 marks                                                                                                                                 | Att 2                         |
|-------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 5 (b) (ii)  | main                                                                                 | 5 marks                                                                                                                                            | Att 2                         |
|             | $20 - 3r = 8 \implies 3r = 12 \implies r$                                            | = 4.                                                                                                                                               |                               |
|             | Coefficient of $x^8 = {}^{10}C_4(3)^6 \Big($                                         | $\left(\frac{1}{2^4}\right) = \frac{210 \times 729}{16} = \frac{153090}{16} = \frac{76545}{8}.$                                                    |                               |
|             |                                                                                      | <u>OR</u>                                                                                                                                          |                               |
|             | $\left(3x^{2} + \frac{1}{2x}\right)^{10} = \left(3x^{2}\right)^{10} + \binom{10}{1}$ | $(3x^2)^9 \left(\frac{1}{2x}\right) + {\binom{10}{2}} (3x^2)^8 \left(\frac{1}{2x}\right)^2 + {\binom{10}{3}} (3x^2)^7 \left(\frac{1}{2x}\right)^2$ | $\left(\frac{1}{2x}\right)^3$ |

$$+ \binom{10}{4} (3x^2)^6 (\frac{1}{2x})^4 + \dots$$
  
Term with  $x^8$  is  $\binom{10}{4} (3x^2)^6 (\frac{1}{2x})^4$ 
$$= \binom{10}{4} (3)^6 (x^{12}) (\frac{1}{16}) (\frac{1}{x^4})$$
$$= \frac{(210).(729)}{16} .x^8$$
$$= \frac{76545}{8} x^8$$
Coefficient  $= \frac{76545}{8}$ 

| (b) (iii)   | 5 marks                                                                         | Att 2 |
|-------------|---------------------------------------------------------------------------------|-------|
| 5 (b) (iii) |                                                                                 |       |
|             | For independent term, power of $x$ is 0.                                        |       |
|             | But $20-3r \neq 0$ as $r \neq \frac{20}{3}$ . $\therefore$ No independent term. |       |

- B1 General term
- B2 Error binomial expansion once only
- B3 Indices
- B4 Value  $\binom{n}{r}$  or no value  $\binom{n}{r}$

B5 Correct term in expansion not identified

NOTE: Accept terms from expansion of f(x) to five terms. Incomplete Pascals Triangle gets Att2 only and no more.

| Part (c)    | 20 marks (5, 5, 5, 5)                                                             | Att (2, 2, 2, 2) |
|-------------|-----------------------------------------------------------------------------------|------------------|
| 5. (c) (i)  | Prove that if $k \ge 4$ , then $k^2 > 2k + 1$ .                                   |                  |
| (ii)        | Prove by induction that, for all natural numbers $n \ge 4$ , $2^n \ge n^2$ .      |                  |
|             |                                                                                   |                  |
| (c) (i)     | 5 marks                                                                           | Att 2            |
| 5 (c) (l)   | $k \ge 4$ .                                                                       |                  |
|             | $\therefore (k-1)^2 \ge 3^2 \implies k^2 - 2k + 1 \ge 9 \implies k^2 \ge 2k + 8.$ |                  |
|             | $\therefore k^2 > 2k + 1.$                                                        |                  |
|             | OR                                                                                |                  |
|             | $k > 3 \Longrightarrow k^2 > 3k = 2k + k > 2k + 1$                                |                  |
|             |                                                                                   |                  |
| (c)(ii) P(4 | ) 5 marks                                                                         | Att 2            |
| P(k         | ) 5 marks                                                                         | Att 2            |
| P(k         | + 1) <b>5 marks</b>                                                               | Att 2            |
| 5 (c) (ii)  |                                                                                   |                  |
|             | Assume true for $n = \kappa$ .                                                    |                  |
|             | $\therefore P(k): 2^{n} \ge k^{-}.$                                               |                  |
|             | $P(k+1) = 2^{k+1} - 2^{k}$                                                        |                  |
|             | P(n+1) = 2 - 2.2                                                                  |                  |
|             | $\geq 2k^{-}$ , by hypothesis $P(k)$ .                                            |                  |
|             | $2^{k+1} \ge k^2 + k^2$                                                           |                  |
|             | $2^{k+1} \ge k^2 + 2k + 1$ , by part (1)                                          |                  |
|             | $2^{k+1} \ge (k+1)^2$                                                             |                  |
|             | Test for $n = 4$ .                                                                |                  |
|             | $P(4): 2^4 \ge 4^2.$                                                              |                  |
|             | $\therefore$ True for $n = 4$ .                                                   |                  |
| So, J       | P(k+1) is true whenever $P(k)$ true.                                              |                  |
| Sinc        | e $P(4)$ true, then, by induction, $P(n)$ is true for all natural numbers n       | ≥4.              |
| Dhundowa    | (2)                                                                               |                  |

Blunders (-3) B1 Fails to prove case n=4 (not sufficient to say "true for n=4") B1 B2

Indices

B3  $n \neq 4$ 

## **QUESTION 6**

| Part (a) | 10 (5, 5) marks       | Att (2, 2)       |
|----------|-----------------------|------------------|
| Part (b) | 20 (5, 5, 5, 5) marks | Att (2, 2, 2, 2) |
| Part (c) | 20 (5, 5, 10) marks   | Att (2, 2, 3)    |

| Part (a) |            |       | 10 (5, 5) marks                       | Att (2, 2) |
|----------|------------|-------|---------------------------------------|------------|
| 6.       | <b>(a)</b> | Diffe | rentiate with respect to x:           |            |
|          |            | (i)   | $\left(4x^2-1\right)^3.$              |            |
|          |            | (ii)  | $\sin^{-1}\left(\frac{2x}{3}\right).$ |            |

| (a) (i)<br>(a) (ii) |      | 5 marks<br>5 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Att 2<br>Att 2 |
|---------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 6 (a)               | (i)  | $\frac{d}{dx}\left[\left(4x^2-1\right)^3\right] = 3\left(4x^2-1\right)^2 \cdot 8x = 24x\left(4x^2-1\right)^2 \cdot $ |                |
|                     | (ii) | $\frac{d}{dx}\left[\sin^{-1}\left(\frac{2x}{3}\right)\right] = \frac{1}{\sqrt{9-4x^2}} \times 2.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |

- *Blunders (-3)* B1 Differentiation
- B2 Indices
- B3 Incorrect a

Attempts

A1 Error in differentiation formula (chain rule)

#### 20 (5, 5, 5, 5) marks

Att (2, 2, 2, 2)

| 6. (b) (i) | Differentiate $\sqrt{x}$ with respect to x, from first principles.               |
|------------|----------------------------------------------------------------------------------|
| (ii)       | Find the equation of the tangent to the curve $y = \sqrt{x}$ at the point (9,3). |

| (b) (i) $f(x+h) - f(x)$<br>Multiplication<br>Finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 marks<br>5 marks<br>5 marks                                                                                 | Att 2<br>Att 2<br>Att 2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------|
| <b>6 (b) (i)</b> $f(x) = \sqrt{x}$ and $f(x) = \sqrt{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $f(x+h) = \sqrt{x+h}.$                                                                                        |                         |
| f(x+h) - f(x) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sqrt{x+h}$ - $\sqrt{x}$                                                                                     |                         |
| $\lim_{h\to 0}f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+h)-f(x+$ | $\frac{(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$                                              |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $= \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \times \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$ |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $= \lim_{h \to 0} \frac{x + h - x}{h\left(\sqrt{x + h} + \sqrt{x}\right)}$                                    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}}$                                                            |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $= \frac{1}{2\sqrt{x}}.$                                                                                      |                         |

| (b) (ii)   | 5 marks                                                                               | Att 2 |
|------------|---------------------------------------------------------------------------------------|-------|
| 6 (b) (ii) |                                                                                       |       |
|            | Slope of tangent at $(9,3) = \frac{1}{6}$ .                                           |       |
|            | Equation of tangent: $y-3 = \frac{1}{6}(x-9) \implies 6y-18 = x-9 \implies 6y = x+9.$ |       |

Blunders (-3)

- B1 f(x+h)
- B2 Indices
- B3 No limits shown or implied or no indication  $h \rightarrow 0$
- B4  $h \rightarrow \infty$
- B5 Conjugate
- B6 No left hand side

B7 Slope not  $\frac{dy}{dx}$ 

B8 Equation of tangent

Worthless

W1 Not first principles

NOTE: Can use the binomial theorem to expand  $(x + h)^{\frac{1}{2}}$  etc

| Part (o   | :)   | 20 (5, 5, 10) marks                                                                   | Att (2, 2, 3) |
|-----------|------|---------------------------------------------------------------------------------------|---------------|
| 6. (      | c)   | Let f be the function $f: x \to 8x + \sin 4x + 4\sin 2x$ , where $x \in \mathbf{R}$ . |               |
|           |      | (i) Find $f'(x)$ .                                                                    |               |
|           |      | (ii) Express $f'(x)$ in terms of $\cos 2x$ .                                          |               |
|           |      | (iii) Prove that $f(x)$ is increasing for all values of x.                            |               |
| (c) (i)   |      | 5 marks                                                                               | Att 2         |
| (c) (ii)  |      | 5 marks                                                                               | Att 2         |
| (c) (iii) |      | 10 marks                                                                              | Att 3         |
| 6 (c) (   | i)   | $f'(r) = 8 + 4\cos 4r + 8\cos 2r$                                                     |               |
|           |      | f(x) = 0 + 10031x + 00032x                                                            |               |
|           | ••\  |                                                                                       |               |
| (         | 11)  | C'(-) $2 + 4 + 2 + 2 + 2 + 4(2 + 2 + 1) + 2 + 2$                                      |               |
|           |      | $f'(x) = 8 + 4\cos 4x + 8\cos 2x = 8 + 4(2\cos 2x - 1) + 8\cos 2x.$                   |               |
|           |      | $f'(x) = 8\cos^2 2x + 8\cos 2x + 4.$                                                  |               |
| (         | iii) |                                                                                       |               |
|           |      | $f'(x) = 8\cos^2 2x + 8\cos 2x + 4$                                                   |               |
|           |      | $=8\left(\cos^2 2x + \cos 2x + \frac{1}{2}\right)$                                    |               |
|           |      | $=8\left(\left[\cos 2x + \frac{1}{2}\right]^{2} + \frac{1}{4}\right)$                 |               |
|           |      | $\geq 8(0+\frac{1}{4})$                                                               |               |
|           |      | >0                                                                                    |               |
|           |      | Therefore $f(x)$ is increasing                                                        |               |

*Blunders (-3)* B1 Differentiation

B2

Indices Trig formula B3

NOTE: Must show f'(x) > 0

|                                                                                                                        | <b>QUESTION 7</b>                                                                      |                  |  |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------|--|
| Part (a)                                                                                                               | 15 (5, 5, 5) marks                                                                     | Att (2, 2, 2)    |  |
| Part (b)                                                                                                               | 15 (5, 5, 5) marks                                                                     | Att (2, 2, 2)    |  |
| Part (c)                                                                                                               | 20 (5, 5, 5, 5) marks                                                                  | Att (2, 2, 2, 2) |  |
| Part (a)                                                                                                               | 15 (5, 5, 5) marks                                                                     | Att (2, 2, 2)    |  |
| 7. (a) Given that $x = 3t^2 - 6t$ and $y = 2t - t^2$ , for $t \in \mathbf{R}$ , show that $\frac{dy}{dx}$ is constant. |                                                                                        |                  |  |
|                                                                                                                        |                                                                                        |                  |  |
| dx                                                                                                                     | 5 marks                                                                                | Att 2            |  |
| dt                                                                                                                     |                                                                                        |                  |  |
| dy                                                                                                                     | 5 marks                                                                                | Att 2            |  |
| dt                                                                                                                     |                                                                                        |                  |  |
| $\frac{dy}{dx}$                                                                                                        | 5 marks                                                                                | Att 2            |  |
| $\frac{dx}{7}$                                                                                                         |                                                                                        |                  |  |
| 7 (a)                                                                                                                  | lx dv                                                                                  |                  |  |
|                                                                                                                        | $\frac{dt}{dt} = 6t - 6 \qquad \frac{dy}{dt} = 2 - 2t.$                                |                  |  |
|                                                                                                                        | dy dy dt 2-2t 1                                                                        |                  |  |
| • •                                                                                                                    | $\frac{dx}{dx} = \frac{dt}{dt} \times \frac{dx}{dx} = \frac{dt}{6t-6} = -\frac{1}{3}.$ |                  |  |

*Blunders (-3)* B1 Differentiation

Error in getting  $\frac{dy}{dx}$ B2
| Part (b) |        |                            | 15 (5, 5, 5) marks                                                            | Att (2, 2, 2) |
|----------|--------|----------------------------|-------------------------------------------------------------------------------|---------------|
| 7.       | (b)    | A cu                       | arve is defined by the equation $x^2 - 2xy + 3y^2 + 4y = 22$ .                |               |
|          |        | (i)                        | Find $\frac{dy}{dx}$ in terms of x and y.                                     |               |
|          |        | (ii)                       | The points $(-3,1)$ and $(1,-3)$ are both on this curve.                      |               |
|          |        |                            | Show that the tangents at these two points are parallel to each o             | ther.         |
|          |        |                            |                                                                               |               |
| (b)(i    | ) Diff | erenti                     | ation 5 marks                                                                 | Att 2         |
|          | Fin    | ish                        | 5 marks                                                                       | Att 2         |
| (b)(i    | i)     |                            | 5 marks                                                                       | Att 2         |
| 7 (b)    | ) (i)  |                            |                                                                               |               |
|          |        | 2 <i>x</i> –               | $-2x\frac{dy}{dx} - 2y + 6y\frac{dy}{dx} + 4\frac{dy}{dx} = 0.$               |               |
|          |        | $\therefore \frac{dy}{dx}$ | $\frac{dy}{dx}(2x-6y-4) = 2x-2y \implies \frac{dy}{dx} = \frac{x-y}{x-3y-2}.$ |               |
|          | (ii)   |                            |                                                                               |               |
|          |        | Slop                       | e of tangent at $(-3, 1) = \frac{-3-1}{-3-3-2} = \frac{1}{2}$ .               |               |
|          |        | Slop                       | e of tangent at $(1, -3) = \frac{1+3}{1+9-2} = \frac{1}{2}$ .                 |               |
|          |        | Equa                       | al slopes, therefore parallel tangents.                                       |               |

Blunders (-3)

- **B**1 Differentiation
- Incorrect value of x or no value of x in slope B2
- B3 Incorrect value of y or no value of y in slope

Slips (-1)

**S**1 Numerical

### Attempts

A1

Error in differentiation formula  $\frac{dy}{dx} = 2x - 2x\frac{dy}{dx} - 2y + 6y\frac{dy}{dx} + \dots, \text{ and uses all } \frac{dy}{dx} \text{ terms in first 5 marks can get}$ A2 second 5 marks

| Part (c)                                        | 20 (5, 5, 5, 5) marks                                                                                                                                                                                                                                          | Att (2, 2, 2, 2)                       |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 7. (c)                                          | Let $f(x) = 32x^3 - 48x^2 + 20x - 1$ , where $x \in \mathbb{R}$ .<br>(i) Show that <i>f</i> has a root between 0 and 1.<br>(ii) Take $x_1 = 0.5$ as a first approximation to this root.<br>Use the Newton Perpherent method to find $x_1$ and $y_2$ the second | and and third                          |
|                                                 | <ul><li>approximations.</li><li>(iii) What can you conclude about all further approximations?</li></ul>                                                                                                                                                        |                                        |
| (c) (i)<br>(c) (ii) $x_2$<br>$x_3$<br>(c) (iii) | 5 marks<br>5 marks<br>5 marks<br>5 marks                                                                                                                                                                                                                       | Att 2<br>Att 2<br>Att 2<br>Hit or Miss |
| 7 (c) (i)                                       | f(0) = -1 < 0 and $f(1) = 32 - 48 + 20 - 1 = 3 > 0$ .<br>∴ f has a root between 0 and 1.                                                                                                                                                                       |                                        |
| (ii)                                            | $f(x) = 32x^{3} - 48x^{2} + 20x - 1 \implies f'(x) = 96x^{2} - 96x + 20.$<br>f(0.5) = 1  and  f'(0.5) = -4<br>$x_{2} = 0.5 - \frac{1}{-4} = 0.75$<br>f(0.75) = 0.5  and  f'(0.75) = 2<br>$x_{3} = 0.75 - \frac{0.5}{2} = 0.5.$<br>$\therefore$                 |                                        |
| (iii)                                           | All further approximations will continue in the sequence $0.5$ , $0.75$ ,                                                                                                                                                                                      | 0.5, 0.75,                             |

Blunders (-3)

- B1 Newton-Raphson formula once only
- B2 Differentiation
- B3 Indices
- B4  $x_1 \neq 0.5$  once only
- B5 Inequality sign
- B6 Incorrect value in table (unless an obvious slip)

Slips (-1)

S1 Numerical

Worthless

W1 Incorrect answer and no work

### **QUESTION 8**

| Part (a) | 10 marks                 | Att 3            |
|----------|--------------------------|------------------|
| Part (b) | <b>20 (10, 10) marks</b> | Att (3, 3)       |
| Part (c) | 20 (5, 5, 5, 5) marks    | Att (2, 2, 2, 2) |

| Part | (a) | 10 marks                                | Att 3 |
|------|-----|-----------------------------------------|-------|
| 8.   | (a) | Find $\int (1 + \cos 2x + e^{3x}) dx$ . |       |

| (a)   | 10 marks                                                                                     | Att 3 |
|-------|----------------------------------------------------------------------------------------------|-------|
| 8 (a) |                                                                                              |       |
|       | $\int \left(1 + \cos 2x + e^{3x}\right) dx = x + \frac{1}{2}\sin 2x + \frac{1}{3}e^{3x} + c$ |       |

### Blunders (-3)

B1 Integration No 'c'

B2

### Attempts

A1 Only 'c' correct,  $\Rightarrow$  Att3

### Worthless

Differentiation instead of integration W1

| Part (b) |     |      | 20 (10, 10) marks                                    | Att (3, 3) |
|----------|-----|------|------------------------------------------------------|------------|
| 8.       | (b) | (i)  | Evaluate $\int_{1}^{3} \frac{12}{3x-2} dx.$          |            |
|          |     | (ii) | Evaluate $\int_{0}^{\frac{\pi}{8}} \sin^2 2x  dx  .$ |            |

| (b) (i)   | 10 marks                                                                                                                | Att 3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------|-------|
| (b) (ii)  | 10 marks                                                                                                                | Att 3 |
| 8 (b) (i) |                                                                                                                         |       |
|           | Let $u = 3x - 2$ . $\therefore du = 3dx$ .                                                                              |       |
|           | $\int_{1}^{3} \frac{12}{3x-2}  dx = \int_{1}^{7} \frac{4}{u}  du = 4 \left[ \log_{e} u \right]_{1}^{7} = 4 \log_{e} 7.$ |       |

$$\int_{0}^{\frac{\pi}{8}} \sin^{2} 2x \, dx = \int_{0}^{\frac{\pi}{8}} \frac{1}{2} (1 - \cos 4x) dx = \frac{1}{2} \left[ x - \frac{1}{4} \sin 4x \right]_{0}^{\frac{\pi}{8}}$$
$$= \frac{1}{2} \left[ \left( \frac{\pi}{8} - \frac{1}{4} \sin \frac{\pi}{2} \right) - \left( 0 - \frac{1}{4} \sin 0 \right) \right] = \frac{\pi}{16} - \frac{1}{8}$$

<u>OR</u>

$$\int_{0}^{\frac{\pi}{8}} \sin^{2} 2x \, dx = \frac{1}{2} \left[ x - \frac{\sin 4x}{4} \right] \qquad \text{(see formula Page 26)}$$
$$= \frac{1}{2} \left[ \left( \frac{\pi}{8} - \frac{\sin \frac{4\pi}{8}}{4} \right) - (0 - 0) \right]$$
$$= \frac{1}{2} \left( \frac{\pi}{8} - \frac{1}{4} \right)$$
$$= \frac{\pi}{16} - \frac{1}{8}$$

### Blunders (-3)

- Integration B1
- Differentiation B2
- B3 Limits
- Incorrect order in applying limits Not changing limits Not calculating substituted limits B4
- B5
- B6
- Trig formula B7

Slips (-1)

- S1 Numerical
- S2 Trig value

NOTE: (-3) max. deduction in limits

| Part (c)  | 20 (5, 5, 5, 5) marks                                                                                                                           | Att (2, 2, 2, 2)    |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 8.(c) The | function <i>f</i> is given by $f(x) = x^2 + k$ , where <i>k</i> is a constant.                                                                  |                     |
| (i)       | The tangent to the curve $y = (x)$ at the point $(a, f(a))$ passes<br>where $a > 0$ . Express <i>a</i> in terms of <i>k</i> .                   | through the origin, |
| (ii)      | The tangent at $(-a, f(-a))$ also passes through the origin.<br>Find, in terms of <i>k</i> , the area of the region enclosed by these tw curve. | o tangents and the  |

| (c)(i) One slope                                                                                                                    | 5 marks                                                     | Att 2             |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------|
| Express                                                                                                                             | 5 marks                                                     | Att 2             |
| 8 (c) (i)                                                                                                                           |                                                             |                   |
| Point of tangency is                                                                                                                | $f(a, a^2 + k)$ and $f'(x) = 2x \implies$ slope of tang     | gent = 2a.        |
| $\therefore \frac{a^2 + k}{a} = 2a \implies$                                                                                        | $2a^2 = a^2 + k \implies a^2 = k. \therefore a = \sqrt{k}.$ |                   |
|                                                                                                                                     | <u>OR</u>                                                   |                   |
|                                                                                                                                     | $y = x^2 + k$                                               | 1/                |
| Slope of tangent:<br>Using points: $P(a, a^2 + b)$                                                                                  | and (0,0)                                                   |                   |
| Using points. $T(a, a + k)$                                                                                                         |                                                             | $P(a, a^2 + k)$   |
| $a^2 + k$                                                                                                                           |                                                             |                   |
| $m = \frac{a}{a} \dots \dots$ | i)                                                          | r                 |
|                                                                                                                                     |                                                             | $\xrightarrow{x}$ |
| Using $y = x^2 + k$                                                                                                                 | $\gamma \mid \bigwedge A(a,$                                | 0)                |
| $m = \frac{dy}{dt} = 2x$                                                                                                            |                                                             |                   |
| dx                                                                                                                                  |                                                             |                   |
| At $x = a_1 m = 2a_1 \dots a_n$                                                                                                     | (ii)                                                        |                   |
| From (i) and (ii):                                                                                                                  |                                                             |                   |
| $m-2a-\frac{a^2+k}{k}$                                                                                                              |                                                             |                   |
| m - 2a - a                                                                                                                          |                                                             |                   |
| $2a^2 = a^2 + k$                                                                                                                    |                                                             |                   |
| $a^2 = k$                                                                                                                           |                                                             |                   |
| $a = \sqrt{k}$                                                                                                                      |                                                             |                   |
| (since <i>a</i> >0)                                                                                                                 |                                                             |                   |
|                                                                                                                                     |                                                             |                   |

- Blunders (-3)B1Blunder point PB2Blunder slope at PB3Blunder differentiation

8 (c) (ii) Equation of tangent:  $y = mx \implies y = 2ax$ . Area =  $2\left[\int_{0}^{a} (x^{2} + a^{2}) dx - \int_{0}^{a} 2ax dx\right] = 2\left[\frac{1}{3}x^{3} + a^{2}x\right]^{a} - 2\left[ax^{2}\right]_{0}^{a}$  $= 2\left(\frac{1}{3}a^{3} + a^{3} - a^{3}\right) = \frac{2}{3}a^{3} = \frac{2k\sqrt{k}}{3}$ <u>OR</u>  $y = x^2 + k$  $A_1$  area between curve and x-axis  $P(a, a^2 + k)$ Q  $A_1 = \int^a y.dx$  $=2\int_{-\infty}^{a}(x^2+k)dx$ (-a, 0)A(a, 0) $=2\left[\frac{x^3}{3}+kx\right]^a$  $=2\left[\left(\frac{a^3}{3}+ka\right)-(0+0)\right]$  $A_1 = 2\left(\frac{a^3}{3} + ka\right)$  $A_2 = 2$ . Area  $\triangle OAP$  $=2\left|\frac{1}{2}(a)(a^{2}+k)\right|$  $=a^{3}+ak$ Required area =  $A_1 - A_2$  $=2\left(\frac{a^3}{3}+ka\right)-\left(a^3+ak\right)$  $=ak-\frac{a^3}{3}$  $=k^{\frac{3}{2}}-\frac{k^{\frac{3}{2}}}{2}$  $=\frac{2}{2}k^{\frac{3}{2}}$ 

Blunders (-3)

- B1 Integration
- B2 Indices
- B3 Calculation point of tangency
- B4 Error in formula for area of triangle
- B5 Error in area formula
- B6 Incorrect order in applying limits
- B7 Error with line
- B8 Error with curve
- B9 Uses  $\pi \int y dx$  for area formula

### Attempts

- A1 Uses volume formula
- A2 Uses  $y^2$  in formula

Worthless

W1 Wrong area formula and no work

2012. M130



Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate Examination, 2012

## Mathematics (Project Maths – Phase 1)

### Paper 2

## Higher Level

Monday 11 June Morning 9:30 – 12:00

300 marks

# Model Solutions – Paper 2

Note: the model solutions for each question are not intended to be exhaustive – there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.

### Instructions

There are two sections in this examination paper.Section AConcepts and Skills150 marks6 questionsSection BContexts and Applications150 marks2 questions

Answer all eight questions, as follows:

In Section A, answer:

Questions 1 to 5 and either Question 6A or Question 6B.

In Section B, answer Question 7 and Question 8.

Write your answers in the spaces provided in this booklet. You will lose marks if you do not do so. There is space for extra work at the back of the booklet. You may also ask the superintendent for more paper. Label any extra work clearly with the question number and part.

The superintendent will give you a copy of the *Formulae and Tables* booklet. You must return it at the end of the examination. You are not allowed to bring your own copy into the examination.

Marks will be lost if all necessary work is not clearly shown.

Answers should include the appropriate units of measurement, where relevant.

Answers should be given in simplest form, where relevant.

Write the make and model of your calculator(s) here:

Answer all six questions from this section.

#### **Question 1**

### (25 marks)

- (a) Given the co-ordinates of the vertices of a quadrilateral *ABCD*, describe **three** different ways to determine, using co-ordinate geometry techniques, whether the quadrilateral is a parallelogram.
  - 1. Check whether both pairs of opposite sides have the same slope (slope formula).
  - 2. Check whether both pairs of opposite sides are equal in length (distance formula).
  - 3. Check whether the midpoints of the diagonals coincide (diagonals bisecting each other).
  - 4. Check whether the translation from *A* to *B* is the same as the translation from *D* to *C* [or equivalent.]
  - 5. Check whether a pair of opposite sides have the same slope and are equal in length (slope and distance formulae).
  - 6. Use slopes and the formula for the angle between two lines to check whether both pairs of opposite angles are equal.
  - 7. Use slopes and the formula for the angle between two lines to check whether  $|\angle A| + |\angle B| = 180^\circ$ , and  $|\angle C| + |\angle B| = 180^\circ$ . [or equivalent]
- (b) Using one of the methods you described, determine whether the quadrilateral with vertices (-4, -2), (21, -5), (8, 7) and (-17, 10) is a parallelogram.



(25 marks)

The equations of two circles are:

$$c_1: x^2 + y^2 - 6x - 10y + 29 = 0$$
  
$$c_2: x^2 + y^2 - 2x - 2y - 43 = 0$$

(a) Write down the centre and radius-length of each circle.

 $c_1 : (x-3)^2 + (y-5)^2 = 5$   $\therefore$  centre (3, 5); radius  $\sqrt{5}$ .  $c_2 : (x-1)^2 + (y-1)^2 = 45$  $\therefore$  centre (1, 1); radius  $\sqrt{45} = 3\sqrt{5}$ .

(b) Prove that the circles are touching.

Distance between centres:  $\sqrt{(3-1)^2 + (5-1)^2} = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$ The distance between the centres is the difference of the radii  $\Rightarrow$  circles touch (internally). (c) Verify that (4, 7) is the point that they have in common.

$$4^{2} + 7^{2} - 6(4) - 10(7) + 29 = 0 \implies (4,7) \in c_{1}$$
  
$$4^{2} + 7^{2} - 2(4) - 2(7) - 43 = 0 \implies (4,7) \in c_{2}$$

#### OR

- $c_1 c_2$ :  $x + 2y 18 = 0 \Rightarrow x = -2y + 18$  $(-2y + 18)^2 + y^2 - 6(-2y + 18)) - 10y + 29 = 0$  $(y - 7)^2 = 0$ y = 7x = 4∴ (4, 7) common
- (d) Find the equation of the common tangent.

Slope from (3, 5) to (4, 7) is:  $\frac{7-5}{4-3} = 2$   $\therefore$  slope of tangent  $= -\frac{1}{2}$ . Equation of tangent:  $y-7 = -\frac{1}{2}(x-4)$  2y-14 = -x+4 x+2y-18 = 0OR

Equation of Tangent:  $c_1 - c_2 : x + 2y - 18 = 0$ 

| OR                                         |
|--------------------------------------------|
| $(x-h)(x_1-h) + (y-k)(y_1-k) = r^2$        |
| $(x-3)(4-3) + (y-5)(7-5) = (\sqrt{5})^{2}$ |
| (x-3) + (y-5)(2) = 5                       |
| x + 2y - 18 = 0                            |

#### OR

 $xx_{1} + yy_{1} + g(x + x_{1}) + f(y + y_{1}) + c = 0$ 4x + 7y - 3(x + 4) - 5(y + 7) + 29 = 0x + 2y - 18 = 0

### (25 marks)

### **Question 3**

The circle shown in the diagram has, as tangents, the *x*-axis, the *y*-axis, the line x + y = 2 and the line x + y = 2k, where k > 1.

Find the value of *k*.





Equation of circle: 
$$(x-r)^2 + (y-r)^2 = r^2$$
  
The line  $x + y = 2$  intersects the circle at one point only.  
 $y = 2 - x \Rightarrow (x-r)^2 + ((2-x)-r)^2 = r^2$   
 $\Rightarrow x^2 + (2-x)^2 + r^2 - 4r = 0$   
 $\Rightarrow 2x^2 - 4x + (r^2 - 4r + 4) = 0$   
One real root  $\Rightarrow b^2 - 4ac = 0$   
 $\Rightarrow 16 - 4(2)(r^2 - 4r + 4) = 0$   
 $\Rightarrow r = \frac{4 \pm \sqrt{16 - 8}}{2} = 2 \pm \sqrt{2}$   
But  $2 - \sqrt{2}$  is too small, so  $r = 2 + \sqrt{2}$   
 $(1, 1) \rightarrow (2 + \sqrt{2}, 2 + \sqrt{2}) \rightarrow (3 + 2\sqrt{2}, 3 + 2\sqrt{2}) = (k, k)$ 

### OR

Centre 
$$(r, r)$$
  
Perpendicular distance to  $x + y - 2 = 0$  equals radius, r.  
 $\left| \frac{r + r - 2}{\sqrt{2}} \right| = r$   
 $\Rightarrow 2r - 2 = \pm r\sqrt{2}$   
 $r = \frac{2}{2 \pm \sqrt{2}} = 2 \mp \sqrt{2}$   
But  $2 - \sqrt{2}$  is too small, so  $r = 2 + \sqrt{2}$   
 $(1, 1) \rightarrow (2 + \sqrt{2}, 2 + \sqrt{2}) \rightarrow (3 + 2\sqrt{2}, 3 + 2\sqrt{2}) = (k, k)$ 

OR

Having found *r* as above, find *k* by setting perpendicular distance from centre (*r*, *r*) to x + y - 2k = 0 equal to *r*:

$$\left|\frac{r+r-2k}{\sqrt{2}}\right| = r$$
  

$$\Rightarrow 2r-2k = \pm \sqrt{2}r$$
  

$$\Rightarrow 2\left(2+\sqrt{2}\right)-2k = \pm \sqrt{2}\left(2+\sqrt{2}\right)$$
  

$$\Rightarrow 4+2\sqrt{2}-2k = \pm \left(2\sqrt{2}+2\right)$$
  

$$\Rightarrow 2k = 4+2\sqrt{2} \pm \left(2\sqrt{2}+2\right)$$
  

$$\Rightarrow k = 2+\sqrt{2} \pm \left(\sqrt{2}+1\right)$$
  

$$\Rightarrow k = 3+2\sqrt{2} \text{ or } 1.$$
  
 $k = 1 \text{ corresponds to the lower line, so the answer is } k = 3+2\sqrt{2}$ 

A certain basketball player scores 60% of the free-throw shots she attempts. During a particular game, she gets six free throws.

(a) What assumption(s) must be made in order to regard this as a sequence of Bernoulli trials?

Trials are independent of each other. Probability of success is the same each time.

[Only two outcomes .... (Given)] [Finite number of throws..... (Given)]

- (b) Based on such assumption(s), find, correct to three decimal places, the probability that:
  - (i) she scores on exactly four of the six shots

 $P(X = 4) = {}^{6}C_{4}(0.6)^{4}(0.4)^{2} = 0.31104$ = 0.311 to three decimal places.

(ii) she scores for the second time on the fifth shot.

Exactly one success among first four throws, followed by success on fifth:

 $({}^{4}C_{1}(0.6)(0.4)^{3})(0.6) = 0.09216$ = 0.092 to three decimal places.

A company produces calculator batteries. The diameter of the batteries is supposed to be 20 mm. The tolerance is 0.25 mm. Any batteries outside this tolerance are rejected. You may assume that this is the only reason for rejecting the batteries.

(a) The company has a machine that produces batteries with diameters that are normally distributed with mean 20 mm and standard deviation 0.1 mm. Out of every 10000



batteries produced by this machine, how many, on average, are rejected?

$$Z = \frac{20 \cdot 25 - 20}{0 \cdot 1} = 2 \cdot 5$$
  

$$P(|X - 20| > 0 \cdot 25) = P(|Z| > 2 \cdot 5)$$
  

$$= 2(1 - P(Z \le 2 \cdot 5))$$
  

$$= 2(1 - 0 \cdot 9938)$$
  

$$= 0 \cdot 0124$$
  
Answer = 10 000 × 0 \cdot 0124 = 124.

(b) A setting on the machine slips, so that the mean diameter of the batteries increases to 20.05 mm, while the standard deviation remains unchanged. Find the percentage increase in the rejection rate for batteries from this machine.

$$P(X \le 1.975) + P(X \ge 20.25) = P\left[Z \le \frac{19.75 - 20.25}{0.1}\right] + P\left[Z \ge \frac{20.25 - 20.05}{0.1}\right]$$
  
=  $P(Z \le -3) + P(Z \ge 2)$   
=  $1 - P(Z \le 3) + 1 - P(Z \le 2)$   
=  $1 - 0.9987 + 1 - 0.9772$   
=  $2 - 1.9759$   
=  $0.0241$   
 $\frac{0.0241}{0.0124} = 1.9435... \Rightarrow 94.35\%$  increase  
or increase:  $0.0241 - 0.0124 = 0.0117$   
% Increase:  $\left(\frac{0.0117}{0.0124}\right) 100 = 94.35\%$ 

Answer either 6A or 6B.

### Question 6A

(a) (i) Given the points *B* and *C* below, construct, without using a protractor or setsquare, a point *A* such that  $|\angle ABC| = 60^\circ$ .



(ii) Hence construct, on the same diagram above, and using a compass and straight edge only, an angle of 15°.

Bisect 60° to get 30°; bisect again to get 15° (as shown above) OR Construct a right angle and use it to construct 45° and combine with 60° to get 15°.

(b) In the diagram,  $l_1, l_2, l_3$ , and  $l_4$  are parallel lines that make intercepts of equal length on the transversal k. FG is parallel to k, and HG is parallel to ED.

Prove that the triangles  $\triangle CDE$  and  $\triangle FGH$  are congruent.



| CD  =  IJ                                                           | (given)                          |
|---------------------------------------------------------------------|----------------------------------|
| = FG                                                                | (opposite sides of parallelogram |
| $\theta = \phi = \psi$                                              | (corresponding angles)           |
| $\alpha = \beta = \gamma$                                           | (corresponding angles)           |
| $\Rightarrow \left  \angle HGF \right  = \left  \angle EDC \right $ |                                  |
| $\therefore \Delta CDE \equiv \Delta FGH$                           | (ASA)                            |

|                                                                                                                          | on a                                                                                                     |                                                        |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| CD  =  IJ <br>=  FG <br>$\theta = \phi = \psi$<br>$\alpha = \beta = \gamma$<br>$\therefore \Delta CDE \equiv \Delta FGH$ | (given)<br>(opposite sides of parallelogram<br>(corresponding angles)<br>(corresponding angles)<br>(ASA) | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|                                                                                                                          |                                                                                                          |                                                        |

### OR

### **Question 6B**

The incircle of the triangle *ABC* has centre *O* and touches the sides at *P*, *Q* and *R*, as shown. Prove that  $|\angle PQR| = \frac{1}{2} (|\angle CAB| + |\angle CBA|)$ .



| $ \angle OPC  =  \angle ORC  = 90^{\circ}$                                                                                                                                                       | (radius $\perp$ tangent)                     |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|
| $\therefore  \angle PBR  = 180^{\circ} -  \angle POR $                                                                                                                                           | (angles in any quadrilateral add up to 360°) |  |  |  |
| But $ \angle PBR  = 180^{\circ} - ( \angle CAB  +  \angle CBA )$                                                                                                                                 | (angles in a triangle)                       |  |  |  |
| So $ \angle POR  =  \angle CAB  +  \angle CBA $                                                                                                                                                  |                                              |  |  |  |
| But $\left  \angle PQR \right  = \frac{1}{2} \left  \angle POR \right $                                                                                                                          |                                              |  |  |  |
| So $ \angle PQR  = \frac{1}{2} ( \angle CAB  +  \angle CBA )$                                                                                                                                    |                                              |  |  |  |
|                                                                                                                                                                                                  | OR                                           |  |  |  |
| Let $OA \cap PQ = \{D\}$                                                                                                                                                                         |                                              |  |  |  |
| $ OP  =  OQ  \Longrightarrow  AP  =  AQ $                                                                                                                                                        | (Pythagoras)                                 |  |  |  |
| $ \angle PAD  =  \angle QAD $                                                                                                                                                                    | (bisector)                                   |  |  |  |
| $\therefore \Delta PDA \equiv \Delta QDA$                                                                                                                                                        | (S.A.S.)                                     |  |  |  |
| $\therefore  \angle PDA  =  \angle QDA  = 90^{\circ}$                                                                                                                                            |                                              |  |  |  |
| $\left  \angle DAQ \right  = 90^{\circ} - \left  \angle DQA \right $                                                                                                                             |                                              |  |  |  |
| $=  \angle OQD $                                                                                                                                                                                 |                                              |  |  |  |
| $\therefore  \angle PAQ  = 2  \angle OQD $                                                                                                                                                       |                                              |  |  |  |
| Similarly, $ \angle RBQ  = 2 OQR $                                                                                                                                                               |                                              |  |  |  |
| Adding these two gives the required result.                                                                                                                                                      |                                              |  |  |  |
| Г                                                                                                                                                                                                | OR                                           |  |  |  |
| Let $OA \cap PQ = \{D\}$                                                                                                                                                                         |                                              |  |  |  |
| $ OP  =  OQ  \Longrightarrow  AP  =  AQ $                                                                                                                                                        | (Pythagoras)                                 |  |  |  |
| $ \angle APQ  =  \angle AQP $                                                                                                                                                                    | (isosceles triangle theorem)                 |  |  |  |
| Similarly, $ \angle RQB  =  \angle RBQ $                                                                                                                                                         |                                              |  |  |  |
| $\left  \angle AQP \right  + \left  \angle PQR \right  + \left  \angle RQB \right  = 180^{\circ}$                                                                                                |                                              |  |  |  |
| $\left  \angle PQR \right  = 180^{\circ} - \left  \angle AQP \right  - \left  \angle RQB \right $                                                                                                |                                              |  |  |  |
| $\left \angle CAB\right  = 180^{\circ} - 2\left \angle AQP\right $                                                                                                                               |                                              |  |  |  |
| $\left \angle CBA\right  = 180^{\circ} - 2\left \angle RQB\right $                                                                                                                               |                                              |  |  |  |
| $\Rightarrow \left  \angle CAB \right  + \left  \angle CBA \right  = 360^{\circ} - 2 \left[ \left  \angle AQP \right  + \left  \angle RQB \right  \right]$                                       |                                              |  |  |  |
| $\Rightarrow \frac{1}{2} \left[ \left  \angle CAB \right  + \left  \angle CBA \right  \right] = 180^{\circ} - \left  \angle AQP \right  - \left  \angle RQB \right  = \left  \angle PQR \right $ |                                              |  |  |  |

Answer Question 7 and Question 8.

### **Question** 7

### (75 marks)

To buy a home, people usually take out loans called *mortgages*. If one of the repayments is not made on time, the mortgage is said to be *in arrears*. One way of considering how much difficulty the borrowers in a country are having with their mortgages is to look at the percentage of all mortgages that are in arrears for 90 days or more. For the rest of this question, the term *in arrears* means in arrears for 90 days or more.

The two charts below are from a report about mortgages in Ireland. The charts are intended to illustrate the connection, if any, between the percentage of mortgages that are in arrears and the interest rates being charged for mortgages. Each dot on the charts represents a group of people paying a particular interest rate to a particular lender. The arrears rate is the percentage in arrears.



(Source: Goggin et al. Variable Mortgage Rate Pricing in Ireland, Central Bank of Ireland, 2012)

- (a) Paying close attention to the scales on the charts, what can you say about the change from September 2009 to September 2011 with regard to:
  - (i) the arrears rates?

They've gone up a lot – they were mostly between 1 and 5 in 2009, and mostly between 5 and 15 in 2011.

### (ii) the rates of interest being paid?

They've gone up a lot too – they were mostly between  $2 \cdot 3$  and  $4 \cdot 1\%$  in 2009, and mostly between 4 and 6% in 2011.

(b) What additional information would you need before you could estimate the median interest rate being paid by mortgage holders in September 2011?

You would need to know how many mortgage holders are represented by each point on the relevant diagram.

(c) Regarding the relationship between the arrears rate and the interest rate for September 2011, the authors of the report state: "The direction of causality ... is important" and they go on to discuss this.

Explain what is meant by the "direction of causality" in this context.

It is a question of whether higher arrears rates cause interest rates to go up, or whether higher interest rates cause arrears rates to go up, (assuming there is a causal relationship at all).

- (d) A property is said to be in "negative equity" if the person owes more on the mortgage than the property is worth. A report about mortgaged properties in Ireland in December 2010 has the following information:
  - Of the 475 136 properties examined, 145 414 of them were in negative equity.
  - Of the ones in negative equity, 11 644 were in arrears.
  - There were 317355 properties that were neither in arrears nor in negative equity.
  - (i) What is the probability that a property selected at random (from all those examined) will be in negative equity?

Give your answer correct to two decimal places.

 $\frac{145414}{475136} = 0.30604711 = 0.31$  (to two decimal places)

(ii) What is the probability that a property selected at random from all those in negative equity will also be in arrears? Give your answer correct to two decimal places.

 $\frac{11644}{145414} = 0.08007482 = 0.08$  (to two decimal places)

(iii) Find the probability that a property selected at random from all those in arrears will also be in negative equity.

Give your answer correct to two decimal places.

|           | arrears | ¬arrears | total  |
|-----------|---------|----------|--------|
| neg. eq.  | 11644   | 133770   | 145414 |
| ¬neg. eq. | 12367   | 317355   | 329722 |
| total     | 24011   | 451125   | 475136 |

 $\frac{11644}{24011} = 0.4849 = 0.48$  (to two decimal places)



OR

$$P(A|N) = \frac{P(A \cap N)}{P(N)} \Rightarrow 0.08007 = \frac{P(A \cap N)}{0.30604} \Rightarrow P(A \cap N) = 0.0245$$
  
But  $P(A) = \frac{24011}{475136} = 0.05053$   
 $P(N|A) = \frac{P(N \cap A)}{P(A)} = \frac{0.0245}{0.05053} = 0.4848 = 0.48$  (to two decimal places)

(e) The study described in part (d) was so large that it can be assumed to represent the population. Suppose that, in early 2012, researchers want to know whether the proportion of properties in negative equity has changed. They analyse 2000 randomly selected properties with mortgages. They discover that 552 of them are in negative equity. Use a hypothesis test at the 5% level of significance to decide whether there is sufficient evidence to conclude that the situation has changed since December 2010.

Be sure to state the null hypothesis clearly, and to state the conclusion clearly.

Null hypothesis: proportion in negative equity unchanged: p = 0.31. Alternative hypothesis: it has changed:  $p \neq 0.31$ .

95% margin of error for samples of size 2000 is  $\frac{1}{\sqrt{2000}} \approx 0.0224$ 

So, reject null hypothesis if observed proportion lies outside  $0.31 \pm 0.0224$ .

Observed proportion =  $\frac{552}{2000} \approx 0.276$ .

0.276 ∉[0.2876,0.3224]

Outside margin of error, so reject null hypothesis.

The proportion in negative equity has changed.

ORNull hypothesis: proportion in negative equity unchanged: p = 0.31.95% margin of error for samples of size 2000 is  $\frac{1}{\sqrt{2000}} \approx 0.0224$ Observed proportion =  $\frac{552}{2000} \approx 0.276$ . $\therefore$  the 95% confidence interval for the population proportion is:0.276 - 0.0224 <math>0.2536 <math>0.31 outside this range.Therefore reject null hypothesis. Proportion in negative equity has changed.

(75 marks)

The diagram is a representation of a robotic arm that can move in a vertical plane. The point *P* is fixed, and so are the lengths of the two segments of the arm. The controller can vary the angles  $\alpha$  and  $\beta$  from 0° to 180°.



(a) Given that |PQ| = 20 cm and |QR| = 12 cm, determine the values of the angles  $\alpha$  and  $\beta$  so as to locate *R*, the tip of the arm, at a point that is 24 cm to the right of *P*, and 7 cm higher than *P*. Give your answers correct to the nearest degree.



(b) In setting the arm to the position described in part (a), which will cause the greater error in the location of *R*: an error of 1° in the value of  $\alpha$  or an error of 1° in the value of  $\beta$ ?

Justify your answer. You may assume that if a point moves along a circle through a small angle, then its distance from its starting point is equal to the length of the arc travelled.

Ans:  $\alpha$ Reason: 1° error in  $\alpha$  causes *R* to move along an arc of radius 25. 1° error in  $\beta$  causes *R* to move along an arc of radius 12. So, since  $l = r\theta$ , and  $\theta$  is the same in each case, the point moves further in the first case.

(c) The answer to part (b) above depends on the particular position of the arm. That is, in certain positions, the location of *R* is more sensitive to small errors in  $\alpha$  than to small errors in  $\beta$ , while in other positions, the reverse is true. Describe, with justification, the conditions under which each of these two situations arises.

More sensitive to errors in  $\alpha$  when |PR| > 12More sensitive to errors in  $\beta$  when |PR| < 12The condition |PR| > 12is true whenever  $\beta > \cos^{-1}\left(\frac{5}{6}\right) \approx 33.6^{\circ}$ 

(Borderline case is when  $\Delta PQR$  is isosceles with |QR| = |RP|.)

(d) Illustrate the set of all possible locations of the point *R* on the coordinate diagram below. Take *P* as the origin and take each unit in the diagram to represent a centimetre in reality. Note that  $\alpha$  and  $\beta$  can vary only from 0° to 180°.



### Marking Scheme – Paper 2

### Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

| Scale label      | А | В        | С            | D                 | Е                    |
|------------------|---|----------|--------------|-------------------|----------------------|
| No of categories | 2 | 3        | 4            | 5                 | 6                    |
| 5 mark scale     |   | 0, 3, 5  | 0, 3, 4, 5   |                   |                      |
| 10 mark scale    |   | 0, 5, 10 | 0, 4, 8, 10  |                   |                      |
| 15 mark scale    |   |          |              |                   |                      |
| 20 mark scale    |   |          | 0, 7, 18, 20 | 0, 7, 10, 18, 20  |                      |
| 25 mark scale    |   |          |              | 0, 15, 20, 22, 25 | 0, 5, 10, 15, 20, 25 |

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

### Marking scales – level descriptors

### A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

### **B-scales (three categories)**

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

### **C-scales (four categories)**

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

### **D-scales (five categories)**

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (middle partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

### **E-scales (six categories)**

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response almost half-right (lower middle partial credit)
- response more than half-right (upper middle partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving incorrect rounding or omission of units, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk. Thus, for example, *scale 10C*\* indicates that 9 marks may be awarded.

### Summary of mark allocations and scales to be applied

| Section A                                                                      | Section <b>B</b>                                                                                               |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Question 1                                                                     | Question 7                                                                                                     |
| <ul> <li>(a) 5B, 5B, 5B</li> <li>(b) 10C</li> </ul>                            | (a)(i) 5B<br>(a)(ii) 5B<br>(a)(iii) 10B                                                                        |
| Question 2                                                                     | (b) 5B                                                                                                         |
| <ul> <li>(a) 5B, 5B</li> <li>(b) 5C</li> <li>(c) 5B</li> <li>(d) 5B</li> </ul> | $\begin{array}{ccc} (c) & 5C \\ (d)(i) & 10C^* \\ (d)(ii) & 5B^* \\ (d)(iii) & 10C^* \\ (e) & 20D \end{array}$ |
| Question 3                                                                     | Question 8                                                                                                     |
| 25D<br>Question 4<br>(a) 5C<br>(b)(i) 10C*<br>(b)(ii) 10C*                     | (a) $ PR $ 10B<br>(a) $\beta$ 20C*<br>(a) $\alpha$ 25D*<br>(b) 5C<br>(c) 5C<br>(d) 10C                         |
| Question 5                                                                     |                                                                                                                |
| (a) 20D<br>(b) 5C                                                              |                                                                                                                |
| Question 6A                                                                    |                                                                                                                |
| (a)(i) 10C<br>(a)(ii)5C<br>(b) 10C                                             |                                                                                                                |
| Question 6B                                                                    |                                                                                                                |

25E

### **Detailed marking notes**

### Section A

### **Question 1**

(a) Scale 5B, 5B, 5B (0, 3, 5)

Partial Credit:

- Incomplete statement of method (with some merit)
- **(b)** Scale 10C (0, 4, 8, 10).

Low Partial Credit:

• Any reasonable first step.

High Partial Credit:

- Correct method applied with some error(s)
- Correct method but vertices not taken in correct order (i.e *ABDC* or equivalent)
- Correct method completed but with no conclusion.

(a) Scale 5B, 5B (0, 3, 5)

Partial Credit:

- Centre or radius found
- Incomplete statement of method (with some merit) e.g., completing square

**(b)** Scale 5C (0, 3, 4, 5)

Low Partial Credit:

- Formula for distance between two centres with some substitution
- Difference between radii found or implied

### High Partial Credit:

• No conclusion or incorrect conclusion

### (c) Scale 5B (0, 3, 5)

Partial Credit:

- (4, 7) substituted into one circle
- Subtracts both equations and stops
- (4, 7) substituted into both circles with an error
- Finds common tangent and shows that (4, 7) is on it, without showing that it is also on one of the circles

### (d) Scale 5B (0, 3, 5)

Partial Credit:

- Some relevant slope found
- (4, 7) inserted into equation of line formula but without slope found
- Equation of line but (4, 7) incorrectly inserted

Scale 25D (0, 15, 20, 22, 25)

Low Partial Credit:

- Any reasonable first step, such as:
  - $\circ$  radius / diameter indicated to one of the points of contact
  - o intercepts of either tangent on axes indicated
  - $\circ$  (1, 1) and/or (k, k) on diagram with no further work of merit
  - $\circ |g| = |f| \text{ or } g = \pm f$
  - centre (-g, -g) or equivalent
- Perpendicular distance of centre to either tangent indicated

### Mid Partial Credit:

- Centre (r, r)
- Equation connecting *r* and *k* (i.e. work towards 2r-1=k)
- Writes equation of circle  $(x-r)^2 + (y-r)^2 = r^2$
- Equation  $x^2 + y^2 + 2gx + 2gy + g^2 = 0$  or equivalent
- y = x and further work of merit
- States g = f and  $g^2 = f^2 = c$
- Perpendicular distance (-g, -g) to tangent
- Substantive work at finding equation of a relevant angle-bisector, other than y = x

### High Partial Credit:

•  $r = 2 + \sqrt{2}$  or equivalent but fails to finish

(a) Scale 5C (0, 3, 4, 5)

Low Partial Credit:

• One or both 'given' assumptions stated or implied

High Partial Credit:

- Either 'independence' or 'probability of success the same each time' stated.
- **(b)(i)** Scale 10C\* (0, 4, 8, [9], 10)

Low Partial Credit:

• Any first step e.g. reference to 0.4 or equivalent

High Partial Credit:

• Correct expression

• Answer with one error in components

Note: Rounding incomplete: 9 marks

### **(b)(ii)** Scale 10C\* (0, 4, 8, [9], 10)

Low Partial Credit:

• Reference to 0.6 or equivalent for fifth shot

High Partial Credit:

- Correct expression
- Answer with one error in components

Note: Rounding incomplete: 9 marks

(a) Scale 20D (0, 7, 10, 18, 20)

Low Partial Credit:

- Any relevant step
- Some relevant diagram

Mid Partial Credit:

- Reference to 2.5
- P(Z > 2.5) = 0.0062 and stops

High Partial Credit:

- P(|Z| > 2.5) = 0.0124
- Correct method with some error

### **(b)** Scale 5C (0, 3, 4, 5)

Low Partial Credit:

- Any relevant step
- Some relevant diagram
- One case taken only

High Partial Credit:

• Probability of both situations calculated but fails to complete fully

### Question 6A

- (a)(i) Scale 10C (0, 4, 8, 10)
  - Low Partial Credit:
  - Any correct step

High Partial Credit:

• Correct method but outside the tolerance of 2°

(a)(ii) Scale 5C (0, 3, 4, 5)

Low Partial Credit:

• Any correct step

High Partial Credit:

• Correct method but outside the tolerance of 2°

**(b)** Scale 10C (0, 4, 8, 10)

Low Partial Credit:

- Any correct step e.g.,
  - o identifies two equal sides
  - o identifies two equal angles
  - extends DE to intersect  $l_1$

High Partial Credit:

- Proof with correct steps but without justification of steps
- One error in establishing congruence

### Question 6B

Scale 25E (0, 5, 10, 15, 20, 25)

Low Partial Credit:

• Any correct statement

Lower Middle Partial Credit:

- Some substantive work towards proof e.g. at least one full step complete
- Two distinct relevant statements

### Upper Middle Partial Credit:

• Substantive proof with two critical steps missing

#### High Partial Credit:

- Correct proof but critical step missing
- Correct proof without justification of steps
## **Question 7**

(a)(i) Scale 5B (0, 3, 5)

Partial Credit

- Incomplete statement e.g., "it has changed".
- (a)(ii) Scale 5B (0, 3, 5)

Partial Credit

• Incomplete or partly correct statement

(a)(iii) Scale 10B (0, 5, 10)

Partial Credit

- Incomplete or partly correct statement, e.g.,
  - "They have changed"
  - o "Closer to being a line"
  - Reference to positive

## **(b)** Scale 5B (0, 3, 5)

Partial Credit

• Some reference to the middle household

Note: accept (for full credit) reference to needing information about mortgage holders who are not on standard variable rates.

# (c) Scale 5C (0, 3, 4, 5)

Low Partial Credit

- Both may be caused by something else
- General statement regarding correlation not implying causality no context

### High Partial Credit

- No reference to reverse situation, (e.g.: "It's about whether high interest rates cause high arrears rates or not.")
- Correct interpretation of concept, but not contextualised, (e.g. "It's a question of which variable causes which.")

Scale 10C\* (0, 4, 8, [9], 10) (d)(i)

Low Partial Credit

- Uses a relevant number
- Writes  $\frac{\#E}{\#S}$  or equivalent.
- Identifies "number of outcomes of interest = ..." or "total number of outcomes = ...".

## High Partial Credit

- Answer in the form of a fraction
- (d)(ii) Scale  $5B^*(0, 3, [4], 5)$

Partial Credit

- Uses a relevant number
- Writes  $\frac{\#E}{\#S}$  or equivalent.
- Identifies "number of outcomes of interest = ..." or "total number of outcomes = ...".
- Answer in form of a fraction •

## (d)(iii) Scale $10C^*(0, 4, 8, [9], 10)$

#### Low Partial Credit

- Attempt to combine (i) and (ii) for part (iii)
- Calculates total arrears and stops

## High Partial Credit

- Answer as a fraction
- $\frac{11644}{12367} = 0.9415 = 0.94$
- **(e)** Scale 20D (0, 7, 10, 18, 20)

### Low Partial Credit

- One relevant step e.g. null hypothesis stated only
- Margin of error or observed proportion and does not continue

### Mid Partial Credit:

- Substantive work with one or more critical omissions
- · Margin of error and observed proportion found but fails to continue

### High Partial Credit

• Failure to state null hypothesis correctly and/or failure to contextualise answer (e.g., stops at "Reject the null hypothesis".

## **Question 8**

(a) |PR| Scale 10B (0, 5, 10)

Partial Credit

- Some use of Pythagoras
- (a)  $\beta$  Scale 20C\* (0, 7, 18, [19], 20)

Low Partial Credit

• Cosine Rule with some substitution

High Partial Credit

- Cos  $\beta$  calculated
- (a)  $\alpha$  Scale 25D\* (0, 15, 20, 22, [24], 25)

#### Low Partial Credit

- Some work towards solving required angle with sine or cosine rule
- Tan  $\gamma = \frac{7}{24}$  with no work towards  $\alpha \gamma$

Middle Partial Credit

• Cos  $\alpha - \gamma$  found

High Partial Credit

- $\alpha \gamma$  and  $\gamma$  calculated but  $\alpha$  not evaluated
- **(b)** Scale 5C (0, 3, 4, 5)

Low Partial Credit

- Effort at working out values for angles
- Correct answer without justification

High Partial Credit

- Correct answer without being fully justified
- (c) Scale 5C (0, 3, 4, 5)

Low Partial Credit

- Some reference to distance between *P* and *R*
- Treats as percentage error in angles, rather than absolute error in location. e.g. "If  $\alpha$  is smaller than  $\beta$ , then a 1° error in  $\alpha$  is a bigger percentage error than a 1° error in  $\beta$ ."

High Partial Credit

- One situation only dealt with correctly
- Clearly understands concept that the radius of the rotation is the determining factor, but makes error(s) in explanation (e.g. mixes up distances involved).
- (d) Scale 10C (0, 4, 8, 10)

Low Partial Credit

• Any relevant semi circle sketched or implied

High Partial Credit

• Any correct semi circle inserted in addition to semicircle centre *P* with radius 32.

# Marcanna Breise as ucht Freagairt trí Ghaeilge

## (Bonus marks for answering through Irish)

Ba chóir marcanna de réir an ghnáthráta a bhronnadh ar iarrthóirí nach ngnóthaíonn níos mó ná 75% d'iomlán na marcanna don pháipéar. Ba chóir freisin an marc bónais sin a shlánú **síos**.

Déantar an cinneadh agus an ríomhaireacht faoin marc bónais i gcás gach páipéir ar leithligh.

Is é 5% an gnáthráta agus is é 300 iomlán na marcanna don pháipéar. Mar sin, bain úsáid as an ngnáthráta 5% i gcás iarrthóirí a ghnóthaíonn 225 marc nó níos lú, e.g. 198 marc  $\times 5\% = 9.9 \Rightarrow$  bónas = 9 marc.

Má ghnóthaíonn an t-iarrthóir níos mó ná 225 marc, ríomhtar an bónas de réir na foirmle  $[300 - bunmharc] \times 15\%$ , agus an marc bónais sin a shlánú **síos**. In ionad an ríomhaireacht sin a dhéanamh, is féidir úsáid a bhaint as an tábla thíos.

| Bunmharc  | Marc Bónais |
|-----------|-------------|
| 226       | 11          |
| 227 - 233 | 10          |
| 234 - 240 | 9           |
| 241 - 246 | 8           |
| 247 - 253 | 7           |
| 254 - 260 | 6           |
| 261 - 266 | 5           |
| 267 - 273 | 4           |
| 274 - 280 | 3           |
| 281 - 286 | 2           |
| 287 - 293 | 1           |
| 294 - 300 | 0           |