

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2011

Marking Scheme

MATHEMATICS

Higher Level

Contents

Page
GENERAL GUIDELINES FOR EXAMINERS - PAPER 1 4
QUESTION 1 5
QUESTION 2 9
QUESTION 3 12
QUESTION 4 15
QUESTION 5 17
QUESTION 6 21
QUESTION 7 24
QUESTION 8 28
GENERAL GUIDELINES FOR EXAMINERS - PAPER 2 35
QUESTION 1 36
QUESTION 2 41
QUESTION 3 44
QUESTION 4 47
QUESTION 5 50
QUESTION 6 53
QUESTION 7 56
QUESTION 8 60
QUESTION 9 64
QUESTION 10 67
QUESTION 11 70
MARCANNA BREISE AS UCHT FREAGAIRT TRÍ GHAEILGE 73

GENERAL GUIDELINES FOR EXAMINERS - PAPER 1

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions (-3)
- Slips - numerical errors
- Misreadings (provided task is not oversimplified)

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2, ...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work of merit is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5 \cdot 50$ may be written as $€ 5,50$.

QUESTION 1

Part (a) $15(10,5)$ marks

Part (b)
$15(5,5,5)$ marks
Att (2, 2, 2)
Part (c)
Part (a)
$15(10,5)$ marks
Att (3, 2)

1. (a) Simplify fully $\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{4}{x^{2}-1}$

Setting up fraction
Fully simplified 5 marks
1 (a)

$$
\begin{aligned}
\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{4}{x^{2}-1} & =\frac{(x+1)(x+1)-(x-1)(x-1)-4}{(x+1)(x-1)}=\frac{x^{2}+2 x+1-x^{2}+2 x-1-4}{(x+1)(x-1)} \\
& =\frac{4 x-4}{(x+1)(x-1)}=\frac{4(x-1)}{(x+1)(x-1)}=\frac{4}{x+1}
\end{aligned}
$$

Blunders (-3)

B1 Factors once only
B2 Indices
B3 Incorrect cancellation
Part (b)
$15(5,5,5)$ marks
Att (2, 2, 2)
1 (b)
(i) Prove the factor theorem for polynomials of degree 2.

That is, given that $f(x)=a x^{2}+b x+c$ and k is a number such that $f(k)=0$, prove that $(x-k)$ is a factor of $f(x)$.
(ii) The factor theorem also holds for polynomials of higher degree.

Find the values of n for which $(x+k)$ is a factor of the polynomial $g(x)=x^{n}+k^{n}$, where $k \neq 0$.
(b) (i) $f(x)-f(k)$ factorised

5 marks
Att 2
Finish
5 marks
Att 2
1 (b) (i)

$$
\begin{aligned}
& f(x)=a x^{2}+b x+c . \\
& f(k)=a k^{2}+b k+c . \\
& \therefore f(x)-f(k)=a\left(x^{2}-k^{2}\right)+b(x-k)=a(x+k)(x-k)+b(x-k) . \\
& \therefore f(x)-f(k)=(x-k)(a x+a k+b) . \\
& \therefore(x-k) \text { is a factor of } f(x)-f(k) . \\
& \text { But } f(k)=0, \Rightarrow(x-k) \text { is a factor of } f(x) .
\end{aligned}
$$

Blunders (-3)
B1 Indices
B2 Factors
B3 $f(k) \neq 0$
Slips (-1)
S1 Numerical

OR

(b) (i) Setting up division

5 marks
Att 2
Finish
5 marks
1 (b) (i)

$$
\begin{aligned}
& f(x)=a x^{2}+b x+c \\
& f(k)=a k^{2}+b k+c \\
& f(x)-f(k)=a x^{2}+b-a k^{2}-b k \\
& x - k \longdiv { a x + (a k + b) } \\
& \frac{a x^{2}+b x-a k^{2}-b k}{(a k+b) x-a k^{2}-b k} \\
& \frac{(a k+b) x-a k^{2}-b k}{0}
\end{aligned}
$$

But $f(k)=0$,
$\Rightarrow f(x)=(x-k)[a x+(a k+b)]$
Blunders (-3)
B1 Indices
Slips (-1)
S1 Numerical
S2 Not changing sign when subtracting in division
(b) (ii)

5 marks
Att 2
1 (b) (ii)

$$
\begin{aligned}
& (x+k) \text { is a factor of } g(x) \Rightarrow g(-k)=0 . \\
& \therefore(-k)^{n}+k^{n}=0 \Rightarrow(-1)^{n} k^{n}+k^{n}=0 . \\
& \therefore n \text { is odd } \Rightarrow n=\{1,3,5,7,9, \ldots \ldots\} .
\end{aligned}
$$

Blunders (-3)
B1 Deduction root from factor
B2 Indices
B3 $(-1)^{n}$
B4 Solution set not stated
B5 Only one value n

1 (c) $(x-a)^{2}$ is a factor of $2 x^{3}-5 a x^{2}+8 a b x-36 a$, where $a \neq 0$.
Find the possible values of a and b.
Set up division
Remainder $=0$
Co-efficients $=0$
Finish
1 (c)

$$
\begin{aligned}
& (x-a)^{2}=x^{2}-2 a x+a^{2} . \\
& x ^ { 2 } - 2 a x + a ^ { 2 } \longdiv { 2 x - a } \longdiv { 2 x ^ { 3 } - 5 a x ^ { 2 } + 8 a b x - 3 6 a } \\
& 2 x^{3}-4 a x^{2}+2 a^{2} x \\
& -a x^{2}-2 a^{2} x+8 a b x-36 a \\
& \frac{-a x^{2}+2 a^{2} x-a^{3}}{-4 a^{2} x+8 a b x-36 a+a^{3}} \\
& \therefore\left(-4 a^{2}+8 a b\right) x+\left(a^{3}-36 a\right)=0 \text {. } \\
& \therefore-4 a^{2}+8 a b=0 \Rightarrow a-2 b=0 \text { and } a^{2}-36=0 \text {, as } a \neq 0 \text {. } \\
& \therefore a= \pm 6 \text { and } b= \pm 3 \text {. } \\
& \text { ie } a=6 \text { and } b=3 \text { or } a=-6 \text { and } b=-3 \text {. }
\end{aligned}
$$

Blunders (-3)

B1 Expansion of $(x-a)^{2}$ once only
B2 Indices
B3 Not like to like when equating coefficients
B4 Not two values of $1^{\text {st }}$ variable
Slips (-1)
S1 Not changing sign when subtracting
Attempts
A1 Any effort at division for 2 marks only
A2 $(x-a)$ as factor.

1 (c)

$$
\begin{aligned}
& \text { One factor }=\left(x^{2}-2 a x+a^{2}\right) \\
& \text { Other factor }=(2 x-36 / a) \\
& \left(x^{2}-2 a x+a^{2}\right) \cdot(2 x-36 / a)=2 x^{3}-5 a x^{2}+8 a b x-36 a \\
& 2 x^{3}-4 a x^{2}+2 a^{2} x-\frac{36}{a} x^{2}+72 x-36 a=2 x^{3}+(-5 a) x^{2}+8 a b x-36 a \\
& 2 x^{3}+(-4 a-36 / a) x^{2}+\left(2 a^{2}+72\right) x-36 a=2 x^{3}+(-5 a) x^{2}+(8 a b) x-36 a
\end{aligned}
$$

Equating coefficients
(i) $(-4 a-36 / a)=(-5 a)$
$-4 a^{2}-36=-5 a^{2}$
$a^{2}=36$
$a= \pm 6$
(ii) $\left(2 a^{2}+72\right)=8 a b$
$72+72=8 a b$
$\Rightarrow a b=18$
$a= \pm 6$
$\Rightarrow b= \pm 3$

Blunders (-3)
B1 Indices
B2 Expansion of $(x-a)^{2}$ once only
B3 Not like to like when equating coefficients
B4 Not 2 values of $1^{\text {st }}$ variable

Attempts

A1 Other factor not linear, Att 2 marks only.

QUESTION 2

Part (a)	$\mathbf{1 5 (1 0 , 5) \text { marks }}$	Att (3, 2)
Part (b)	$\mathbf{2 0 (5 , 5 , 5 , 5) \text { marks }}$	Att (2,2,2,2)
Part (c)	$15(5,5,5)$ marks	Att (2,2,2)

Part (a)
$15(10,5)$ marks
$\operatorname{Att}(3,2)$
2 (a) Solve for $x:|2 x-1| \leq 3$, where $x \in \mathbf{R}$.

Limits	10 marks	Att 3
Range	5 marks	Att 2
$2($ a		

2 (a)

$$
\begin{aligned}
& |2 x-1| \leq 3 \Rightarrow-3 \leq 2 x-1 \leq 3 . \\
& \therefore-1 \leq x \leq 2 .
\end{aligned}
$$

Blunders (-3)

B1 Upper limit
B2 Lower limit
B3 Inequality sign
B4 Indices
B5 Incorrect range
B6 No range
Slips (-1)
S1 Numerical
S2 Not \geq or \leq

Attempts

A1 Inequality sign ignored

OR

Quadratic inequality factorised
10 marks
Att 3
Range 5 marks Att 2
2 (a)

$$
\begin{aligned}
& |2 x-1| \leq 3 \\
& (2 x-1)^{2} \leq 9 \\
& 4 x^{2}-4 x+1 \leq 9 \\
& 4 x^{2}-4 x-8 \leq 0 \\
& x^{2}-x-2 \leq 0 \\
& (x-2)(x+1)=0 \\
& \Rightarrow x=2 \text { or } x=-1 \\
& \\
& f(x) \leq 0 \\
& -1 \leq x \leq 2
\end{aligned}
$$

Blunders (-3)

B1 Expansion of $(2 x-1)^{2}$ once only
B2 Inequality sign
B3 Factors
B4 Root formula once only
B5 Deduction root from factor
B6 Incorrect range
B7 No range
Slips (-1)
S1 Numerical
S2 Not \geq or \leq

Attempts

A1 Inequality signs ignored

Part (b)

$20(5,5,5,5)$ marks
Att (2, 2, 2, 2)
2 (b) α and $\frac{1}{\alpha}$ are roots of the quadratic equation $3 k x^{2}-18 t x+(2 k+3)=0$, where t and k are constants.
(i) Find the value of k.
(ii) If one of the roots is four times the other, find the possible values of t.
(b) (i) Product of roots

Value k
(b) (ii) Value α

Value t

5 marks
Att 2
5 marks
5 marks
Att 2
5 marks
Att 2
Att 2

2 (b) (i)

$$
\alpha\left(\frac{1}{\alpha}\right)=\frac{2 k+3}{3 k} \Rightarrow \frac{2 k+3}{3 k}=1 \Rightarrow k=3 .
$$

2 (b) (ii)

$$
\begin{aligned}
& k=3 \Rightarrow 9 x^{2}-18 t x+9=0 \Rightarrow x^{2}-2 t x+1=0 . \\
& \alpha=\frac{4}{\alpha} \Rightarrow \alpha^{2}=4 \Rightarrow \alpha= \pm 2 . \\
& \text { Sum of roots }=\alpha+\frac{1}{\alpha}=2 t \Rightarrow t=\frac{1}{2}\left(\pm \frac{5}{2}\right)= \pm \frac{5}{4} .
\end{aligned}
$$

Blunders (-3)
B1 Indices
B2 Sum of roots
B3 Product of roots
B4 Statement quadratic equation once only
B5 Only one value of t, where 2 values of α found.
Slips (-1)
S1 Numerical

2 (c) Let $f(x)=\frac{1}{x^{2}-6 x+a}$, where a is a constant.
(i) Prove that if $a=13$, then $f(x)>0$ for all $x \in \mathbf{R}$.
(ii) Prove that if $a=13$, then $f(x)<1$ for all $x \in \mathbf{R}$.
(iii) Find the range of values of a such that $0<f(x)<1$, for all $x \in \mathbf{R}$.

Part (c) (i)
5 marks
Att 2
(c) (ii)

5 marks
Att 2
(c) (iii)

5 marks
Att 2
2 (c) (i)

$$
\begin{aligned}
& \frac{1}{x^{2}-6 x+13}=\frac{1}{(x-3)^{2}+4} \\
& (x-3)^{2} \geq 0 \text { for all } x \in \mathbf{R} . \Rightarrow(x-3)^{2}+4>0 \\
& \therefore \frac{1}{x^{2}-6 x+13}>0 \Rightarrow f(x)>0 \text { when } a=13
\end{aligned}
$$

2 (c) (ii)

$$
\begin{aligned}
& \frac{1}{x^{2}-6 x+13}=\frac{1}{(x-3)^{2}+4} . \\
& (x-3)^{2} \geq 0 \Rightarrow(x-3)^{2}+4>1 . \\
& \therefore \frac{1}{x^{2}-6 x+13}<1 \Rightarrow f(x)<1 \text { when } a=13 .
\end{aligned}
$$

2 (c) (iii)

$$
\frac{1}{x^{2}-6 x+a}=\frac{1}{x^{2}-6 x+9+(a-9)}=\frac{1}{(x-3)^{2}+(a-9)}
$$

So, to get $f(x)$ always >0, we need $a>9$, and
To get $f(x)$ always less than 1 , we need denominator always >1, so $a>10$.
Combining these two conditions yields the overall condition $a>10$.

Blunders (-3)
B1 $\operatorname{Not}(x-3)^{2}$
B2 $\left[(x-3)^{2}+4\right] \ngtr 0$
B3 $\quad(x-3)^{2} \geq 0$
B4 $\quad\left[(x-3)^{2}+4\right] \ngtr 1$
B5 Deduction each time from work shown
B6 No deduction each time
B7 Inequality sign

QUESTION 3

Multiplication by conjugate
10 marks
Att 3
Value
5 marks
Att 2
3 (a) $\frac{1+2 i}{2-i}=\frac{(1+2 i)(2+i)}{(2-i)(2+i)}=\frac{2+5 i+2 i^{2}}{4-i^{2}}=\frac{5 i}{5}=i$.

Blunders (-3)
B1 Indices
B2 i
Slips (-1)
S1 Numerical

Attempts

A1 Not using correct conjugate

Part (b)
$15(5,5,5)$ marks
Att (2, 2, 2)
3 (b) (i) Find the two complex numbers $a+b i$ such that

$$
(a+b i)^{2}=-3+4 i
$$

(ii) Hence solve the equation $x^{2}+x+1-i=0$.
(i) Equations

Finish
(ii) Solve

3 (b) (i)

$$
\begin{aligned}
& (a+b i)^{2}=-3+4 i \Rightarrow a^{2}-b^{2}+2 a b i=-3+4 i \\
& \therefore a^{2}-b^{2}=-3 \text { and } a b=2 . \\
& b=\frac{2}{a} \Rightarrow a^{2}-\frac{4}{a^{2}}=-3 \Rightarrow a^{4}+3 a^{2}-4=0 . \\
& \therefore\left(a^{2}-1\right)\left(a^{2}+4\right)=0 \Rightarrow a^{2}-1=0 \text { and } a^{2}+4 \neq 0 . \\
& \therefore a= \pm 1 \Rightarrow b= \pm 2 \Rightarrow \text { solution is } \pm(1+2 i) .
\end{aligned}
$$

3 (b) (ii)

$$
\begin{aligned}
& x^{2}+x+(1-i)=0 \Rightarrow x=\frac{-1 \pm \sqrt{1-4(1-i)}}{2}=\frac{-1 \pm \sqrt{-3+4 i}}{2} . \\
& \therefore x=\frac{-1 \pm(1+2 i)}{2} \text { by part (i). } \\
& x=\frac{-1+1+2 i}{2} \text { or } x=\frac{-1-1-2 i}{2} \Rightarrow x=i \text { or } x=-1-i .
\end{aligned}
$$

Blunders (-3)

B1 Expansion of $(a+i b)^{2}$
B2 Indices
B3 i
B4 Not like to like
B5 Factors
B6 Quadratic formula
B7 Excess values (not real)
B8 Only one complex number found
B9 Incorrect deduction root from function
Slips (-1)
S1 Answers not simplified

3 (c) (i) Let A and B be 2×2 matrices, where A has an inverse.
Show that $\left(A^{-1} B A\right)^{n}=A^{-1} B^{n} A$ for all $n \in \mathrm{~N}$.
Let $P=\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right)$ and $M=\left(\begin{array}{cc}-5 & 3 \\ -10 & 6\end{array}\right)$.
(ii) Evaluate $P^{-1} M P$ and hence $\left(P^{-1} M P\right)^{n}$.
(iii) Hence, or otherwise, show that $M^{n}=M$, for all $n \in \mathrm{~N}$.

Part (c) (i)
(c) (ii) $P^{-1} M P$ $\left(P^{-1} M P\right)^{n}$
(c) (iii)

$$
\begin{aligned}
& \left(A^{-1} B A\right)^{n}=\left(A^{-1} B A\right)\left(A^{-1} B A\right)\left(A^{-1} B A\right) \ldots \ldots \ldots \ldots . . .\left(A^{-1} B A\right) \\
& =A^{-1} B\left(A A^{-1}\right) B\left(A A^{-1}\right) \ldots \ldots \ldots . .\left(A A^{-1}\right) B A \\
& =A^{-1} B I B I \ldots . \ldots I B A=A^{-1} B B B B . . \ldots \ldots . . . B A \\
& =A^{-1} B^{n} A \text {. }
\end{aligned}
$$

(Or by induction)
3 (c) (ii)

$$
\begin{aligned}
& P^{-1} M P=\frac{1}{(6-5)}\left(\begin{array}{cc}
2 & -1 \\
-5 & 3
\end{array}\right)\left(\begin{array}{cc}
-5 & 3 \\
-10 & 6
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
-5 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) . \\
& \left(P^{-1} M P\right)^{n}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

3 (c) (iii)

$$
\begin{aligned}
& \left(P^{-1} M P\right)^{n}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \Rightarrow P^{-1} M^{n} P=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) . \\
& \therefore M^{n}=P\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) P^{-1}=\left(\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-5 & 3
\end{array}\right)=\left(\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
-5 & 3
\end{array}\right)=\left(\begin{array}{cc}
-5 & 3 \\
-10 & 6
\end{array}\right) \\
& \quad=M .
\end{aligned}
$$

Blunders (-3)
B1 $\quad P^{-1}$ once only
B2 $P^{-1} . P \neq I$
B3 Indices
B4 Incorrect order of multiplication
Note: $P^{-1} M P$ must be a diagonal matrix in part (c)(ii) to merit $2^{\text {nd }} 5$ marks; otherwise 0 marks.

QUESTION 4

Part (a) $10(5,5)$ marks Att $(2,2)$
Part (b) $40(5,5,5,5,10,5,5)$ marks_Att (2, 2, 2, 2, 3, 2, 2)

Part (a)
$10(5,5)$ marks
Att (2, 2, 2)
4(a) In an arithmetic sequence, the third term is -3 and the sixth term is -15 . Find the first term and the common difference.
$T_{3}, T_{6} \quad 5$ marks Att 2
a and d
5 marks
Att 2
4 (a)

$$
\begin{aligned}
& a+2 d=-3 \\
& \frac{a+5 d}{}=-15 \\
& \hline 3 d=-12
\end{aligned} \Rightarrow d=-4 \text { and } a=5 . ~ \$
$$

First term $=5$, common difference $=-4$.
(NOTE: a and d can be in any order)

Blunders (-3)

B1 Term of arithmetic sequence
B2 Formula for term once only
B3 Incorrect a
B4 Incorrect d
Slips (-1)
S1 Numerical

Part (b)
$40(5,5,5,5,10,5,5)$ marks
$\operatorname{Att}(2,2,2,2,3,2,2)$
4 (b) Let $u_{n}=l\left(\frac{1}{2}\right)^{n}+m(-1)^{n}$ for all $n \in \mathbf{N}$.
(i) Verify that u_{n} satisfies the equation $2 u_{n+2}+u_{n+1}-u_{n}=0$.
(ii) If $a_{k}=u_{k}+u_{k+1}$, express a_{k} in terms of k and l.
(iii) For $l>0$, find $\sum_{k=1}^{\infty} a_{k}$, in terms of l.
(iv) Find the least positive integer n for which $\sum_{k=1}^{n} a_{k}>(0 \cdot 99) \sum_{k=1}^{\infty} a_{k}$.
(b) (i) Correct \boldsymbol{u}_{n+1} and $\boldsymbol{u}_{\boldsymbol{n}+2}$ Verify
(b) (ii) Correct $\boldsymbol{u}_{\boldsymbol{k}+1}$ Express
(b) (iii) S_{∞}
(b) (iv) S_{n}

5 marks
Att 2
5 marks
Att 2
5 marks
Att 2
5 marks
Att 2
10 marks
5 marks
5 marks

Att 3
Att 2
Att 2

4 (b) (i)

$$
\begin{aligned}
2 u_{n+2}+u_{n+1}-u_{n} & =2 l\left(\frac{1}{2}\right)^{n+2}+2 m(-1)^{n+2}+l\left(\frac{1}{2}\right)^{n+1}+m(-1)^{n+1}-l\left(\frac{1}{2}\right)^{n}-m(-1)^{n} . \\
& =l\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}+\frac{1}{2}-1\right)+m(-1)^{n}(2-1-1)=0
\end{aligned}
$$

4 (b) (ii)

$$
\begin{aligned}
& a_{k}=u_{k}+u_{k+1} \Rightarrow a_{k}=l\left(\frac{1}{2}\right)^{k}+m(-1)^{k}+l\left(\frac{1}{2}\right)^{k+1}+m(-1)^{k+1} . \\
& \begin{aligned}
\therefore a_{k} & =l\left(\frac{1}{2}\right)^{k}\left(\frac{3}{2}\right)+m(-1)^{k}(1-1) \\
\quad & =\frac{3}{2} l\left(\frac{1}{2}\right)^{k} .
\end{aligned}
\end{aligned}
$$

4 (b) (iii)

$$
\sum_{k=1}^{\infty} a_{k}=\frac{3}{2} l\left(\frac{1}{2}\right)+\frac{3}{2} l\left(\frac{1}{2}\right)^{2}+\frac{3}{2} l\left(\frac{1}{2}\right)^{3}+\cdots---+\frac{3}{2} l\left(\frac{1}{2}\right)^{k}+
$$

$$
\text { This is an infinite geometric series. } \quad \therefore \sum_{k=1}^{\infty} a_{k}=\frac{\frac{3}{4} l}{1-\frac{1}{2}}=\frac{3}{2} l .
$$

4 (b) (iv)

$$
\begin{aligned}
& \sum_{k=1}^{n} a_{k}=\frac{\frac{3}{4} l\left[1-\left(\frac{1}{2}\right)^{n}\right]}{1-\frac{1}{2}}=\frac{3}{2} l\left[1-\left(\frac{1}{2}\right)^{n}\right] \\
& \sum_{k=1}^{n} a_{k}>(0.99) \sum_{k=1}^{\infty} a_{k} \Rightarrow \frac{3}{2} l\left[1-\left(\frac{1}{2}\right)^{n}\right]>(0.99) \frac{3}{2} l . \\
& \therefore 1-\left(\frac{1}{2}\right)^{n}>0.99 \Rightarrow\left(\frac{1}{2}\right)^{n}<0.01 \Rightarrow n=7 .
\end{aligned}
$$

Blunders (-3)

B1 In u_{n+1} once only
B2 In u_{n+2} once only
B3 Indices
B4 $(-1)^{n}$
B5 Sum of geometric progression to infinity
B6 Incorrect a
B7 Incorrect r
B8 Sum of n terms of geometric progression
B9 Not using correct values in (iv) once only
B10 Logs laws
B11 Not least integer

QUESTION 5

Part (a)

Part (b)
Part (c)

Part (a)

$10(5,5)$ marks
Att (2, 2)
(a) Find the coefficient of x^{8} in the expansion of $\left(x^{2}-1\right)^{10}$.
T_{7}

5 marks

Value
5 marks
5 (a)

$$
\begin{aligned}
& {\left[x^{2}+(-1)\right]^{10} \quad \text { Let } u_{r+1} \text { be the } r \text { th term. }} \\
& u_{r+1}=\binom{10}{r}\left(x^{2}\right)^{10-r}(-1)^{r} \\
& \Rightarrow k\left(x^{20-2 r}\right)=k\left(x^{8}\right) \\
& \Rightarrow 20-2 r=8 \\
& 12=2 r \\
& \quad r=6
\end{aligned}
$$

Term: $u_{7}=\binom{10}{6}\left(x^{2}\right)^{4}(-1)^{6}=\binom{10}{4} x^{8}=210 x^{8}$
Coefficient: 210

OR

$$
\begin{aligned}
& {\left[x^{2}+(-1)\right]^{10}=}\left(x^{2}\right)^{10}+\binom{10}{1}\left(x^{2}\right)^{9}(-1)^{1}+\binom{10}{2}\left(x^{2}\right)^{8}(-1)^{2} \\
&+\binom{10}{3}\left(x^{2}\right)^{7}(-1)^{3}+\binom{10}{4}\left(x^{2}\right)^{6}(-1)^{4} \\
&+\binom{10}{5}\left(x^{2}\right)^{5}(-1)^{5}+\binom{10}{6}\left(x^{2}\right)^{4}(-1)^{6}+\cdots \\
& \Rightarrow u_{7}=\binom{10}{6}\left(x^{8}\right)(1)=210 x^{8}
\end{aligned}
$$

Coefficient: 210

Blunders (-3)

B1 General term
B2 Errors in binomial expansion once only
B3 Indices
B4 Error value $\binom{n}{r}$ or no value $\binom{n}{r}$.
(i) Solve the equation:

$$
\log _{2} x-\log _{2}(x-1)=4 \log _{4} 2 .
$$

(ii) Solve the equation:

$$
3^{2 x+1}-17(3)^{x}-6=0
$$

Give your answer correct to two decimal places.

Part (b) (i) $\log f(x)=2$
5 marks
Att 2
Value x
5 marks
Att 2
5 (b) (i)

$$
\begin{aligned}
& \log _{2} x-\log _{2}(x-1)=4 \log _{4} 2 \\
& \therefore \log _{2} \frac{x}{x-1}=\log _{4} 16=2 \\
& \therefore \frac{x}{x-1}=4 \Rightarrow 4 x-4=x \Rightarrow x=\frac{4}{3} .
\end{aligned}
$$

Blunders (-3)

B1 Logs laws
B2 Indices
Worthless
W1 Drops 'log'
Part (b) (ii) Quadratic factorised 5 marks

Att 2 Value \boldsymbol{x}

5 marks
Att 2
5 (b) (ii)

$$
\begin{aligned}
& 3^{2 x+1}-17(3)^{x}-6=0 . \quad \text { Let } y=3^{x} . \\
& \therefore 3 y^{2}-17 y-6=0 . \\
& (y-6)(3 y+1)=0 \Rightarrow y=6, y \neq-\frac{1}{3} . \\
& \therefore 3^{x}=6 \Rightarrow x \log _{e} 3=\log _{e} 6 \Rightarrow x=\frac{\log _{e} 6}{\log _{e} 3}=1 \cdot 63 .
\end{aligned}
$$

Blunders (-3)

B1 Indices
B2 Factors once only
B3 Root formula once only
B4 Logs
B5 Uses $y=-1 / 3$
Slips (-1)
S1 Numerical
S2 Not to 2 decimal places

Attempts

A1 Not quadratic equation
A2 Correct answer by trial and error

Prove by induction that 9 is a factor of $5^{2 n+1}+2^{4 n+2}$, for all $n \in \mathbf{N}$.

Part (c) | $P(1)$ | 5 marks | Att 2 |
| :--- | :---: | :---: |
| | $P(k)$ | 5 marks |
| $P(k+1)$ | 10 marks | Att 2 |
| | Att 3 | |

5 (c)
Test for $n=1$.
$P(1): 5^{3}+2^{6}=189=9 \times 21$.
\therefore True for $n=1$.
Assume true for $n=k$.
$P(k): \quad 5^{2 k+1}+2^{4 k+2} \quad$ is divisible by 9 .
Test for $n=k+1$.
$P(k+1): \quad 5^{2 k+3}+2^{4 k+6}=25 \cdot 5^{2 k+1}+16 \cdot 2^{4 k+2}=(9+16) \cdot 5^{2 k+1}+16 \cdot 2^{4 k+2}$
$=9.5^{2 k+1}+16\left(5^{2 k+1}+2^{4 k+2}\right)$, which is divisible by 9 .
\therefore True for $n=k+1$.
So, whenever $P(k)$ is true, $P(k+1)$ true.
Since $P(1)$ true, then, by induction, $P(n)$ true for all $n \in \mathrm{~N}$.
Note: accept $n=0$ as base case.

OR

5 (c)
To prove $5^{2 n+1}+2^{4 n+2}$ is divisible by 9 .
Test $n=1$
$P(1): 5^{3}+2^{6}=125+64=189=9(21)$
\Rightarrow True for $n=1$

Assume true for $n=k$
$P(k):\left(5^{2 k+1}+2^{4 k+2}\right) \quad$ is divisible by 9

To prove: $\left(5^{2 k+3}+2^{4 k+6}\right)$ is divisible by 9
Let $f(k)=5^{2 k+1}+2^{4 k+2}$
Given the assumption that $f(k)$ is divisible by 9 , then $f(k+1)$ will be divisible by 9 if and only if $[f(k+1)-f(k)]$ is divisible by 9 .

$$
\begin{aligned}
& f(k+1)-f(k)=\left(5^{2 k+3}+2^{4 k+6}\right)-\left(5^{2 k+1}+2^{4 k+2}\right) \\
& =25\left(5^{2 k+1}\right)+16\left(2^{4 k+2}\right)-5^{2 k+1}-2^{4 k+2} \\
& =24\left(5^{2 k+1}\right)+15\left(2^{4 k+2}\right) \\
& =(27-3)\left(5^{2 k+1}\right)+(18-3)\left(2^{4 k+2}\right) \\
& =27\left(5^{2 k+1}\right)+18\left(2^{4 k+2}\right)-3\left(5^{2 k+1}\right)-3\left(2^{4 k+2}\right) \\
& =9\left[3\left(5^{2 k+1}\right)+2\left(2^{4 k+2}\right)\right]-3\left[5^{2 k+1}+2^{4 k+2}\right] \\
& \downarrow \downarrow \\
& \text { Divisible by } 9 \text { Divisible by } 9 \text { from (*) above } \\
& \Rightarrow f(k+1)-f(k) \text { is divisible by } 9
\end{aligned}
$$

So whenever $P(k)$ true, $P(k+1)$ is true. Since $P(1)$ is true, then by induction $P(2)$, $P(3), P(4) \ldots \ldots$ are all true.

Blunders (-3)
B1 Indices
B2 $n \geq 2$

Slips (-1)
S1 Numerical
Note: Must prove $P(1)$ step. Not sufficient to state $P(n)$ true for $n=1$
(a) Differentiate $\cos ^{2} x$ with respect to x.

6 (a)

$$
f(x)=\cos ^{2} x \Rightarrow f^{\prime}(x)=-2 \cos x \sin x
$$

Blunders (-3)

B1 Differentiation

Attempts

A1 Error in differentiation formula (chain rule)

Part (b)

6 (b) The equation of a curve is $y=e^{-x^{2}}$.
(i) Find $\frac{d y}{d x}$.
(ii) Find the co-ordinates of the turning point of the curve.
(iii) Determine whether this turning point is a local maximum or a local minimum.

Part (b) (i)
5 marks
Att 2
(ii) $f^{\prime}(x)=0$

Turning point
5 marks
5 marks
Att 2

5 marks
Att 2
(iii)

6 (b) (i)

$$
\frac{d y}{d x}=e^{-x^{2}}(-2 x) .
$$

6 (b) (ii)

$$
\frac{d y}{d x}=0 \Rightarrow e^{-x^{2}}(-2 x)=0 \Rightarrow x=0 \text { and } y=1 \text {. Turning point is }(0,1) .
$$

6 (b) (iii)

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=e^{-x^{2}}(-2 x)(-2 x)-2 e^{-x^{2}}=e^{-x^{2}}\left(4 x^{2}-2\right) . \\
& \text { For } x=0, \frac{d^{2} y}{d x^{2}}=-2 e^{0}=-2<0 \Rightarrow(0,1) \text { is a local maximum. }
\end{aligned}
$$

B1 Indices
B2 Differentiation
B3 $e^{-x^{2}}=0$
B4 No $2^{\text {nd }}$ differential

Attempts

A1 Error in differentiation formula (chain rule)
Note: Over simplified work in (i) can lead to attempt at most in (ii) and (iii).

Part (c) $15(5,5,5)$ marks
6 (c) The function f is defined as $x \rightarrow \frac{2 x}{x+1}$, where $x \in \mathbf{R} \backslash\{-1\}$.
(i) Find the equations of the asymptotes of the curve $y=f(x)$.
(ii) P and Q are distinct points on the curve $y=f\{x)$. The tangent at Q is parallel to the tangent at P. The co-ordinates of P are $(1,1)$.
Find the co-ordinates of Q.
(iii) Verify that the point of intersection of the asymptotes is the midpoint of $[P Q]$.

Part (c) (i)
(ii) 5 marks

Att 2
5 marks
Att 2
(iii)

6 (c) (i)
$x=-1$ is the vertical asymptote.
$\lim _{x \rightarrow \infty} \frac{2 x}{x+1}=\lim _{x \rightarrow \infty} \frac{2}{1+\frac{1}{x}}=2 \Rightarrow y=2$ is a horizontal asymptote.
6 (c) (ii)

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2(x+1)-2 x(1)}{(x+1)^{2}}=\frac{2}{(x+1)^{2}} . \text { Slope at } P(1,1)=\frac{2}{4}=\frac{1}{2} . \\
& \text { Slope at } Q=\frac{1}{2} \Rightarrow \frac{2}{(x+1)^{2}}=\frac{1}{2} \Rightarrow(x+1)^{2}=4 . \\
& \therefore x+1= \pm 2 \Rightarrow x=1 \text { or } x=-3 . \therefore Q \text { is }(-3,3) .
\end{aligned}
$$

$$
\begin{aligned}
&(x+1)^{2}=4 \\
& x^{2}+2 x+1-4=0 \\
& x^{2}+2 x-3=0 \\
&(x+3)(x-1)=0 \\
&=x+3=0 \\
& \text { or } \\
& x=-3 \\
& \downarrow \text { or } \\
& \\
& \mathrm{x}=1 \\
& \\
&(-3,3) \\
& \downarrow
\end{aligned}
$$

6 (c) (iii) Asymptotes intersect at $(-1,2)$,

$$
P(1,1) \text { and } Q(-3,3) \text {. }
$$

$$
\text { Mid-point of }[P Q] \text { is }(-1,2)
$$

Blunders (-3)

B1 Asymptotes
B2 Limits
B3 Differentiation
B4 Indices
B5 Formula for mid-point line
Slips (-1)
S1 Numerical

Attempts

A1 Error in differentiation formula
Note: Cannot get $2^{\text {nd }} 5$ marks in (c) (ii) if slope at Q not equal to slope at P.

QUESTION 7

Part (a)	$10(5,5)$ marks	Att (2, 2)
Part (b)	$25(10,10,5)$ marks	Att (3, 3, 2)
Part (c)	$15(10,5)$ marks	Att (3, 2)
Part (a)	$10(5,5)$ marks	Att (2, 2)

7 (a) Find the slope of the tangent to the curve $x^{2}+y^{3}=x-2$ at the point $(3,-2)$.

Differentiation Slope
7 (a)

Blunders (-3)

B1 Differentiation
B2 Indices
B3 Incorrect value of x or no value of x in slope
B4 Incorrect value of y or no value of y in slope
Slips (-1)
S1 Numerical

Attempts

A1 Error in differentiation formula
A2 $\frac{d y}{d x}=2 x+3 y^{2} \frac{d y}{d x}=1$ and uses the two $\left(\frac{d y}{d x}\right)$ terms

7 (b) A curve is defined by the parametric equations

$$
x=\frac{t-1}{t+1} \quad \text { and } \quad y=\frac{-4 t}{(t+1)^{2}} \text {, where } t \neq-1 \text {. }
$$

(i) Find $\frac{d x}{d t}$ and $\frac{d y}{d t}$.
(ii) Hence find $\frac{d y}{d x}$, and express your answer in terms of x.
Part (b) $\frac{d x}{d t}$
10 marks
Att 3

$\frac{d y}{d t}$	10 marks
$\frac{d y}{d x}$	5 marks

Att 3

Att 2
7 (b) (i)

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{1(t+1)-1(t-1)}{(t+1)^{2}}=\frac{2}{(t+1)^{2}} . \\
& \frac{d y}{d t}=\frac{-4(t+1)^{2}+4 t(2)(t+1)}{(t+1)^{4}}=\frac{-4(t+1)+8 t}{(t+1)^{3}}=\frac{4(t-1)}{(t+1)^{3}} .
\end{aligned}
$$

7 (b) (ii)

$$
\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=\frac{4(t-1)}{(t+1)^{3}} \times \frac{(t+1)^{2}}{2}=\frac{2(t-1)}{t+1}=2 x .
$$

Blunders (-3)

B1 Differentiation
B2 Indices
B3 Error in getting $\frac{d y}{d x}$

Attempts

A1 Error in differentiation formula
(c) The functions f and g are defined on the domain $\mathrm{R} \backslash\{-1,0\}$ as follows:

$$
f: x \rightarrow \tan ^{-1}\left(\frac{-x}{x+1}\right) \text { and } g: x \rightarrow \tan ^{-1}\left(\frac{x+1}{x}\right) .
$$

(i) Show that $f^{\prime}(x)=\frac{-1}{2 x^{2}+2 x+1}$.
(ii) It can be shown that $f^{\prime}(x)=g^{\prime}(x)$.

One of the three diagrams A, B, or C below represents parts of the graphs of f and g. Based only on the derivatives, state which diagram is the correct one, and state also why each of the other two diagrams is incorrect.

Diagram A

Diagram B

Diagram C

c(i)
10 marks
Att 3
7 (c) (i)

$$
\begin{aligned}
& f(x): x \rightarrow \tan ^{-1}\left(\frac{-x}{x+1}\right) \\
& f^{\prime}(x)=\frac{1}{1+\left(\frac{-x}{x+1}\right)^{2}} \times \frac{-1(x+1)+x(1)}{(x+1)^{2}}=\frac{(x+1)^{2}}{x^{2}+2 x+1+x^{2}} \times \frac{-1}{(x+1)^{2}}=\frac{-1}{2 x^{2}+2 x+1} .
\end{aligned}
$$

OR

$$
\begin{aligned}
& \sqrt{(x+1)^{2}+x^{2}} \\
& =\sqrt{2 x^{2}+2 x+1}
\end{aligned}
$$

$$
\begin{equation*}
y=\tan ^{-1}\left(\frac{-x}{x+1}\right) \tag{-x}
\end{equation*}
$$

$$
\tan y=\frac{-x}{x+1}
$$

$\sec ^{2} y \cdot \frac{d y}{d x}=\frac{(x+1)(-1)-(-x)(1)}{(x+1)^{2}}$

$\frac{1}{\cos ^{2} y} \cdot \frac{d y}{d x}=\frac{-x-1+x}{(x+1)^{2}}$
$\cos ^{2} y=\frac{(x+1)^{2}}{2 x^{2}+2 x+1}$
$\frac{1}{\cos ^{2} y} \cdot \frac{d y}{d x}=\frac{-1}{(x+1)^{2}}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-\cos ^{2} y}{(x+1)^{2}} \\
& =\frac{-1}{(x+1)^{2}} \cdot \frac{(x+1)^{2}}{2 x^{2}+2 x+1} \\
& =\frac{-1}{2 x^{2}+2 x+1}
\end{aligned}
$$

Blunders (-3)

B1 Differentiation
B2 Indices
B3 Error in value of $\tan y$
B4 Error in value of $\cos y$
B5 Sides of triangle once only

Attempts

A1 Error in differentiation formula and hence Att 2 at most in simplification

7 (c) (ii)
Diagram A is correct.
It cannot be Diagram B, as these curves are not "parallel" (i.e. identical up to a vertical shift, which is necessary because their derivatives are equal for all x).
It cannot be Diagram C as these graphs are increasing, whereas they should be decreasing, because their derivatives are negative for $x>0$.

OR

Given $f^{\prime}(x)=g^{\prime}(x)$
$\Rightarrow m_{1}=m_{2} \quad$ (same slopes)
\Rightarrow parallel curves

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-1}{2 x^{2}+2 x+1}<0 \quad \text { when } x>0 \\
& \Rightarrow \operatorname{Both} f(x) \text { and } g(x) \text { are decreasing funtions. }
\end{aligned}
$$

Diagram A: correct
Diagram B: not parallel curves
Diagram C: increasing curves

Blunders (-3)

B1 Incorrect statement
Part (a)

Part (b)
Part (c)
$8 \quad$ (a) Find $\int\left(x^{3}+\sqrt{x}\right) d x$.

8 (a)

$$
\int\left(x^{3}+\sqrt{x}\right) d x=\frac{1}{4} x^{4}+\frac{2}{3} x^{\frac{3}{2}}+c .
$$

Blunders (-3)
B1 Integration
B2 Indices
B3 No 'c'

Part (b)
8 (b) (i) Evaluate $\int_{0}^{2} \frac{x+1}{x^{2}+2 x+2} d x$.
(ii) Evaluate $\int_{0}^{2} \frac{x^{2}+2 x+2}{x+1} d x$.

Part (b) (i) Correct substitution Integration Finish

5 marks
Att 2
5 marks
Att 2
5 marks

8 (b) (i)

$$
\begin{aligned}
& \int_{0}^{2} \frac{x+1}{x^{2}+2 x+2} d x . \quad \text { Let } u=x^{2}+2 x+2 \Rightarrow d u=(2 x+2) d x . \\
& =\frac{1}{2} \int_{2}^{10} \frac{d u}{u}=\frac{1}{2}\left[\log _{e} u\right]_{2}^{10}=\frac{1}{2}\left[\log _{e} 10-\log _{e} 2\right]=\frac{1}{2} \log _{e} 5=\log _{e} \sqrt{5} .
\end{aligned}
$$

Blunders (-3)

B1 Integration
B2 Differentiation
B3 Logs
B4 Limits
B5 Incorrect order in applying limits

B6 Not calculating substituted limits
B7 Not changing limits
Slips (-1)
S1 Numerical
Part (b) (ii) Integration
8 (b) (ii)

$$
\begin{aligned}
\therefore \int_{0}^{2} \frac{x^{2}+2 x+2}{x+1} & d x=\int_{0}^{2} \frac{(x+1)^{2}+1}{x+1} d x=\int_{0}^{2}\left((x+1)+\frac{1}{x+1}\right) d x \\
& =\left[\frac{1}{2} x^{2}+x+\log _{e}(x+1)\right]_{0}^{2}=2+2+\log _{e} 3=4+\log _{e} 3
\end{aligned}
$$

OR

$$
\frac{x+1}{x + 1 \longdiv { x ^ { 2 } + 2 x + 2 }}
$$

$$
\begin{array}{lr}
\int \frac{x^{2}+2 x+2}{x+1} d x & \frac{x^{2}+x}{x+2} \\
=\int\left[(x+1)+\left(\frac{1}{x+1}\right)\right] d x & \frac{x+1}{1}
\end{array}
$$

Finish as above
Blunders (-3)
B1 Integration
B2 Differentiation
B3 Logs
B4 Limits
B5 Incorrect order in applying limits
B6 Not calculating substituted limits
B7 Not changing limits
Slips (-1)
S1 Numerical
S2 Not changing sign when subtracting in division

8 (c) Use integration methods to establish the formula $A=\pi r^{2}$ for the area of a disc of radius r.

Set up

5 marks
Att 2
Finish
5 marks
Att 2
8 (c)
$x^{2}+y^{2}=r^{2}$ is a circle, centre $(0,0)$, radius $=r$.
Area of disc $=A=4 \int_{0}^{r} \sqrt{r^{2}-x^{2}} d x$
Let $x=r \sin \theta \Rightarrow d x=r \cos d \theta$.
$\therefore A=4 \int_{0}^{\frac{\pi}{2}} \sqrt{r^{2}-r^{2} \sin ^{2} \theta} \cdot r \cos \theta d \theta=4 \int^{\frac{\pi}{2}} \sqrt{r^{2}\left(1-\sin ^{2} \theta\right)} \cdot r \cos \theta d \theta$

$=4 \int_{0}^{\frac{\pi}{2}} r^{2} \cos ^{2} \theta d \theta=\left(4 r^{2}\right) \frac{1}{2}[\theta+1 / 2 \sin 2 \theta]_{0}^{\frac{\pi}{2}}$
$x=0 \Rightarrow \theta=0$
$=2 r^{2}\left[\left(\frac{\pi}{2}+\sin \pi\right)-(0+\sin 0)\right]$
$\therefore A=2 r^{2}\left(\frac{\pi}{2}\right)=\pi r^{2}$.

OR

$$
\begin{aligned}
& \frac{x}{r}=\sin \theta \Rightarrow x=r \sin \theta \\
& \frac{d x}{d \theta}=r \cos \theta \Rightarrow d x=r \cos \theta \cdot d \theta
\end{aligned}
$$

$\sqrt{r^{2}-x^{2}}$

From diagram : $\cos \theta=\frac{\sqrt{r^{2}-x^{2}}}{r} \Rightarrow r \cos \theta=\sqrt{r^{2}-x^{2}}$

$$
\begin{aligned}
& A=4 \int_{0}^{r} \sqrt{r^{2}-x^{2}} d x \\
& =4 \int(r \cos \theta) \cdot(r \cos \theta) \cdot d \theta \\
& =4 \int r^{2} \cos ^{2} \theta \cdot d \theta \text { etc. }
\end{aligned}
$$

Blunders (-3)

B1 Integration
B2 Differentiation
B3 Trig formula
B4 Indices
B5 Limits
B6 Incorrect order in applying limits

B7 Not calculating substituted limits
B8 Not changing limits
B9 Definition of $\sin \theta$
B10 Definition of $\cos \theta$
Slips (-1)
S1 Numerical
S2 Trig value or no trig value
Attempts
A1 Error in differentiation formula or rules of integration

Worthless

W1 $x=r \sin \theta$ or $x=r \cos \theta$ not used in integration: 0 marks for $2^{\text {nd }} 5$

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2011

Marking Scheme

Mathematics - Paper 2

Higher Level

GENERAL GUIDELINES FOR EXAMINERS - PAPER 2

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions (-3)
- Slips - numerical errors (-1)
- Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme.
They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2, ..etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2, ...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work of merit is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5 \cdot 50$ may be written as $€ 5,50$.

1 (a) The following parametric equations define a circle:

$$
x=2+3 \sin \theta, \quad y=3 \cos \theta, \text { where } \theta \in \mathbf{R} .
$$

What is the Cartesian equation of the circle?

1 (a)

$$
\begin{aligned}
& x=2+3 \sin \theta \quad y=3 \cos \theta \\
& (x-2)^{2}+y^{2}=9 \sin ^{2} \theta+9 \cos ^{2} \theta=9\left(\cos ^{2} \theta+\sin ^{2} \theta\right) . \\
& \therefore(x-2)^{2}+y^{2}=9 .
\end{aligned}
$$

OR

$$
\begin{aligned}
& x^{2}=4+12 \sin \theta+9 \sin ^{2} \theta \text { and } y^{2}=9 \cos ^{2} \theta \\
& \Rightarrow x^{2}+y^{2}=4+12 \sin \theta+9\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=13+12 \sin \theta \\
& \Rightarrow x^{2}+y^{2}=13+12\left(\frac{x-2}{3}\right) \\
& \Rightarrow x^{2}+y^{2}=13+4 x-8 \\
& \Rightarrow x^{2}+y^{2}-4 x-5=0
\end{aligned}
$$

OR

$$
\begin{aligned}
& \cos ^{2} \theta+\sin ^{2} \theta=1 \\
& \left(\frac{x-2}{3}\right)^{2}+\left(\frac{y}{3}\right)^{2}=1 \quad \Rightarrow(x-2)^{2}+y^{2}=9
\end{aligned}
$$

OR
Centre $(2,0)$ and Radius $3 \Rightarrow(x-2)^{2}+y^{2}=9$

Blunders (-3)

B1 Incorrect squaring (apply once if same type of error)
B2 $\cos ^{2} \theta+\sin ^{2} \theta \neq 1$
B3 Incorrect centre or radius
Slips (-1)
S1 Arithmetic error

Attempts (3 marks)

A1 Effort at expressing x^{2} or y^{2} in terms of θ
A2 $\quad \theta$ not eliminated
A3 Centre (2,0) and/or radius 3 and stops
A4 $x^{2}+y^{2}=9$ with work
Worthless
W1 $x^{2}+y^{2}=1$

1 (b) Find the equation of the circle that passes through the points $(0,3),(2,1)$ and $(6,5)$.
(b) One mediator
$2^{\text {nd }}$ mediator
Centre
Finish

10 marks
Att 3
5 marks
5 marks
5 marks

Att 2
Att 2
Att 2

1 (b)
Mid-point $[A B]=E(1,2)$.
Slope of $A B=\frac{3-1}{0-2}=-1 \Rightarrow$ slope $E Q=1$.
\therefore Equation $E Q: y-2=1(x-1) \Rightarrow E Q: x-y=-1$.
Mid-point $[B C]=D(4,3)$.
Slope of $B C=\frac{5-1}{6-2}=1 \Rightarrow$ slope of $D Q=-1$.

\therefore Equation $D Q: y-3=-1(x-4) \Rightarrow D Q: x+y=7$.
$x-y=-1$

$|A Q|=r=\sqrt{(3-0)^{2}+(4-3)^{2}}=\sqrt{10}$. Equation of circle: $(x-3)^{2}+(y-4)^{2}=10$.

OR

(b) An equation in two variables

Second equation in two variables Two values
Finish

10 marks
5 marks
5 marks
5 marks

Att 3
Att 2
Att 2
Att 2

1(b)

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

$$
\Rightarrow 0+9+2 g(0)+2 f(3)+c=0 \Rightarrow 6 f+c=-9 .
$$

Also $4+1+4 g+2 f+c=0 \Rightarrow 4 g+2 f+c=-5$

$$
\begin{equation*}
\text { and } 36+25+12 g+10 f+c=0 \Rightarrow 12 g+10 f+c=-61 \tag{i}
\end{equation*}
$$

Solving between (i) and (ii) $g=-3$ and $f=-4$

$$
\Rightarrow 6(-4)+c=-9 \Rightarrow c=15
$$

Equation of circle: $x^{2}+y^{2}-6 x-8 y+15=0$
(b) Appropriate slopes Establishing semi circle Centre or radius Finish

10 marks
Att 3
5 marks
5 marks
5 marks

Att 2
Att 2
Att 2

1(b) Slope $(0,3)$ and $(2,1) \quad \frac{1-3}{2-0}=-1$
Slope $(2,1)$ and $(6,5) \quad \frac{5-1}{6-2}=1$
\Rightarrow perpendicular lines.
But angle in a semi-circle right angle $\Rightarrow(0,3)$ and $(6,5)$ diameter extremities.
Centre of circle $(3,4)$
Radius: $\sqrt{(3-0)^{2}+(4-3)^{2}}=\sqrt{10}$
Equation: $(x-3)^{2}+(y-4)^{2}=10$

Blunders (-3)

B1 Incorrect perpendicular slope
B2 Error in slope formula
B3 Error in equation of line formula
B4 Error in radius formula
B5 Equation of circle incomplete
B6 Incorrect diameter
B7 Error in general equation of circle
B8 Equation of circle but radius not calculated
Slips (-1)
S1 Arithmetic errors

Attempts (3, 2, 2, 2 marks)

A1 Product of perpendicular slopes $=-1$
A2 Mixing x and y ordinates
A3 Correct formula with some correct substitution
A4 Some correct substitution into general equation of circle

1 (c) The circle $c_{1}: x^{2}+y^{2}-8 x+2 y-23=0$ has centre A and radius r_{1}.
The circle $c_{2}: x^{2}+y^{2}+6 x+4 y+3=0$ has centre B and radius r_{2}.
(i) Show that c_{1} and c_{2} intersect at two points.
(ii) Show that the tangents to c_{1} at these points of intersection pass through the centre of c_{2}.

1 (c) (i)
$A(4,-1)$ and $r_{1}=\sqrt{16+1+23}=\sqrt{40}=2 \sqrt{10}$.
$B(-3,-2)$ and $r_{2}=\sqrt{9+4-3}=\sqrt{10}$.
$|A B|=\sqrt{(4+3)^{2}+(-1+2)^{2}}=\sqrt{50}=5 \sqrt{2}$.
So, $r_{1}+r_{2}=3 \sqrt{10}=\sqrt{90}>\sqrt{50}$ and $\left|r_{1}-r_{2}\right|=\sqrt{10}<\sqrt{50}$
\Rightarrow circles intersect at two points.

OR

Part (c)(i)
1(c)(i)

$$
\begin{aligned}
& x^{2}+y^{2}-8 x+2 y-23=0 \\
& \begin{aligned}
& x^{2}+y^{2}+ 6 x+4 y+3=0 \\
&-14 x-2 y-26 \\
& x^{2}+(-7 x-13)^{2}-8 x+2(-7 x-13)-23=0 \\
& \Rightarrow 5 x^{2}+16 x+12=0 \\
& \Rightarrow(5 x+6)(x+2)=0 \\
& \Rightarrow x=\frac{-6}{5}, x=-2 \\
& \Rightarrow y=\frac{-23}{5}, y=1
\end{aligned}
\end{aligned}
$$

Two points of intersection $\left(\frac{-6}{5}, \frac{-23}{5}\right)$ and $(-2,1)$

Blunders (-3)

B1 Relationship between $3 \sqrt{10}$ and $\sqrt{50}$ or $\sqrt{40}+\sqrt{10}>\sqrt{50}$ not clearly established
B2 Error in squaring
B3 Error in factors
B4 Incorrect conclusion stated or implied
Slips (-1)
S1 Arithmetic errors
S2 Not establishing both cases
Attempts (3 marks)
A1 One centre and radius found
A2 Expressing y in terms of x and stops

1 (c) (ii)
Let P and Q be the points of intersection of the circles. The tangent to c_{1} passes through B, if and only if $A P B$ and $A Q B$ are right-angled triangles.
$|A P|^{2}+|B P|^{2}=r_{1}^{2}+r_{2}^{2}=40+10=50=|A B|^{2}$.
$\therefore|\angle A P B|=90^{\circ} \Rightarrow A P \perp P B$.

$\therefore P B$ is a tangent to c_{1} and contains centre B of c_{2}.
Similarly $Q B$ is a tangent to c_{1} and contains centre B of c_{2}.

OR

Part (c)(ii) 5 marks

1(c)(ii)

Slope diameter: centre $(4,-1)$ and point of contact $(-2,1)$

$$
\frac{-1-1}{4+2}=\frac{-1}{3} \Rightarrow \text { slope of tangent equals } 3
$$

Equation of tangent: $y-1=3(x+2) \Rightarrow 3 x-y+7=0$
But $(-3,-2)$ lies on tangent since $3(-3)-1(-2)+7=-9+2+7=0$
Slope $(4,-1)$ and $\left(\frac{-6}{5}, \frac{-23}{5}\right)$ equals $\frac{9}{13} \Rightarrow$ slope of tangent equals $\frac{-13}{9}$
Equation of tangent: $y+\frac{23}{5}=\frac{-13}{9}\left(x+\frac{6}{5}\right)$
But ($-3,-2$) lies on this tangent since
LHS: $-2+\frac{23}{5}=\frac{13}{5}$ and RHS: $\frac{-13}{9}\left(-3+\frac{6}{5}\right)=\frac{-13}{9}\left(\frac{-9}{5}\right)=\frac{13}{5}$

Blunders (-3)

B1 Incorrect use of Pythagoras
B2 One case only
B3 Incorrect slope or equation of line formula with substitution
B4 Not verifying centre on tangents
Slips (-1)
S1 Arithmetic errors

Attempts (2 marks)

A1 Squaring one radius and stops
A2 Equation of one tangent only and stops

Misreading(-1)

M1 Centres interchanged

Part (a)
Part (b)
Part (c)

15 marks
Att 5
$20(10,10)$ marks
$15(5,5,5)$ marks
15 marks
Att 5

2 (a) Find the value of s and the value of t that satisfy the equation

$$
s(\vec{i}-4 \vec{j})+t(2 \vec{i}+3 \vec{j})=4 \vec{i}-27 \vec{j} .
$$

Part (a)
15 marks
Att 5
2 (a)

$$
\begin{aligned}
& s(\vec{i}-4 \vec{j})+t(2 \vec{i}+3 \vec{j})=4 \vec{i}-27 \vec{j} \\
& \therefore \vec{i}(s+2 t)+\vec{j}(-4 s+3 t)=4 \vec{i}-27 \vec{j} . \\
& \quad s+2 t=4 \quad \Rightarrow 4 s+8 t=16 \\
& -4 s+3 t=-27 \quad \frac{-4 s+3 t=-27}{11 t=-11} \Rightarrow t=-1 \text { and } s=6 .
\end{aligned}
$$

Blunders (-3)

B1 One value only
Slips (-1)
S1 Arithmetic errors
Attempts (5 marks)
A1 One equation in s and t
Part (b)
2 (b) $\overrightarrow{O P}=3 \vec{i}-4 \vec{j}$ and $\overrightarrow{O Q}=5\left(\overrightarrow{O P}^{\perp}\right)$.
(i) Find $\overrightarrow{O Q}$ in terms of \vec{i} and \vec{j}.
(ii) Find $\cos |\angle O Q P|$, in surd form.

Part (b) (i)
10 marks
Att 3
2 (b) (i)

$$
\begin{aligned}
& \overrightarrow{O P}=3 \vec{i}-4 \vec{j} \Rightarrow \overrightarrow{O P}^{\perp}=4 \vec{i}+3 \vec{j} \\
& \therefore \overrightarrow{O Q}=20 \vec{i}+15 \vec{j}
\end{aligned}
$$

Blunders (-3)

B1 Error in $\overrightarrow{O P}^{\perp}$
B2 $\overrightarrow{O Q}=\left(\overrightarrow{O P}^{\perp}\right)$
Slips (-1)
S1 Arithmetic errors
Attempts (3 marks)
A1 Relationship between a vector and related perpendicular stated or implied

Part (b) (ii)
2 (b) (ii)

$$
\begin{aligned}
& \cos \angle O Q P=\frac{(\overrightarrow{O Q}) \cdot(\overrightarrow{P Q})}{|\overrightarrow{O Q}||\overrightarrow{P Q}|}=\frac{(20 \vec{i}+15 \vec{j})(17 \vec{i}+19 \vec{j})}{|20 \vec{i}+15 \vec{j}||17 \vec{i}+19 \vec{j}|} \\
& =\frac{340+285}{\sqrt{400+225} \sqrt{289+461}}=\frac{625}{\sqrt{625} \sqrt{650}}=\frac{25}{5 \sqrt{26}}=\frac{5}{\sqrt{26}} .
\end{aligned}
$$

Blunders (-3)

B1 $\overrightarrow{P Q} \neq \vec{q}-\vec{p}$
B2 Error in modulus formula
B3 Answer not in single surd
Slips (-1)
S1 Arithmetic errors.
Attempts (3 marks)
A1 $\cos \angle P O Q$ calculated
A2 $\cos \theta$ formula with some correct substitution

Part (c)

$15(5,5,5)$ marks
Att (2, 2, 2)

2 (c) $A B C$ is a triangle and D is the mid-point of $[B C]$.
(i) Express $\overrightarrow{A B}$ in terms of $\overrightarrow{A D}$ and $\overrightarrow{B C}$ and express $\overrightarrow{A C}$ in terms of $\overrightarrow{A D}$ and $\overrightarrow{B C}$.

(ii) Hence, prove that $|A B|^{2}+|A C|^{2}=2|A D|^{2}+\frac{1}{2}|B C|^{2}$.

Part (c) (i)
2 (c) (i)

$$
\begin{aligned}
& \overrightarrow{A B}=\overrightarrow{A D}+\overrightarrow{D B}=\overrightarrow{A D}-\frac{1}{2} \overrightarrow{B C} \\
& \overrightarrow{A C}=\overrightarrow{A D}+\overrightarrow{D C}=\overrightarrow{A D}+\frac{1}{2} \overrightarrow{B C}
\end{aligned}
$$

Blunders (-3)

B1 $\overrightarrow{D B} \neq-\frac{1}{2} \overrightarrow{B C}$
B2 $\overrightarrow{D C} \neq \frac{1}{2} \overrightarrow{B C}$
Attempts (2, 2marks)
A1 $\overrightarrow{A B}$ and/or $\overrightarrow{A C}$ as the sum of two vectors

2 (c) (ii)

$$
\begin{aligned}
&|A B|^{2}= \overrightarrow{A B} \cdot \overrightarrow{A B}=\left(\overrightarrow{A D}-\frac{1}{2} \overrightarrow{B C}\right)\left(\overrightarrow{A D}-\frac{1}{2} \overrightarrow{B C}\right)=|A D|^{2}+\frac{1}{4}|B C|^{2}-\frac{1}{2} \overrightarrow{A D} \cdot \overrightarrow{B C}-\frac{1}{2} \overrightarrow{B C} \cdot \overrightarrow{A D} \\
&|A C|^{2}= \overrightarrow{A C} \cdot \overrightarrow{A C}=\left(\overrightarrow{A D}+\frac{1}{2} \overrightarrow{B C}\right)\left(\overrightarrow{A D}+\frac{1}{2} \overrightarrow{B C}\right)=|A D|^{2}+\frac{1}{4}|B C|^{2}+\frac{1}{2} \overrightarrow{A D} \cdot \overrightarrow{B C}+\frac{1}{2} \overrightarrow{B C} \cdot \overrightarrow{A D} \\
& \therefore|A B|^{2}+|A C|^{2}=2|A D|^{2}+\frac{1}{2}|B C|^{2} .
\end{aligned}
$$

Blunders (-3)

B1 Incorrect conclusion or no conclusion implied

Slips (-1)

S1 Arithmetic errors
Attempts (2 marks)
A1 $\quad\left(\overrightarrow{A D}-\frac{1}{2} \overrightarrow{B C}\right)\left(\overrightarrow{A D}-\frac{1}{2} \overrightarrow{B C}\right)=|A D|^{2}+\frac{1}{4}|B C|^{2}$
A2 $|A B|^{2}$ or $\left(\overrightarrow{A D}-\frac{1}{2} \overrightarrow{B C}\right)\left(\overrightarrow{A D}-\frac{1}{2} \overrightarrow{B C}\right)=|A D|^{2}+\frac{1}{4}|B C|^{2}-\overrightarrow{A D} \cdot \overrightarrow{B C}$
A3 $\overrightarrow{A B} \cdot \overrightarrow{A B}=\overrightarrow{A B}^{2}$ or $|A B|^{2}$
Worthless (0 marks)
W1 $\quad|A B|^{2}=|A D|^{2}+\frac{1}{4}|B C|^{2}$

3 (a) P and Q are the points $(-1,4)$ and $(3,7)$ respectively.
Find the co-ordinates of the point that divides $[P Q]$ internally in the ratio $3: 1$.
Part (a)
15 marks
Att 5

3 (a)

$$
\text { Point is }\left(\frac{1(-1)+3(3)}{3+1}, \frac{1(4)+3(7)}{3+1}\right)=\left(\frac{8}{4}, \frac{25}{4}\right)=\left(2,6 \frac{1}{4}\right) \text {. }
$$

*Note: General Guideline 8 does not necessarily apply here

Blunders (-3)

B1 Incorrect ratio formula
B2 Incorrect translation
Slips (-1)
S1 Arithmetic errors
Attempts (5 marks)
A1 One correct ordinate

Worthless (0 marks)

W1 Midpoint used once

Part (b)

$35(20,5,5,5)$ marks
$\operatorname{Att}(7,2,2,2)$
3 (b) f is the transformation $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$, where $x^{\prime}=x-y$ and $y^{\prime}=2 x+3 y$.
l_{1} is the line $2 x-y-1=0$.
(i) Find the equation of $f\left(l_{1}\right)$, the image of l_{1} under f.
(ii) Prove that f maps every pair of parallel lines to a pair of parallel lines. You may assume that f maps every line to a line.
(iii) The line l_{2} is parallel to the line l_{1}.
$f\left(l_{2}\right)$ intersects the x-axis at A^{\prime} and the y-axis at B^{\prime}.
The area of the triangle $A^{\prime} O B^{\prime}$ is 9 square units, where O is the origin.
Find the two possible equations of l_{2}.
(iv) Given that $A^{\prime}=f(A)$ and $B^{\prime}=f(B)$, show that $|\angle A O B| \neq\left|\angle A^{\prime} O B^{\prime}\right|$.

3 (b) (i)

$$
\begin{aligned}
& 2 x^{\prime}=2 x-2 y \\
& \quad \underline{y^{\prime}=2 x+3 y} \\
& 2 x^{\prime}-y^{\prime}=-5 y \Rightarrow y=\frac{1}{5}\left(-2 x^{\prime}+y^{\prime}\right) \\
& x=x^{\prime}+y \Rightarrow x=x^{\prime}+\frac{1}{5}\left(-2 x^{\prime}+y^{\prime}\right) \Rightarrow x=\frac{1}{5}\left(3 x^{\prime}+y^{\prime}\right) . \\
& f\left(l_{1}\right): \frac{2}{5}\left(3 x^{\prime}+y^{\prime}\right)-\frac{1}{5}\left(-2 x^{\prime}+y^{\prime}\right)-1=0 \Rightarrow 8 x^{\prime}+y^{\prime}-5=0 .
\end{aligned}
$$

Blunders (-3)

B1 $f\left(l_{1}\right)$ not in form $p x^{\prime}+q y^{\prime}+r=0$ or $y^{\prime}=m x^{\prime}+c$
B2 Incorrect matrix
B3 Incorrect matrix multiplication

Slips (-1)

S1 Arithmetic errors

Attempts (7 marks)

A1 Effort at x or y expressed in terms of x^{\prime} and y^{\prime}
A2 Correct matrix for f when finding $f\left(l_{1}\right)$
A3 Correct image point on $f\left(l_{1}\right)$

3 (b) (ii)
$s_{1}: a x+b y+c=0$ and $s_{2}: a x+b y+d=0$ are two parallel lines.
$f\left(s_{1}\right): \frac{a}{5}\left(3 x^{\prime}+y^{\prime}\right)+\frac{b}{5}\left(-2 x^{\prime}+y^{\prime}\right)+c=0 \Rightarrow(3 a-2 b) x^{\prime}+(a+b) y^{\prime}+5 c=0$.
$f\left(s_{2}\right): \frac{a}{5}\left(3 x^{\prime}+y^{\prime}\right)+\frac{b}{5}\left(-2 x^{\prime}+y^{\prime}\right)+d=0 \Rightarrow(3 a-2 b) x^{\prime}+(a+b) y^{\prime}+5 d=0$
Coefficients of x ' and y^{\prime} match, so these are parallel lines.

OR

Suppose $f\left(s_{1}\right)$ and $f\left(s_{2}\right)$ are not parallel. Then, they have a point in common, say P^{\prime}. f is invertible, so let $P=f^{-1}\left(P^{\prime}\right)$.
$P^{\prime} \in f\left(s_{1}\right) \Rightarrow P \in s_{1} \quad$ and $\quad P^{\prime} \in f\left(s_{2}\right) \Rightarrow P \in s_{2}$.
This contradicts $s_{1} \| s_{2}$, (unless they are identical, in which case so are their images).

Blunders (-3)

B1 $f\left(s_{1}\right)$ or $f\left(s_{2}\right)$ not in form $p x^{\prime}+q y^{\prime}+r=0$ or $y^{\prime}=m x^{\prime}+c$
B2 Incorrect matrix
B3 Incorrect matrix multiplication
B4 Fails to finish correctly
Slips (-1)
S1 Arithmetic errors

A1 One image point correct
A2 Specific case e.g. using $2 x-y-1=0$ and $2 x-y+k=0$
A3 Effort at image of one line only
Part (b) (iii)
3 (b) (iii)

$$
f\left(l_{2}\right): 8 x^{\prime}+y^{\prime}=k . \quad \therefore A^{\prime} \text { is }\left(\frac{k}{8}, 0\right) \text { and } B^{\prime} \text { is }(0, k) .
$$

Area of triangle $\left.A^{\prime} O B^{\prime}=\frac{1}{2}\left(\frac{k}{8}\right)(k) \right\rvert\,=9$.
$\therefore k^{2}=144 \Rightarrow k= \pm 12 . \quad \therefore f\left(l_{2}\right): 8 x^{\prime}+y^{\prime}= \pm 12 \Rightarrow 2 \mathrm{x}-\mathrm{y} \pm \frac{12}{5}=0$

Blunders (-3)

B1 One value of k
B2 Error in area formula
B3 Fails to find l_{2} from $f\left(l_{2}\right)$
Slips (-1)
S1 Arithmetic errors
Attempts (2 marks)
A1 A^{\prime} or B^{\prime}
Part (b) (iv)
3 (b) (iv)

$$
\begin{aligned}
& x=\frac{1}{5}\left(3 x^{\prime}+y^{\prime}\right) \text { and } y=\frac{1}{5}\left(-2 x^{\prime}+y^{\prime}\right) \text { and } A^{\prime}\left(\frac{k}{8}, 0\right), B^{\prime}(0, k) . \\
& \therefore A \text { is }\left(\frac{3 k}{40}, \frac{-2 k}{40}\right) \text { and } B \text { is }\left(\frac{k}{5}, \frac{k}{5}\right) . \\
& \left|\angle A^{\prime} O B^{\prime}\right|=90^{\circ} . \\
& \text { Slope } O A=\frac{\frac{-2 k}{40}}{\frac{3 k}{40}}=-\frac{2}{3} \text { and slope } O B=\frac{\frac{k}{5}}{\frac{k}{5}}=1 \Rightarrow O A \text { is not } \perp \text { to } O B . \\
& \therefore|\angle A O B| \neq \mid \angle A^{\prime} O B^{\prime} .
\end{aligned}
$$

Blunders (-3)

B1 A or B incorrect
B2 Error in slope formula
B3 No conclusion or incorrect conclusion
Slips (-1)
S1 Arithmetic errors

Attempts (2 marks)

A1 Effort to find A or B and stops
A2 Effort at finding angle other than required angle
A3 $\left|\angle A^{\prime} O B^{\prime}\right|=90^{\circ}$

QUESTION 4

Part (a)
Part (b)
$30(10,10,10)$ marks
Att (3, 3, 3)
Part (c)
$15(5,5,5)$ marks

4 (a)

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 2 x+\sin x}{3 x}\right)=\frac{2}{3} \lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{2 x}\right)+\frac{1}{3} \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=\frac{2}{3}+\frac{1}{3}=1 .
$$

OR

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 2 x+\sin x}{3 x}\right)=\lim _{x \rightarrow 0}\left(\frac{2 \sin x \cos x+\sin x}{3 x}\right)=\frac{1}{3} \lim _{x \rightarrow 0}\left(\frac{\sin x(2 \cos x+1}{x}\right)=\frac{1}{3} \cdot 1 \cdot(2+1)=1 .
$$

OR

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 2 x+\sin x}{3 x}\right)=\lim _{x \rightarrow 0}\left(\frac{2 \sin \frac{3 x}{2} \cos \frac{x}{2}}{3 x}\right)=\lim _{x \rightarrow 0}\left(\frac{\sin \frac{3 x}{2} \cos \frac{x}{2}}{\frac{3 x}{2}}\right)=1 \cdot \cos 0=1
$$

Blunders (-3)

B1 Error rewriting as sum of two limits
B2 Error in $\sin 2 x$ as a product of two functions
B3 Mishandling $\frac{\sin \theta}{\theta}$
Slips (-1)
S1 Arithmetic errors
Attempts (2 marks)
A1 Correct answer without work
A2 Correct factors

4 (b) Find all the solutions of the equation

$$
\sin 2 x+\cos x=0 \text {, where } 0^{\circ} \leq x \leq 360^{\circ} .
$$

Transform equation
Solve for $\cos /$ sin Solutions

10 marks

Att 3
10 marks
Att 3
10 marks

4 (b)

$$
\begin{aligned}
& \sin 2 x+\cos x=0 \\
& 2 \sin x \cos x+\cos x=0 \Rightarrow \cos x(2 \sin x+1)=0 . \\
& \therefore \cos x=0 \text { or } \sin x=-\frac{1}{2} . \\
& \therefore x=90^{\circ}, 270^{\circ} \text { or } x=210^{\circ}, 330^{\circ} . \\
& \text { Solution }=\left\{90^{\circ}, 210^{\circ}, 270^{\circ}, 330^{\circ}\right\} .
\end{aligned}
$$

Blunders (-3)

B1 Error in expansion of $\sin 2 x$
B2 Error in factors
B3 Error in roots
B4 Missing and /or incorrect solutions (to a max of 3)
B5 Solutions outside the range (to a max of 3)
Slips (-1)
S1 Arithmetic errors
Attempts(3, 3, 3)
A1 $\sin x \cos x+\cos x=0$ and stops
A2 One correct angle

Part (c)
$15(5,5,5)$ marks
4 (c) The diagram shows two concentric circles.
A tangent to the inner circle cuts the outer circle at B and C, where $|B C|=2 x$.
(i) Express the area of the shaded region in terms of x.

(ii) In the case where the radius of the outer circle is $2 x$, show that the portion of the shaded region that lies below $B C$ has area $\left(\frac{2 \pi}{3}-\sqrt{3}\right) x^{2}$.

4 (c) (i)
Let radius of large circle $=R$ and radius of small circle $=r$.
Shaded region $=\pi R^{2}-\pi r^{2}=\pi\left(R^{2}-r^{2}\right)$
But $R^{2}=x^{2}+r^{2} \Rightarrow R^{2}-r^{2}=x^{2}$.
\therefore Shaded region $=\pi x^{2}$.
Blunders (-3)
B1 Area $=\pi r^{2}-\pi R^{2}$ or $\pi R^{2}+\pi r^{2}$
B2 Incorrect value of x for bisected chord
B3 Incorrect use of Pythagoras
Slips (-1)
S1 Arithmetic errors
Attempts (2, 2 marks)
A1 Bisector of chord indicated

4 (c) (ii)

$$
\sin \angle B O D=\frac{x}{2 x}=\frac{1}{2} \Rightarrow|\angle B O D|=\frac{\pi}{6} \Rightarrow|\angle B O C|=\frac{\pi}{3} \text {. }
$$

\therefore Required area $=$ area of sector $B O C-$ area of triangle $B O C$.

$$
\begin{aligned}
& \left.=\frac{1}{2} r^{2} \theta-\frac{1}{2}|B C| \cdot O D \right\rvert\, \\
& =\frac{1}{2}(2 x)^{2}\left(\frac{\pi}{3}\right)-\frac{1}{2}(2 x)(\sqrt{3} x), \quad[|O D|=\sqrt{3} x] \\
& =\frac{2 x^{2} \pi}{3}-x^{2} \sqrt{3}=\left(\frac{2 \pi}{3}-\sqrt{3}\right) x^{2} .
\end{aligned}
$$

Blunders (-3)
B1 $\angle B O C$ incorrect
B2 Incorrect radius substituted into sector formula
B3 Incorrect use of Pythagoras i.e $|O D|$ incorrect
B4 Incorrect conclusion stated or implied
Slips (-1)
S1 Arithmetic errors
Attempts (2 marks)
A1 Area of sector with some substitution
A2 Required area identified

QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	$15(5,5,5)$ marks	Att (2, 2, 2)
Part (c)	$25(10,10,5)$ marks	Att (3, 3, 2)
Part (a)	10 marks	Att 3
5 (a)	Find the values of x for which $3 \tan x=\sqrt{3}$, where $0^{\circ} \leq x \leq 360^{\circ}$	
Part (a)	10 marks	Att 3
$5 \text { (a) }$	$\begin{aligned} & 3 \tan x=\sqrt{3} \Rightarrow \tan x=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}} . \\ & \therefore x=30^{\circ}, 210^{\circ} . \end{aligned}$	

Blunders (-3)
B1 Mishandling $\frac{\sqrt{3}}{3}$
B2 Each incorrect angle and/or omitted angle
B3 Each incorrect angle outside the range
Slips (-1)
S1 Arithmetic errors
Attempts (3 marks)
A1 One correct angle without work
Part (b)
$15(5,5,5)$ marks
Att (2, 2, 2)
5 (b) (i) Prove that $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$.

Part (b) (i) Expanding

5 marks
Att 2
Finish
5 marks
Att 2
5 (b) (i)

$$
\begin{aligned}
\tan (A+B) & =\frac{\sin (A+B)}{\cos (A+B)}=\frac{\sin A \cos B+\cos A \sin B}{\cos A \cos B-\sin A \sin B} \\
& =\frac{\frac{\sin A}{\cos A}+\frac{\sin B}{\cos B}}{1-\frac{\sin A \sin B}{\cos A \cos B}}=\frac{\tan A+\tan B}{1-\tan A \tan B} .
\end{aligned}
$$

Blunders (-3)

B1 Error in expanding $\sin (A+B)$
B2 Error in expanding $\cos (A+B)$
B3 $\sin A \cos B+\cos A \sin B=\sin (A+B)$ or equivalent not stated

Slips (-1)
S1 Arithmetic error
Attempts (2, 2 marks)

Part (b) (ii)
5 marks
Att 2
5 (b) (ii) Show that if $\alpha+\beta=90^{\circ}$, then $\frac{\tan 2 \alpha}{\tan 2 \beta}=-1$.

Part (b) (ii) 5 marks

Att 2
5 (b) (ii)

$$
\frac{\tan 2 \alpha}{\tan 2 \beta}=\frac{\tan 2 \alpha}{\tan \left(180^{\circ}-2 \alpha\right)}=\frac{\tan 2 \alpha}{-\tan 2 \alpha}=-1
$$

Blunders (-3)

B1 Error in $\tan \left(180^{\circ}-2 \alpha\right)$ expansion
B2 Incorrect conclusion
Slips (-1)
S1 Arithmetic errors
Attempts (2 marks)
A1 $\beta=90^{\circ}-\alpha$ or $2 \beta=180^{\circ}-2 \alpha$ and stops

Part (c)
$25(10,10,5)$ marks
Att (3, 3, 2)
5 (c) A and B are two helicopter landing pads on level ground. C is another point on the same level ground. $|B C|=800$ metres, $|A C|=900$ metres, and $|\angle B C A|=60^{\circ}$. A helicopter is hovering vertically above A. A person at C observes the helicopter to have an angle of elevation of 30°.

(i) Find $|A D|$, in surd form.
(ii) Find $|B D|$.

Part (c) (i)
5 (c) (i)

$$
\tan 30^{\circ}=\frac{|A D|}{900} \Rightarrow|A D|=900\left(\frac{1}{\sqrt{3}}\right)=300 \sqrt{3} \mathrm{~m} .
$$

Blunders (-3)
B1 Incorrect use of trigonometric ratio
B2 Answer not in surd form
Slips (-1)
S1 Arithmetic errors
S2 Units omitted or incorrect
Attempts (3 marks)
A1 Identifies relevant right angled triangle
Worthless (0 marks)
W1 Relevant right angled triangle not indicated or implied

$$
\begin{array}{rcc}
\text { Part (c) (ii) }|A B|^{2} & 10 \text { marks } & \text { Att } 3 \\
|B D| & 5 \text { marks } & \text { Att } 2
\end{array}
$$

5 (c) (ii)

$$
\begin{aligned}
|A B|^{2} & =(800)^{2}+(900)^{2}-2(800)(900) \cos 60^{\circ} \\
& =640000+810000-720000=730000 \\
|B D|^{2} & =|A B|^{2}+|A D|^{2}=730000+270000=1000000 . \\
\therefore|\mathrm{BD}| & =1000 \mathrm{~m} .
\end{aligned}
$$

*Accept candidate's answer from (c)(i)

* If $|A B|^{2}$ worthless, then attempt at most for remainder of section

Blunders (-3)

B1 Error in cosine formula with substitution
B2 Use of decimals leading to incorrect answer

Slips (-1)

S1 Arithmetic errors
S2 Units omitted or incorrect (apply once only in this section)
Attempts (3, 2 marks)
A1 Cosine formula with some correct substitution

Worthless (0 marks)

W1 Right angle not identified or indicated

Part (a)
Part (b)
Part (c)
10 marks
Att 3
$20(10,10)$ marks
$20(5,5,5,5)$ marks
Att $(3,3)$
Att (2, 2, 2, 2)

6 (a) Two adults and four children stand in a row for a photograph.
How many different arrangements are possible if the four children are between the two adults?

Part (a)
10 marks
Att 3
6 (a)
Number of arrangements $=2!\times 4!=48$
Blunders (-3)
B1 $2!\times 4!\times 2$!
Attempts (3 Attempts)
A1 4!
A2 $2!+4$! or $2+4$! (with or without further work)
Worthless (0 marks)
W1 6!
Part (b)
$20(10,10)$ marks
$\operatorname{Att}(3,3)$
6 (b) (i) Solve the difference equation $u_{n+2}-6 u_{n+1}+8 u_{n}=0$, where $n \geq 0$, given that $u_{0}=0$ and $u_{1}=4$.
(ii) For what value of n is $u_{n}=30\left(2^{n}\right)$?

Part (b) (i) 10 marks

Att 3
6 (b) (i)

$$
\begin{aligned}
& x^{2}-6 x+8=0 \Rightarrow(x-2)(x-4)=0 \Rightarrow x=2 \text { or } x=4 . \\
& u_{n}=l(2)^{n}+k(4)^{n} \\
& u_{0}=0 \Rightarrow l+k=0 \text { and } u_{1}=4 \Rightarrow 2 l+4 k=4 . \\
& \therefore 2 l-4 l=4 \Rightarrow l=-2 \text { and } k=2 . \\
& \therefore u_{n}=2(4)^{n}-2(2)^{n} \Rightarrow u_{n}=2^{2 n+1}-2^{n+1} .
\end{aligned}
$$

Blunders (-3)

B1 Error in setting up quadratic
B2 Error in solving quadratic
B3 Error in general term
B4 Equation in l and k
Slips (-1)
S1 Arithmetic errors

A1 Substitution into quadratic formula
A2 Equation in l and k

Part (b) (ii)
6 (b) (ii)

$$
\begin{aligned}
2^{2 n+1}-2^{n+1} & =30\left(2^{n}\right) \Rightarrow 2^{n} \cdot 2^{n} \cdot 2-2^{n} \cdot 2=30.2^{2} \Rightarrow 2^{n} \cdot 2-2=30 \\
\Rightarrow 2^{n}-1 & =15 \Rightarrow 2^{n}=16 \Rightarrow \therefore n=4 .
\end{aligned}
$$

Blunders (-3)

B1 Error in handling indices
Slips (-1)
S1 Arithmetic errors
Attempts (3 marks)
A1 $2^{2 n+1}=2^{2 n} .2$ or equivalent

Part (c)
6 (c) Five cards are drawn together at random from a standard pack of 52 playing cards.
Find, in decimal form, correct to two significant figures, the probability that:
(i) all five cards are diamonds
(ii) all five cards are of the same suit
(iii) the five cards are the ace, two, three, four and five of diamonds
(iv) the five cards include the four aces.

Part (c) (i) 5 marks
6 (c) (i)

$$
P(\text { five diamonds })=\frac{{ }^{13} C_{5}}{{ }^{52} C_{5}}=\frac{1287}{2598960}=4.95 \times 10^{-4}=5.0 \times 10^{-4} \text { or } 0.00050
$$

Blunders (-3)

B1 Incorrect number of favourable outcomes
B2 Incorrect number of possible outcomes
Slips (-1)
S1 Answer not to two significant figures
Attempts (2 marks)
A1 $\frac{{ }^{13} C_{5}}{{ }^{52} C_{5}}$

Part (c) (ii)
6 (c) (ii)

$$
\left.\begin{array}{rl}
P(\text { all same suit }) & =P(5 \text { diamonds })+P(5 \text { hearts })+P(5 \text { clubs })+P(5 \text { spades }) \\
= & 4 \times \frac{{ }^{13} C_{5}}{{ }^{52} C_{5}}
\end{array}=\frac{5148}{2598960}=1 \cdot 98 \times 10^{-3}=2 \cdot 0 \times 10^{-3} \text { or } 0 \cdot 0020\right)
$$

Blunders (-3)
B1 Incorrect number of favourable outcomes
B2 Incorrect number of possible outcomes
Slips (-1)
S1 Answer not to two significant figures
Attempts (2 marks)
A1 $4 \times \frac{{ }^{13} C_{5}}{{ }^{52} C_{5}}$
Part (c) (iii)
6 (c) (iii)

$$
P(\text { ace, } 2,3,4,5 \text { of diamonds })=\frac{{ }^{5} C_{5}}{{ }^{52} C_{5}}=\frac{1}{2598960}=3.84 \times 10^{-7}=3.8 \times 10^{-7}
$$

$$
\text { or } \quad 0.00000038
$$

Blunders (-3)

B1 Incorrect number of favourable outcomes
B2 Incorrect number of possible outcomes
Slips (-1)
S1 Answer not to two significant figures
Attempts (2 marks)
A1 $\frac{{ }^{5} C_{5}}{{ }^{52} C_{5}}$
Part (c) (iv)
6 (c) (iv)

$$
P(\text { four aces })=\frac{{ }^{4} C_{4} \times{ }^{48} C_{1}}{{ }^{52} C_{5}}=\frac{48}{2598960}=1.84 \times 10^{-5}=1.8 \times 10^{-5} \text { or } 0.000018
$$

Blunders (-3)

B1 Incorrect number of favourable outcomes
B2 Incorrect number of possible outcomes
Slips (-1)
S1 Answer not to two significant figures
Attempts (2 marks)
A1 $\frac{{ }^{4} C_{4} \times{ }^{48} C_{1}}{{ }^{52} C_{5}}$

QUESTION 7

Part (a)	$\mathbf{1 0}(5,5)$ marks	Att (2, 2)
Part (b)	$20(5,5,5,5)$ marks	Att (2, 2, 2, 2)
Part (c)	$20(10,10)$ marks	Att (3,3)

Part (a)

$10(5,5)$ marks
Att (2,2)
7 (a) A team of four is selected from a group of seven girls and five boys.
(i) How many different selections are possible?
(ii) How many of these selections include at least one girl?

Part (a) (i)
7 (a) (i)

$$
\text { Number of selections }={ }^{12} C_{4}=495 .
$$

Blunders (-3)
B1 ${ }^{7} C_{4}+{ }^{5} C_{4}$
Slips (-1)
S1 Arithmetic errors
Attempts (2 marks)
A1 ${ }^{7} C_{4}$ or ${ }^{5} C_{4}$

Worthless

W1 $\frac{12!}{4!}$
Part (a) (ii)
7 (a) (ii)
Number of selections with no girl $={ }^{5} C_{4}=5$.
Number of selections with at least one girl $=495-5=490$.
OR

$$
{ }^{7} C_{1}{ }^{5} C_{3}+{ }^{7} C_{2}{ }^{5} C_{2}+{ }^{7} C_{3}{ }^{5} C_{1}+{ }^{7} C_{4}{ }^{5} C_{0}=490
$$

Blunders (-3)

B1 Term omitted
B2 Incomplete answer
Slips (-1)
S1 Arithmetic errors
Attempts (2 marks)
A1 ${ }^{5} C_{4}$
A2 ${ }^{7} C_{1}{ }^{5} C_{3}$ or equivalent

7 (b) A marble falls down from A and must follow one of the path indicated on the diagram. All paths from A to the bottom row are equally likely to be followed.
(i) One of the paths from A to H is A-B-D-H.

List the other two possible paths from A to H .

(ii) Find the probability that the marble passes through H or J .
(iii) Find the probability that the marble lands on N .
(iv) Two marbles fall from A , one after the other, without affecting each other.

Find the probability that they both land at P .

Part (b) (i)
5 marks
Att 2
7 (b) (i)
There are two other possible paths: A-B-E-H and A-C-E-H.
Blunders (-3)
B1 One path only
Part (b) (ii)
5 marks
Att 2
7 (b) (ii) Paths to J are A-B-E-J, A-C-E-J and A-C-F-J.
\therefore There are 6 paths from A to H or J .
All of the possible paths from A to the GHJK row are:
A-B-D-G, A-B-D-H, A-B-E-H, A-B-E-J, A-C-E-H, A-C-E-J, A-C-F-J, A-C-F-K.
\therefore There are 8 possible paths.
(Or just $2 \times 2 \times 2=8$.)
\therefore Probability $=\frac{6}{8}=\frac{3}{4}$.

Blunders (-3)

B1 Number of favourable outcomes incorrect
B2 Number of possible outcomes incorrect
Slips (-1)
S1 Arithmetic errors

Attempts (2 marks)

A1 Favourable and /or all possible outcomes listed correctly

Worthless (0 marks)

W1 Incomplete list of outcomes and stops

Part (b) (iii)
7 (b) (iii)
6 paths to N: ABDHN, ABEHN, ABEJN, ACEHN, ACEJN, ACFJN.
16 possible paths from A to bottom row.
\therefore Probability $=\frac{6}{16}=\frac{3}{8}$.

Blunders (-3)

B1 Number of favourable outcomes incorrect
B2 Number of possible outcomes incorrect
Slips (-1)
S1 Arithmetic errors

Attempts (2 marks)

A1 Favourable and /or all possible outcomes listed correctly

Worthless (0 marks)

W1 Incomplete list of outcomes and stops
W2 $\frac{1}{5}$ with or without explanation
Part (b) (iv)
5 marks
7 (b) (iv)
There are four paths from A to P. $\therefore 4 \times 4$ outcomes of interest
There are 16 possible paths for each marble. $\therefore 16 \times 16$ outcomes in total.
\therefore Probability $=\frac{4 \times 4}{16 \times 16}=\frac{1}{16}$.
Blunders (-3)
B1 Number of favourable outcomes incorrect
B2 Number of possible outcomes incorrect
Slips (-1)
S1 Arithmetic errors
Attempts (2 marks)
A1 Favourable and/or all possible outcomes listed correctly
A2 One marble only
Worthless (0 marks)
W1 $\frac{1}{5} \cdot \frac{1}{5}=\frac{1}{25}$

Part (c)

7 (c) The real numbers a, b and c have mean μ and standard deviation σ.
(i) Show that the mean of the numbers $\frac{a-\mu}{\sigma}, \frac{b-\mu}{\sigma}$ and $\frac{c-\mu}{\sigma}$ is 0 .
(ii) Find, with justification, the standard deviation of the numbers

$$
\frac{a-\mu}{\sigma}, \frac{b-\mu}{\sigma} \text { and } \frac{c-\mu}{\sigma}
$$

7 (c) (i)

$$
\text { Mean }=\frac{\frac{a-\mu+b-\mu+c-\mu}{\sigma}}{3}=\frac{a+b+c-3 \mu}{3 \sigma}=\frac{3 \mu-3 \mu}{3 \sigma}=0, \text { as } \frac{a+b+c}{3}=\mu
$$

Blunders (-3)
B1 $a+b+c \neq 3 \mu$ or equivalent
Slips (-1)
S1 Arithmetic errors

Attempts (3 marks)

A1 Correct mean of a, b, and c
A2 Expression for mean of $\frac{a-\mu}{\sigma}, \frac{b-\mu}{\sigma}$ and $\frac{c-\mu}{\sigma}$
Worthless (0 Marks)
W1 $\frac{a-\mu}{\sigma}+\frac{b-\mu}{\sigma}+\frac{c-\mu}{\sigma}$ and stops
Part (c) (ii)
10 marks
Att 3
7 (c) (ii)
The numbers a, b and c have mean μ and standard deviation σ.

$$
\therefore \sigma=\sqrt{\frac{(a-\mu)^{2}+(b-\mu)^{2}+(c-\mu)^{2}}{3}} \text {. }
$$

The numbers $\frac{a-\mu}{\sigma}, \frac{b-\mu}{\sigma}$ and $\frac{c-\mu}{\sigma}$, with mean $=0$, has standard deviation

$$
\begin{aligned}
& =\sqrt{\frac{\left(\frac{(a-\mu)}{\sigma}-0\right)^{2}+\left(\frac{(b-\mu)}{\sigma}-0\right)^{2}+\left(\frac{c-\mu}{\sigma}-0\right)^{2}}{3}} \\
& =\frac{1}{\sigma} \sqrt{\frac{(a-\mu)^{2}+(b-\mu)^{2}+(c-\mu)^{2}}{3}}=\frac{1}{\sigma}(\sigma)=1
\end{aligned}
$$

Blunders (-3)
B1 Error in squaring
Slips (-1)
S1 Arithmetic errors

Attempts (3 marks)

A1 Expression for standard deviation correct

8 (a) Use integration by parts to find $\int x \sin x d x$.

Part (a)

15 marks
Att 5
8 (a)

$$
\int u d v=u v-\int v d u
$$

Let $u=x \Rightarrow d u=d x$ and $d v=\int \sin x d x \Rightarrow v=-\cos x$.
$\therefore \int x \sin x d x=-x \cos x+\int \cos x d x=-x \cos x+\sin x+$ constant of integration.

Blunders (-3)

B1 Incorrect differentiation or integration
B2 Incorrect 'parts' formula
Slips (-1)
S1 Arithmetic error
S2 Omits constant of integration

Attempts (5 marks)

A1 One correct assigning in 'parts' formula
A2 Correct relevant differentiation or integration

Part (b)

$20(5,5,5,5)$ marks
8 (b) A window is in the shape of a rectangle with a semicircle on top. The radius of the semicircle is r metres and the height of the rectangular part is x metres.
The perimeter of the window is 20 metres.
(i) Use the perimeter to express x in terms of r and π.
(ii) Find, in terms of π, the value of r for which the area of

$2 r$ the window is a maximum

Part (b) (i) 5 marks

Att 2
8 (b) (i) Perimeter $=2 x+2 r+\pi r=20 \Rightarrow x=\frac{20-2 r-\pi r}{2}$ metres.

Blunders (-3)

B1 Error in perimeter
B2 Answer not in required form
Slips (-1)
S1 Arithmetic errors
S2 Omits units or incorrect units
Attempts (2 marks)
A1 Expression for perimeter of semicircle
A2 Expression for perimeter of rectangular section of window
Part (b) (ii)Area in terms of r
Differentiation
Finish
8 (b) (ii)
Area of window $=A=2 r x+\frac{1}{2} \pi r^{2}$.
$\therefore A=2 r\left(\frac{20-2 r-\pi r}{2}\right)+\frac{1}{2} \pi r^{2}=20 r-2 r^{2}-\frac{1}{2} \pi r^{2}$.
$\therefore \frac{d A}{d r}=20-4 r-\pi r$.
For $\frac{d A}{d r}=0 \Rightarrow 20-4 r-\pi r=0$
$\Rightarrow r(4+\pi)=20$.
$\therefore r=\frac{20}{4+\pi}$.
$\frac{d^{2} A}{d r^{2}}=-4-\pi<0 . \quad \therefore$ Area of window is a maximum for $r=\frac{20}{4+\pi}$ metres

* If candidate's expression for perimeter in (b)(i) contains square units, then cannot get any further marks in this section

Blunders (-3)

B1 Error in eliminating x from expression for area
B2 Error in differentiation
B3 Error in finding r
Slips (-1)
S1 Arithmetic errors
S2 Omits units or incorrect units
Attempts (2, 2, 2)
A1 Some correct differentiation
A2 $20-4 r-\pi r=0$ and stops
Worthless (0 marks)
W1 Non quadratic expression for area

8 (c) The Maclaurin series for $\tan ^{-1} x$ is $x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$
(i) Write down the general term of the series.
(ii) Use the Ratio Test to show that the series converges for $|x|<1$.
(iii) Using the fact that $\frac{\pi}{4}=4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}$, and taking the first three terms in the Maclaurin series for $\tan ^{-1} x$, find an approximation for π. Give your answer correct to five decimal places.

Part (c) (i)
5 marks
Att 2
8 (c) (i)

$$
u_{n}=\frac{x^{2 n-1}}{2 n-1}(-1)^{n+1}
$$

Blunders (-3)

B1 -1 omitted in general term
B2 Incorrect x index in general term
B3 Value of n in denominator does not match index of x in numerator
Slips (-1)
Attempts (2 marks)
A1 One part of general term correct
Part (c) (ii)
8 (c) (ii)

$$
\begin{aligned}
& \text { Limit }\left|\frac{u_{n+1}}{u_{n}}\right|=\underset{n \rightarrow \infty}{\operatorname{Limit}}\left|\frac{x^{2 n+1}}{2 n+1}(-1)^{n+2} \times \frac{2 n-1}{x^{2 n-1}(-1)^{n+1}}\right| \\
& =\underset{n \rightarrow \infty}{\operatorname{Limit}}\left|\frac{x^{2}(2 n-1)}{2 n+1}(-1)\right|=\underset{n \rightarrow \infty}{\operatorname{Limit}}\left|\frac{x^{2}\left(2-\frac{1}{n}\right)}{2+\frac{1}{n}}\right|=x^{2} . \\
& \therefore \text { Convergent for } x^{2}<1 \Rightarrow \text { convergent for }|x|<1 .
\end{aligned}
$$

*Note: If candidate gets 0 marks in (c)(i) then attempt mark at most in (c)(ii)
If candidate's x index is incorrect in (c)(i), then attempt mark at most in (c)(ii)

Blunders (-3)

B1 Error in u_{n+1}
B2 Error in limits other than slips
B3 $\left|x^{2}\right|$ or $\left|-x^{2}\right|$ mishandled
B4 Incorrect conclusion

Slips (-1)

S1 Arithmetic errors
Attempts (2 marks)
A1 Ratio test used correctly

Part (c) (iii)
8 (c) (iii)

$$
\begin{aligned}
& \frac{\pi}{4}=4\left[\frac{1}{5}-\frac{1}{3(5)^{3}}+\frac{1}{5(5)^{5}}\right]-\left[\frac{1}{239}-\frac{1}{3(239)^{3}}+\frac{1}{5(239)^{5}}\right] \\
& \therefore \pi=3 \cdot 14162 .
\end{aligned}
$$

Blunders (-3)
B1 Term omitted in expansion
Slips (-1)
S1 Arithmetic error
Attempts (2 marks)
A1 Correct listing of one series and stops

Part (a)
Part (b)
Part (c)
$20(10,10)$ marks
$20(5,5,10)$ marks
10 marks
Att 3
Part (a)

Att 3
Att (3, 3)
Att (2, 2, 3)

9 (a) Z is a random variable with standard normal distribution.
Use the tables to find the value of z_{1} for which $P\left(Z \geq z_{1}\right)=0.0778$.

Part (a)	10 marks	Att 3
9 (a)		
	$P\left(Z \geq z_{1}\right)=0.0778 \Rightarrow 1-P\left(Z \leq z_{1}\right)=0.0778$.	
	$P\left(Z \leq z_{1}\right)=0.9222 \Rightarrow z_{1}=1 \cdot 42$.	

Blunders (-3)

B1 Incorrect reading of tables
B2 Incorrect area
Slips (-1)
S1 Arithmetic errors
Attempts (3 marks)
A1 $P\left(Z \geq z_{1}\right) \Rightarrow 1-P\left(Z \leq z_{1}\right)$
Part (b)
$20(10,10)$ marks
$\operatorname{Att}(3,3)$
9 (b) A die is biased in such a way that the probability of rolling a six is p.
The other five numbers are equally likely. This biased die and a fair die are rolled simultaneously. Show that the probability of rolling a total of 7 is independent of p.

Probability of other single outcome

9 (b)
Probability of 6 on biased die $=p$
Probability of not 6 on biased die $=1-p$
\Rightarrow probability of any other single outcome (of which there are 5) on die $=\frac{1-p}{5}$.
Probability of a total of seven from biased and fair die

$$
[\text { i.e. }(6,1),(5,2),(4,3),(3,4),(2,5),(1,6)]
$$

$=p\left(\frac{1}{6}\right)+\left(\frac{1-p}{5}\right) \frac{1}{6}+\left(\frac{1-p}{5}\right) \frac{1}{6}+\left(\frac{1-p}{5}\right) \frac{1}{6}+\left(\frac{1-p}{5}\right) \frac{1}{6}+\left(\frac{1-p}{5}\right) \frac{1}{6}$
$=\frac{p}{6}+\frac{5}{6}\left(\frac{1-p}{5}\right)=\frac{p+1-p}{6}=\frac{1}{6}$.

Blunders (-3)

B1 Divisor other than 5
B2 Each term omitted to max of 3
B3 Incorrect or no conclusion written or implied

Slips (-1)

S1 Arithmetic errors

Attempts (3, 3 marks)

A1 Reference to $1-p$
A2 Listing favourable outcomes (must have $(6,1)$ and at least one other outcome)
A3 One correct term

Part (c)

$20(5,5,10)$ marks
Att (2, 2, 3)
9 (c) The mean percentage mark for candidates in the 2010 Leaving Certificate Higher Level Mathematics examination was $67 \cdot 0 \%$, with a standard deviation of $10 \cdot 4 \%$. The suggestion that candidates who appealed their results have, on average, similar results to all other candidates, is being investigated. A random sample of candidates who appealed is taken. The mean percentage mark of this sample is $69 \cdot 3 \%$.
(i) Show that if the sample size was 25 , then this result is not significant at the 5% level.
(ii) Show that if the sample size was 100 , then this result is significant at the 5% level.
(iii) What is the smallest sample size for which this result could be regarded as significant at the 5% level?

Part (c) (i)
9 (c) (i)

$$
\begin{aligned}
& n=25, \quad \mu=67, \quad \sigma=10 \cdot 4, \quad \bar{x}=69 \cdot 3 . \\
& \frac{\bar{x}-\mu}{\sigma_{\bar{x}}}=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{69 \cdot 3-67}{\frac{10 \cdot 4}{\sqrt{25}}}=\frac{2 \cdot 3}{2 \cdot 08}=1 \cdot 105<1 \cdot 96 .
\end{aligned}
$$

\therefore Result not significant.
OR

$$
\begin{aligned}
& \mu-1 \cdot 96 \sigma_{\bar{x}} \leq \bar{x} \leq \mu+1 \cdot 96 \sigma_{\bar{x}} \\
& 67-\frac{(1 \cdot 96)(10 \cdot 4)}{\sqrt{25}} \leq \bar{x} \leq 69 \cdot 3+\frac{(1 \cdot 96)(10 \cdot 4)}{\sqrt{25}} \\
& 62 \cdot 9232 \leq \bar{x} \leq 71 \cdot 0768 \\
& \text { Within range } \Rightarrow \text { not significant }
\end{aligned}
$$

Blunders (-3)

B1 Error in formula
B2 $\sigma_{\bar{x}} \neq \frac{\sigma}{\sqrt{n}}$
B3 Incorrect or no conclusion implied

Slips (-1)

S1 Arithmetic errors
Attempts (2 marks)
A1 Formula partially substituted

9 (c) (ii)

$$
\begin{aligned}
& n=100, \mu=67, \sigma=10 \cdot 4, \quad \bar{x}=69 \cdot 3 . \\
& \frac{69 \cdot 3-67}{\frac{10 \cdot 4}{\sqrt{100}}}=\frac{2 \cdot 3}{1 \cdot 04}=2 \cdot 211>1 \cdot 96 . \\
& \therefore \text { Result is significant. }
\end{aligned}
$$

Blunders (-3)

B1 Error in formula
B2 $\sigma_{\bar{x}} \neq \frac{\sigma}{\sqrt{n}}$
B3 Incorrect or no conclusion
Slips (-1)
S1 Arithmetic errors
Attempts (2 marks)
A1 Formula partially substituted

Part (c) (iii)
9 (c) (iii)

$$
\begin{aligned}
& \mu=67, \sigma=10 \cdot 4 \quad \bar{x}=69 \cdot 3 . \\
& \frac{69 \cdot 3-67}{\frac{10 \cdot 4}{\sqrt{n}}}=\frac{2 \cdot 3 \sqrt{n}}{10 \cdot 4} \geq 1 \cdot 96 . \\
& 2 \cdot 3 \sqrt{n} \geq 1 \cdot 96 \times 10 \cdot 4 \Rightarrow \sqrt{n} \geq 8 \cdot 862 . \\
& \therefore n>78 \cdot 55 \Rightarrow n=79 .
\end{aligned}
$$

\therefore Smallest sample size is 79 .

Blunders (-3)

B1 Error in formula
B2 $\sigma_{\bar{x}} \neq \frac{\sigma}{\sqrt{n}}$
B3 Incorrect or smallest sample not chosen
Slips (-1)
S1 Arithmetic errors
Attempts (3 marks)
A1 Formula partially substituted

QUESTION 10

Part (a) $10(5,5)$ marks Att (2, 2)

Part (b) $40(5,5,5,5,10,5,5)$ marks Att (2, 2, 2, 2, 3, 2, 2)

Part (a)
$10(5,5)$ marks
Att (2, 2)
10 (a) A Cayley table for the group $\left(\{a, b, c\},{ }^{*}\right)$ is shown.
(i) Write down the identity element.
(ii) Write down the inverse of each element.

$$
5 \text { marks }
$$

Part (a) (i)
10 (a) (i)

$$
\text { Identity element }=b \text {. }
$$

Attempts (2 marks)

A1 Identity property stated but element not identified
Part (a) (ii)
5 marks
Att 2
10 (a) (ii)

$$
a^{-1}=c, \quad b^{-1}=b, \quad c^{-1}=a .
$$

Blunders (-3)

B1 Inverse of any element omitted

Attempt (2 marks)

A1 $a^{*} a^{-1}=b$
A2 Any correct inverse
Part (b)
$40(5,5,5,5,10,5,5)$ marks
$\operatorname{Att}(2,2,2,2,3,2,2)$
10 (b) A regular tetrahedron has twelve rotational symmetries. These form a group under composition, \circ. The symmetries can be represented as permutations of the vertices A, B, C and D.
(i) Write down in permutation form, one element x of order 3, and describe this symmetry geometrically.
(ii) Write down in permutation form, one element y of order 2 , and describe this symmetry geometrically

(iii) Show that $x \circ y \neq y \circ x$.
(iv) Let S be the set $\{e, x, y, x \circ y, y \circ x, x \circ x\}$, where e is the identity transformation. Show that S is not closed undero.
(v) Let H be a subgroup of G. Let $x \in H$ and $y \in H$. Show that $H=G$.

10 (b) (i) Fix one vertex e.g. A
There are eight possible answers, such as:
$x=\left(\begin{array}{llll}A & B & C & D \\ A & C & D & B\end{array}\right)$
Geometrically, this is a rotation of $\frac{2 \pi}{3}$ about the axis $A G$, where G is the centroid of the triangle $B C D$.
The other solutions correspond to rotations of $\frac{2 \pi}{3}$ or $\frac{4 \pi}{3}$ about this or similar axes.

Blunders (-3)

B1 Permutation other than order 3
B2 Incomplete geometrical justification
Slips (-1)
S1 Arithmetic errors

Attempts (2, 2 marks)

A1 Incorrect angle of rotation
Part (b) (ii)Permutation Interpretation
10 (b) (ii)
There are three possible answers, such as:
$y=\left(\begin{array}{llll}A & B & C & D \\ D & C & B & A\end{array}\right)$.
Geometrically, this is a rotation of π about the axis through the mid points of the opposite edges $[A D]$ and $[B C]$.

Blunders (-3)

B1 Incomplete geometrical interpretation
Slips (-1)
S1 Arithmetic errors
Attempt (2, 2 marks)
A1 Reference to π
Part (b) (iii)
10 marks
Att 3
10 (b) (iii)

$$
\begin{aligned}
& x \circ y=\left(\begin{array}{llll}
A & B & C & D \\
A & C & D & B
\end{array}\right)\left(\begin{array}{llll}
A & B & C & D \\
D & C & B & A
\end{array}\right)=\left(\begin{array}{llll}
A & B & C & D \\
B & D & C & A
\end{array}\right) . \\
& y \circ x=\left(\begin{array}{llll}
A & B & C & D \\
D & C & B & A
\end{array}\right)\left(\begin{array}{llll}
A & B & C & D \\
A & C & D & B
\end{array}\right)=\left(\begin{array}{llll}
A & B & C & D \\
D & B & A & C
\end{array}\right) .
\end{aligned}
$$

$$
\therefore x \circ y \neq y \circ x .
$$

Note: compositions depend on candidate's choice of x and y, but will be unequal in all correct cases.

Blunders (-3)

B1 Error in composition
B2 Incorrect conclusion stated or implied
Slips (-1)
S1 Arithmetic errors

Attempts (3 marks)
A1 $x \circ y$ identified
Part (b) (iv)
5 marks
Att 2
10 (b) (iv)

$$
(y \circ x)(x \circ y)=\left(\begin{array}{llll}
A & B & C & D \\
D & B & A & C
\end{array}\right)\left(\begin{array}{llll}
A & B & C & D \\
B & D & C & A
\end{array}\right)=\left(\begin{array}{llll}
A & B & C & D \\
B & C & A & D
\end{array}\right) \notin S
$$

$\therefore S$ is not closed.
Note: other correct examples of non-closure exist, and are dependent on candidate's choice of x and y.

Blunders (-3)

B1 Incorrect composition
B2 No conclusion stated or implied
Slips (-1)
S1 Arithmetic errors

Attempts (2 marks)
A1 At least 2 elements of composition correct
Part (b) (v)
10 (b) (v)
By Lagrange's theorem, any subgroup H of G must be of order $1,2,3,4,6$ or 12 . But H must at least contain the elements $\{e, x, y, x \circ y, y \circ x, x \circ x\}$. But by part (iii), this set is not closed. Thus it must contain 12 elements. Hence $H=G$.

Blunders (-3)

B1 Error in use of Lagrange's Theorem
B2 No reference to issue of non-closure from (iii)

Slips (-1)

S1 Arithmetic errors
Attempts (2 marks)
A1 Definition of a subgroup written or implied.

11 (a) An ellipse, centre $(0,0)$, has eccentricity $\frac{1}{2}$. One focus is at (2,0). Find the equation of the ellipse.

Part (a)
10 marks
Att 3
11 (a)

$$
a e=2 \Rightarrow a\left(\frac{1}{2}\right)=2 \Rightarrow a=4 \text { and } b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow b^{2}=16\left(1-\frac{1}{4}\right)=12
$$

Ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$.

Blunders (-3)

B1 Values of a^{2} and b^{2} found but equation not formed
B2 Error in formula
B3 Mishandling e^{2}
Slips (-1)
S1 Arithmetic errors
Attempts (3 marks)
A1 $a=4$ and stops
Part (b)
11 (b)(i) $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ are two distinct points such that $x_{1} \leq x_{2}$.
If the slope of $P Q$ is $\tan \theta$, and the length of $[P Q]$ is d, express $\left(x_{2}-x_{1}\right)$ and $\left(y_{2}-y_{1}\right)$ in terms of d and θ.
(ii) Let f be the transformation $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$, where $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}2 & 5 \\ 3 & 4\end{array}\right)\binom{x}{y}+\binom{6}{1}$. Show that $\frac{|f(P) f(Q)|}{|P Q|}=\sqrt{(2 \cos \theta+5 \sin \theta)^{2}+(3 \cos \theta+4 \sin \theta)^{2}}$.
(iii) Deduce that the ratio of lengths on parallel lines is invariant under f.

11 (b) (i)

$$
\begin{aligned}
& |P R|=x_{2}-x_{1} \text { and }|Q R|=y_{2}-y_{1} . \\
& \cos \theta=\frac{x_{2}-x_{1}}{d} \Rightarrow x_{2}-x_{1}=d \cos \theta . \\
& \sin \theta=\frac{y_{2}-y_{1}}{d} \Rightarrow y_{2}-y_{1}=d \sin \theta .
\end{aligned}
$$

Blunders (-3)
B1 Error in trigonometric formula
B2 $x_{2}-x_{1}=d \cos \theta$ only
Slips (-1)
S1 Arithmetic errors
Attempts (3 marks)
A1 $\tan \theta=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\operatorname{Part}(\mathrm{b})$ (ii) $\frac{|f(P) f(Q)|}{|P Q|}$
Finish
10 marks
Att 3
11 (b) (ii)

$$
\begin{aligned}
f(P)= & \left(\begin{array}{ll}
2 & 5 \\
3 & 4
\end{array}\right)\binom{x_{1}}{y_{1}}+\binom{6}{1}=\binom{2 x_{1}+5 y_{1}+6}{3 x_{1}+4 y_{1}+1} \text { and } f(Q)=\binom{2 x_{2}+5 y_{2}+6}{3 x_{2}+4 y_{2}+1} . \\
\therefore \frac{|f(P) f(Q)|}{|P Q|} & =\frac{\sqrt{\left(2 x_{2}+5 y_{2}+6-2 x_{1}-5 y_{1}-6\right)^{2}+\left(3 x_{2}+4 y_{2}+1-3 x_{1}-4 y_{1}-1\right)^{2}}}{d} \\
& =\frac{\sqrt{\left[2\left(x_{2}-x_{1}\right)+5\left(y_{2}-y_{1}\right)\right]^{2}+\left[3\left(x_{2}-x_{1}\right)+4\left(y_{2}-y_{1}\right)\right]^{2}}}{d} \\
& =\frac{\sqrt{(2 d \cos \theta+5 d \sin \theta)^{2}+(3 d \cos \theta+4 d \sin \theta)^{2}}}{d} \\
& =\frac{d \sqrt{(2 \cos \theta+5 \sin \theta)^{2}+3(\cos \theta+4 \sin \theta)^{2}}}{d} \\
& =\sqrt{(2 \cos \theta+5 \sin \theta)^{2}+(3 \cos \theta+4 \sin \theta)^{2}}
\end{aligned}
$$

Blunders (-3)

B1 Error in matrix multiplication
B2 Incorrect conclusion
Slips (-1)
S1 Arithmetic errors

Attempts (2, 3 marks)
A1 $\quad f(P)$ or equivalent
A2 Distance formula with some correct substitution for $|f(P) f(Q)|$
Part (b) (iii)
11 (b) (iii)
$[P Q]$ and $[R S]$ are parallel lines
$[P Q]$ and $[R S]$ are mapped to $[f(P) f(Q)]$ and $[f(R) f(S)]$ respectively.
By part (ii), $|f(P) f(Q)|=k|P Q|$, where $k=\sqrt{(2 \cos \theta+5 \sin \theta)^{2}+(3 \cos \theta+4 \sin \theta)^{2}}$.
Since k depends only on θ, it is the same k for both segments.
$\therefore \frac{|f(P) f(Q)|}{|f(R) f(S)|}=\frac{k|P Q|}{k|R S|}=\frac{|P Q|}{|R S|}$.
Blunders (-3)
B1 Fails to justify $|f(R) f(S)|=k|R S|$
B2 No conclusion or incorrect conclusion
Slips (-1)
S1 Arithmetic errors
Attempt (5 marks)
A1 $|f(P) f(Q)|=k|P Q|$

MARCANNA BREISE AS UCHT FREAGAIRT TRÍ GHAEILGE

(Bonus marks for answering through Irish)

Ba chóir marcanna de réir an ghnáthráta a bhronnadh ar iarrthóirí nach ngnóthaíonn níos mó ná 75% d'iomlán na marcanna don pháipéar. Ba chóir freisin an marc bónais sin a shlánú síos.

Déantar an cinneadh agus an ríomhaireacht faoin marc bónais i gcás gach páipéir ar leithligh.
Is é 5% an gnáthráta agus is é 300 iomlán na marcanna don pháipéar. Mar sin, bain úsáid as an ngnáthráta 5% i gcás iarrthóirí a ghnóthaíonn 225 marc nó níos lú, e.g. 198 marc $\times 5 \%=$ $9.9 \Rightarrow$ bónas $=9$ marc.

Má ghnóthaíonn an t-iarrthóir níos mó ná 225 marc, ríomhtar an bónas de réir na foirmle [300 - bunmharc] $\times 15 \%$, agus an marc bónais sin a shlánú síos. In ionad an ríomhaireacht \sin a dhéanamh, is féidir úsáid a bhaint as an tábla thíos.

Bunmharc	Marc Bónais
226	11
$227-233$	10
$234-240$	9
$241-246$	8
$247-253$	7
$254-260$	6
$261-266$	5
$267-273$	4
$274-280$	3
$281-286$	2
$287-293$	1
$294-300$	0

