

Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE 2010

MARKING SCHEME

MATHEMATICS

HIGHER LEVEL

Contents

Page
GENERAL GUIDELINES FOR EXAMINERS - PAPER 1 4
QUESTION 1 5
QUESTION 2 10
QUESTION 3 14
QUESTION 4 18
QUESTION 5 23
QUESTION 6 27
QUESTION 7 32
QUESTION 8 35
GENERAL GUIDELINES FOR EXAMINERS - PAPER 2 41
QUESTION 1 42
QUESTION 2 46
QUESTION 3 49
QUESTION 4 52
QUESTION 5 56
QUESTION 6 60
QUESTION 7 63
QUESTION 8 66
QUESTION 9 69
QUESTION 10 72
QUESTION 11 76
MARCANNA BREISE AS UCHT FREAGAIRT TRÍ GHAEILGE 81

GENERAL GUIDELINES FOR EXAMINERS - PAPER 1

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions (-3)
- Slips - numerical errors
- Misreadings (provided task is not oversimplified)

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2, ..., M1, M2,...etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2, ...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work of merit is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5.50$ may be written as $€ 5,50$.

QUESTION 1

Part (a)
$10(5,5)$ marks
Att (2, 2)
Part (b)
$20(5,10,5)$ marks
$\operatorname{Att}(\mathbf{2 , 3 , 2)}$
Part (c)
$(5,5)$ marks
Att (2, 2)

1. (a) $x^{2}-6 x+t=(x+k)^{2}$, where t and k are constants.

Find the value of k and the value of t.

| (a) $\begin{array}{ll}\text { Equating coefficients } & 5 \text { marks } \\ \text { Values } & 5 \text { marks }\end{array}$ | Att 2 |
| :--- | :--- | :--- |
| | Att 2 |
| 1 | |

1 (a)

$$
\begin{aligned}
& x^{2}-6 x+t=(x+k)^{2} \Rightarrow x^{2}-6 x+t=x^{2}+2 k x+k^{2} . \\
& \therefore 2 k=-6 \text { and } t=k^{2} \Rightarrow k=-3 \text { and } t=9 .
\end{aligned}
$$

Or

Blunders (-3)

B1 Expansion $(x+a)^{2}$ once only
B2 Not like-to-like in equating coefficients
B3 Indices
(b) Given that p is a real number, prove that the equation $x^{2}-4 p x-x+2 p=0$ has real roots.
(b) Equation arranged

5 marks
Att 2
Correct substitution in $b^{2}-4 a c$
10 marks
Att 3
Finish
5 marks
1 (b) $x^{2}-4 p x-x+2 p=0 \Rightarrow x^{2}+x(-4 p-1)+2 p=0$.
$b^{2}-4 a c=(-4 p-1)^{2}-4(2 p)=16 p^{2}+8 p-8 p+1=16 p^{2}+1 \geq 0$ for all p.
\therefore Roots are real.

Blunders (-3)

B1 Expansion of $(a+b)^{2}$ once only
B2 Incorrect value a
B3 Incorrect value b
B4 Incorrect value c
B5 Inequality sign
B6 Indices
B7 Incorrect deduction or no deduction
(c) $(x-2)$ and $(x+1)$ are factors of $x^{3}+b x^{2}+c x+d$.
(i) Express c in terms of b.
(ii) Express d in terms of b.
(iii) Given that b, c and d are three consecutive terms in an arithmetic sequence, find their values.
$f(2)$ and $f(-1)$
c in terms of b
d in terms of b
Values
1 (c) (i)

$$
\begin{aligned}
(x-2) \text { is a factor } \Rightarrow f(2)=0 . \quad \therefore 8+4 b+2 c+d=0 \Rightarrow 4 b+2 c+d=-8 . \\
(x+1) \text { is a factor } \Rightarrow f(-1)=0 . \quad \therefore \quad-1+b-c+d=0 \Rightarrow b-c+d=1 . \\
\therefore \quad 3 b+3 c=-9 \Rightarrow b+c=-3 \Rightarrow c=-b-3 .
\end{aligned}
$$

1 (c) (ii) By part (i)

$$
\begin{aligned}
& 4 b+2 c+d=-8 \\
& 2 b-2 c+2 d=2 \\
& \hline 6 b+3 d=-6
\end{aligned} \quad \Rightarrow \quad 2 b+d=-2 \quad \Rightarrow \quad d=-2 b-2 .
$$

1 (c) (iii) An arithmetic sequence $b, c, d \Rightarrow c-b=d-c \Rightarrow 2 c=b+d$.

$$
\begin{aligned}
& \therefore-2 b-6=b-2 b-2 \Rightarrow b=-4 . \\
& \therefore \quad c=1 \text { and } d=6 .
\end{aligned}
$$

Blunders (-3)
B1 Indices
B2 Deduction root from factor
B3 Statement of AP
Slips (-1)
S1 Numerical

Worthless

W1 Geometric Sequence
Or

1 (c) (i)

$$
(x-2)(x+1)=\left(x^{2}-x-2\right) \quad \text { factor }
$$

1 (c) (ii)

$$
\begin{aligned}
& \begin{array}{l}
x+(b+1) \\
x ^ { 2 } - x - 2 \longdiv { x ^ { 3 } + b x ^ { 2 } + c x + d } \\
\frac{x^{3}-x^{2}-2 x}{(b+1) x^{2}}+(c+2) x+d \\
\frac{(b+1) x^{2}-(b+1) x-2(b+1)}{(c+2) x+(b+1) x+d+2(b+1)=0} \\
\text { since }\left(x^{2}-x-2\right) \text { is a factor } \\
{[(c+2)+(b+1)] x+[d+2(b+1)]=(0) x+(0)} \\
\text { Equating Coefficients }
\end{array} \text { }
\end{aligned}
$$

(i) $b+c+3=0 \Rightarrow c=-3-b$
(ii) $d+2 b+2=0 \Rightarrow d=-2 b-2$

1 (c) (iii) As in previous solution

Blunders (-3)

B1 $(x-2)(x+1)$ once only
B2 Indices
B3 Not like-to-like when equating coefficients
Slips (-1)
S1 Not changing sign when subtracting

Attempts

A1 Any effort at division

Worthless

W1 Geometric sequence

Other linear factor \& multiplication	5 marks	Att 2
\boldsymbol{c} in terms of b	5 marks	Att 2
\boldsymbol{d} in terms of b	5 marks	Att 2
Values	5 marks	Att 2
1		

1 (c) (i) (ii)

$$
\begin{aligned}
& (x-2)(x+1)=\left(x^{2}-x-2\right) \text { factor } \\
& \left(x^{2}-x-2\right)\left(x-\frac{d}{2}\right)=x^{3}+b x^{2}+c x+d \\
& x^{3}-x^{2}-2 x-\frac{d x^{2}}{2}+\frac{d x}{2}+d=x^{3}+b x^{2}+c x+d \\
& x^{3}+\left(-\frac{d}{2}-1\right) x^{2}+\left(-2+\frac{d}{2}\right) x+d=x^{3}+(b) x^{2}+(c) x+(d)
\end{aligned}
$$

Equating Coefficients
(i) : $-2+\frac{d}{2}=c$

$$
-4+d=2 c
$$

(ii) : $-\frac{d}{2}-1=b$

$$
-d-2=2 b
$$

$$
-2 b-2=d
$$

Put this value of d into (i)
(i) $-4+(-2 b-2)=2 c$

$$
-4-2 b-2=2 c
$$

$$
-6-2 b=2 c
$$

$$
c=-3-b
$$

1 (c) (iii) As in previous solution

Blunders (-3)
B1 Indices
B2 $(x-2)(x+1)$ once only
B3 Not like to like when equating coefficients

Attempts

A1 Other factors not linear in (1) only

Worthless

W1 Geometric sequence

QUESTION 2

Part (a)	$10(5,5)$ marks	Att (2, 2)
Part (b)	$20(10,10)$ marks	Att (3, 3)
Part (c)	$20(5,5,5,5)$ marks	Att (2, 2, 2, 2)
Part (a)	$10(5,5)$ marks	$\operatorname{Att}(2,2)$
(a)	Solve the simultaneous equations $\begin{gathered} 2 x+3 y=0 \\ x+y+z=0 \\ 3 x+2 y-4 z=9 . \end{gathered}$	

(a) One unknown
5 marks
Att 2
Other values
5 marks
Att 2

2 (a)

$$
\begin{aligned}
& 4 x+4 y+4 z=0 \\
& 3 x+2 y-4 z=9 \\
& \hline 7 x+6 y=9 \\
& 4 x+6 y=0
\end{aligned}
$$

Blunders (-3)

B1 Multiplying one side of equation only
B2 Not finding $2^{\text {nd }}$ value, having found $1^{\text {st }}$ value
B3 Not finding $3{ }^{\text {rd }}$ value, having found other two

Slips (-1)

S1 Numerical
S1 Not changing sign when subtracting

Worthless

W1 Trial and error only
(b) The equation $x^{2}-12 x+16=0$ has roots α^{2} and β^{2}, where $\alpha>0$ and $\beta>0$.
(i) Find the value of $\alpha \beta$.
(ii) Hence, find the value of $\alpha+\beta$.
(b) (i) Value of $\alpha \beta$

10 marks
Att 3
(b) (ii) Value of $(\alpha+\beta)$

10 marks
Att 3
2 (b) (i)

$$
\alpha^{2} \beta^{2}=16 \Rightarrow \alpha \beta=4
$$

2 (b) (ii)

$$
\begin{aligned}
& \alpha^{2}+\beta^{2}=12 \text { and } \alpha \beta=4 . \\
& (\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta=12+8=20 . \\
& \therefore \alpha+\beta=\sqrt{20}=2 \sqrt{5} .
\end{aligned}
$$

Blunders (-3)

B1 Indices
B2 Incorrect sum
B3 Incorrect product
B4 Incorrect statements
B5 Excess value each time
Slips (-1)
S1 Numerical
(c) (i) Prove that for all real numbers a and b,

$$
a^{2}-a b+b^{2} \geq a b
$$

(ii) Let a and b be non-zero real numbers such that $a+b \geq 0$.

Show that $\frac{a}{b^{2}}+\frac{b}{a^{2}} \geq \frac{1}{a}+\frac{1}{b}$.
(c) (i)

5 marks
Att 2
(ii) Factors

5 marks
Att 2
Use of part (i)
5 marks
Att 2
Finish
5 marks
2 (c) (i)

$$
\begin{aligned}
& (a-b)^{2} \geq 0 \quad \Rightarrow \quad a^{2}-2 a b+b^{2} \geq 0 \\
& \therefore \quad a^{2}-a b+b^{2} \geq a b
\end{aligned}
$$

2 (c) (ii) $\frac{a}{b^{2}}+\frac{b}{a^{2}}=\frac{a^{3}+b^{3}}{a^{2} b^{2}}=\frac{(a+b)\left(a^{2}-a b+b^{2}\right)}{a^{2} b^{2}}$.

$$
\begin{aligned}
& \text { But } \frac{(a+b)\left(a^{2}-a b+b^{2}\right)}{a^{2} b^{2}} \geq \frac{a b(a+b)}{a^{2} b^{2}}, \text { by part (i) } \\
& \frac{a b(a+b)}{a^{2} b^{2}}=\frac{a+b}{a b}=\frac{a}{a b}+\frac{b}{a b}=\frac{1}{b}+\frac{1}{a} . \\
& \therefore \frac{a}{b^{2}}+\frac{b}{a^{2}} \geq \frac{1}{a}+\frac{1}{b}
\end{aligned}
$$

OR

2 (c) (ii)

$$
\frac{a}{b^{2}}+\frac{b}{a^{2}} \geq \frac{1}{a}+\frac{1}{b}
$$

Multiply across by $a^{2} b^{2}$, which is positive:

$$
\begin{aligned}
& \Leftrightarrow a^{3}+b^{3} \geq a b^{2}+b a^{2} \\
& \Leftrightarrow(a+b)\left(a^{2}-a b+b^{2}\right) \geq a b(a+b) \\
& \Leftrightarrow a^{2}-a b+b^{2} \geq a b, \quad \text { since } a+b \geq 0 \\
& \text { true, by part (i). }
\end{aligned}
$$

Blunders (-3)

B1 Expansion $(a-b)^{2}$ once only
B2 Factors $a^{3}+b^{3}$
B3 Indices
B4 Inequality sign
B5 Incorrect deduction or no deduction

Slips (-1)
S1 Numerical
Attepmts
A1 $a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}\right)$
Worthless
W1 Particular values
(c) (i)
(ii) Common denominator Factorised 5 marks

Att 2

Finish
5 marks
Att 2
5 marks
Att 2
5 marks
2 (c) (i)

$$
\begin{aligned}
\left(a^{2}-a b+b^{2}\right) \geq a b, & \Leftrightarrow \\
\left(a^{2}-a b+b^{2}\right)-a b & \left.=a^{2}-a b+b^{2}\right)-a b \geq 0 . \\
& =(a-b)^{2} \\
& \geq 0
\end{aligned}
$$

2 (c) (ii)

$$
\begin{aligned}
\frac{a}{b^{2}}+\frac{b}{a^{2}} \geq \frac{1}{a}+\frac{1}{b}, \Leftrightarrow & \left(\frac{a}{b^{2}}+\frac{b}{a^{2}}\right)-\left(\frac{1}{a}+\frac{1}{b}\right) \geq 0 \\
\left(\frac{a}{b^{2}}+\frac{b}{a^{2}}\right)-\left(\frac{1}{a}+\frac{1}{b}\right) & =\frac{a^{3}+b^{3}-a b^{2}-a^{2} b}{a^{2} b^{2}} \\
& =\frac{\left(a^{3}-a^{2} b\right)-\left(a b^{2}-b^{3}\right)}{a^{2} b^{2}} \\
& =\frac{a^{2}(a-b)-b^{2}(a-b)}{a^{2} b^{2}} \\
& =\frac{(a-b)\left[a^{2}-b^{2}\right]}{a^{2} b^{2}} \\
& =\frac{(a-b)[(a-b)(a+b)]}{(a b)^{2}} \\
& =\frac{(a-b)^{2}(a+b)}{(a b)^{2}} \geq 0, \text { since } a+b \geq 0
\end{aligned}
$$

Blunders (-3)

B1 Indices
B2 Inequality Sign
B3 Factors $\left(a^{2}-b^{2}\right)$ once only
B4 Incorrect deduction or no deduction

Worthless

W1 Particular values

QUESTION 3

Part (a)	$\mathbf{1 0}(5,5)$ marks	Att (2,2)
Part (b)	$20(5,5,10)$ marks	Att $(2,2,3)$
Part (c)	$20(5,5,5,5)$ marks	Att (2,2,2,2)

Part (a)

$10(5,5)$ marks
$\operatorname{Att}(2,2)$
(a) Find x and y such that

$$
\left(\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right)\binom{x}{y}=\binom{20}{32} .
$$

Inverse of \boldsymbol{A} evaluated

3 (a)

$$
\begin{aligned}
& \left(\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right)\binom{x}{y}=\binom{20}{32} \Rightarrow\binom{x}{y}=\left(\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right)^{-1}\binom{20}{32} . \\
& \therefore\binom{x}{y}=\frac{1}{18-20}\left(\begin{array}{cc}
6 & -4 \\
-5 & 3
\end{array}\right)\binom{20}{32}=-\frac{1}{2}\binom{-8}{-4}=\binom{4}{2} .
\end{aligned}
$$

Or

One unknown
Other unknown

5 marks

5 marks
3 (a)
(i) $3 x+4 y=20.6 \Rightarrow 18 x+24 y=120$
(ii) $5 x+6 y=32.4 \Rightarrow 20 x+24 y=128$ $-2 x=-8$ $x=4$
(i) $3 x+4 y=20$
$12+4 y=20$ $4 y=8 \Rightarrow y=2$

Blunders (-3)
B1 Formula for inverse
B2 Matrix multiplication
Slips (-1)
S1 Each incorrect element in matrix multiplication
S2 Numerical
S3 Not changing sign when subtracting
(b) Let $z_{1}=s+8 i$ and $z_{2}=t+8 i$, where $s \in \mathbb{R}, t \in \mathbb{R}$ and $i^{2}=-1$.
(i) Given that $\left|z_{1}\right|=10$, find the values of s.
(ii) Given that $\arg \left(z_{2}\right)=\frac{3 \pi}{4}$, find the value of t.
(b) (i) Values for modulus Values of s

5 marks
Att 2
5 marks
Att 2
(ii) Value of t

Att 3

3 (b) (i) $\quad|s+8 i|=10 \Rightarrow \sqrt{s^{2}+64}=10 \Rightarrow s^{2}=36 . \therefore s= \pm 6$.
3 (b) (ii) $\quad \tan \frac{3 \pi}{4}=\frac{8}{t} \Rightarrow-t=8 \Rightarrow t=-8$.

Or

3 (b) (i) $\quad z_{1}=s+8 i \Rightarrow\left|z_{1}\right|=10$

$$
\begin{aligned}
\sqrt{s^{2}+64} & =10 \\
s^{2}+64 & =100 \\
s^{2} & =36 \\
s & = \pm 6
\end{aligned}
$$

3 (b) (ii)

$$
\begin{aligned}
\tan \alpha & =\tan \frac{\pi}{4}=1 \\
\Rightarrow \frac{8}{|t|} & =1 \\
& |t|=8 \Rightarrow t=-8
\end{aligned}
$$

$$
\theta=\frac{3 \pi}{4} \Rightarrow \alpha=\frac{\pi}{4}
$$

Blunders (-3)

B1 Formula for modulus
B2 Indices
B3 Only one value for s
B4 Diagram for z_{2} once only
B5 Incorrect argument
B6 Trig Definition
B7 Mod Values
B8 $\quad \tan \frac{3 \pi}{4}=1$
Slips (-1)
S1 Trig value
S2 Numerical
(c) (i) Use De Moivre's theorem to find, in polar form, the five roots of the equation

$$
z^{5}=1
$$

(ii) Choose one of the roots w, where $w \neq 1$. Prove that $w^{2}+w^{3}$ is real.
(c) (i) $z=c i s \frac{2 n \pi}{5}$

Five roots

(c) (ii) $w^{2}+w^{3}$ as sum of \cos and \sin

5 marks

5 marks
5 marks
5 marks

Att 2
Att 2
Att 2
Att 2

3 (c) (i)

$$
\begin{aligned}
& z=(\cos 0+i \sin 0)^{\frac{1}{5}}=\cos \left(\frac{0+2 n \pi}{5}\right)+i \sin \left(\frac{0+2 n \pi}{5}\right), \text { for } n=0,1,2,3,4 \\
& n=0 \Rightarrow z_{0}=1 \\
& n=1 \Rightarrow z_{1}=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5} \\
& n=2 \Rightarrow z_{2}=\cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5} \\
& n=3 \Rightarrow z_{3}=\cos \frac{6 \pi}{5}+i \sin \frac{6 \pi}{5} \\
& n=4 \Rightarrow z_{4}=\cos \frac{8 \pi}{5}+i \sin \frac{8 \pi}{5}
\end{aligned}
$$

3 (c) (ii)
Let $w=z_{1}=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}$.

$$
\begin{aligned}
\therefore w^{2}+w^{3} & =\left(\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}\right)^{2}+\left(\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}\right)^{3} \\
& =\cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5}+\cos \frac{6 \pi}{5}+i \sin \frac{6 \pi}{5} \\
& =\left(\cos \frac{6 \pi}{5}+\cos \frac{4 \pi}{5}\right)+i\left(\sin \frac{6 \pi}{5}+\sin \frac{4 \pi}{5}\right) \\
& =\left(2 \cos \pi \cos \frac{\pi}{5}\right)+i\left(2 \sin \pi \cos \frac{\pi}{5}\right) \\
& =-2 \cos \frac{\pi}{5}+i(0) \\
& =-2 \cos \frac{\pi}{5}, \quad \text { which is real }
\end{aligned}
$$

Blunders (-3)

B1 Formula De Moivre once only
B2 Application De Moivre
B3 Indices

B4 Trig Formula
B5 Polar formula once only
B6 i
Slips (-1)
S1 Trig value
S2 Root omitted
Note: Must show (0) i
Attempt
A1 Use of decimals in c(ii)

Worthless

W1 $w=1$ used in c(ii)

QUESTION 4

Part (a)	$10(5,5)$ marks	Att (2, 2)
Part (b)	$15(5,5,5)$ marks	Att (2, 2, 2)
Part (c)	$25(5,5,5,5,5)$ marks	Att (2, 2, 2, 2, 2)
Part (a)	$10(5,5)$ marks	Att (2, 2)

(a) Write the recurring decimal $0 \cdot 474747 \ldots$. as an infinite geometric series and hence as a fraction.
(a) Series

5 marks

Att 2
Fraction
5 marks
4 (a)

$$
\begin{aligned}
0 \cdot 474747 \ldots \ldots . . & =\frac{47}{100}+\frac{47}{100^{2}}+\frac{47}{100^{3}}+\ldots . \\
& =\frac{a}{1-r}=\frac{\frac{47}{100}}{1-\frac{1}{100}}=\frac{47}{99} .
\end{aligned}
$$

Blunders (-3)

B1 Infinity formula once only
B2 Incorrect a
B3 Incorrect r
Slips (-1)
S1 Numerical
(b) In an arithmetic sequence, the fifth term is -18 and the tenth term is 12 .
(i) Find the first term and the common difference.
(ii) Find the sum of the first fifteen terms of the sequence.
(b) (i) Terms in a and d

5 marks

Att 2
Values of a and d

5 marks

Att 2
(b) (ii) Sum

5 marks
Att 2
4 (b) (i)

$$
\begin{aligned}
& T_{5}=-18 \Rightarrow a+4 d=-18 \\
& T_{10}=12 \Rightarrow \frac{a+9 d=12}{-5 d=-30} \Rightarrow d=6 \text { and } a=-42
\end{aligned}
$$

4 (b) (ii)

$$
S_{n}=\frac{n}{2}\{2 a+(n-1) d\} . \quad \therefore S_{15}=\frac{15}{2}\{-84+14(6)\}=\frac{15}{2}(0)=0 .
$$

Blunders (-3)
B1 Term of A.P.
B2 Formula A.P. once only (term)
B3 Incorrect a
B4 Incorrect d
B5 Formula for sum arithmetic series once only
Slips (-1)
S1 Numerical

Worthless

W1 Treats as G.P.
(c) (i) Show that $(r+1)^{3}-(r-1)^{3}=6 r^{2}+2$.
(ii) Hence, or otherwise, prove that $\sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(iii) Find $\sum_{r=11}^{30}\left(3 r^{2}+1\right)$.
(c) (i)

5 marks
Att 2
4 (c) (i) $\quad(r+1)^{3}-(r-1)^{3}=r^{3}+3 r^{2}+3 r+1-\left(r^{3}-3 r^{2}+3 r-1\right)=6 r^{2}+2$.

OR

4 (c) (i)

$$
\begin{aligned}
(r+1)^{3}-(r-1)^{3} & =[(r+1)-(r-1)]\left[(r+1)^{2}+(r+1)(r-1)+(r-1)^{2}\right] \\
& \left.=[r+1-r+1] \mid r^{2}+2 r+1+r^{2}-1+r^{2}-2 r+1\right] \\
& =(2)\left(3 r^{2}+1\right) \\
& =6 r^{2}+2
\end{aligned}
$$

Blunders (-3)
B1 Expansion of $(r+1)^{3}$ once only
B2 Expansion of $(r-1)^{3}$ once only
B3 Formula $a^{3}-b^{3}$
B4 Indices
B5 Expansion of $(r+1)^{2}$ once only
B6 Expansion of $(r-1)^{2}$ once only
B7 Binomial expansion once only

4 (c) (ii)

$$
\begin{aligned}
& 2^{6}-0^{3}=6\left(1^{2}\right)+2 \\
& 3^{6}-1^{3}=6\left(2^{2}\right)+2 \\
& 4^{6}-2^{2}=6\left(3^{2}\right)+2 \\
& \vdots \vdots \\
&=6(n-2)^{2}+2 \\
&(n-1)^{5}-(n-3)^{5}=6(n-1)^{2}+2 \\
& n^{3}-(n-2)^{5}=6(n+1)^{5} \\
&=6 n^{2}+2 \\
&(n+1)^{3}-(n=1 \\
& \hline(n+1)^{3}+n^{3}-1=6 n \\
& \sum_{r=1}^{n} r^{2}=\frac{1}{6}\left(n^{3}+3 n^{2}+3 n+1+n^{3}-1-2 n\right)=\frac{1}{6}\left(2 n^{3}+3 n^{2}+n\right) \\
&= \frac{n\left(2 n^{2}+3 n+1\right)}{6}=\frac{n(n+1)(2 n+1)}{6} .
\end{aligned}
$$

OR

4 (c) (ii) Prove by induction that $1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots \ldots .+n^{2}=\frac{n}{6}(n+1)(2 n+1)$
$\mathrm{P}(1):$ Test $n=1: \quad \frac{1}{6}(2)(3)=1 \Rightarrow$ True for $n=1$.
$\mathrm{P}(k)$: Assume true for $n=k: \quad \Rightarrow S_{k}=\frac{k}{6}(k+1)(2 k+1)$
To prove : $S_{k+1}=\frac{k+1}{6}(k+2)(2 k+3)$
Proof: $\quad S_{k+1}=1^{2}+2^{2}+\ldots \ldots . . k^{2}+(k+1)^{2}=\frac{k}{6}(k+1)(2 k+1)+(k+1)^{2} \quad$, using P (k)

$$
\begin{aligned}
& =\frac{(k+1)}{6}[k(2 k+1)+6(k+1)] \\
& =\frac{(k+1)}{6}\left[2 k^{2}+k+6 k+6\right] \\
& =\frac{k+1}{6}\left[2 k^{2}+7 k+6\right] \\
& =\frac{k+1}{6}[(k+2)(k+3)]
\end{aligned}
$$

\Rightarrow Formula true for $n=(k+1)$ if true for $n=k$
It is true for $n=1 \Rightarrow$ true for all n

* Must show three terms at start and two at finish or vice versa in first method.

Blunders (-3)
B1 Indices
B2 Cancellation must be shown or implied
B3 Term omitted
B4 Expansion $(n+1)^{3}$ once only
(c) (iii) Substitution of $r=\mathbf{3 0}$ and $r=10$

4 (c) (iii)

$$
\begin{aligned}
\sum_{r=11}^{30}\left(3 r^{2}+1\right) & =3 \sum_{1}^{30} r^{2}-3 \sum_{1}^{10} r^{2}+30-10 \\
& =\frac{3(30)(31)(61)}{6}-\frac{3(10)(11)(21)}{6}+20=28365-1155+20=27230
\end{aligned}
$$

Blunders (-3)
B1 Formula
B2 $\operatorname{Not}(\boldsymbol{\Sigma} 30-\Sigma 10)$
B3 Value n
Slips (-1)
S1 Numerical

QUESTION 5

Part (a)	$\mathbf{1 0 (5 , 5) \text { marks }}$	Att(2, 2)
Part (b)	$20(5,5,10)$ marks	Att (2, 2, 3)
Part (c)	$20(5,5,5,5)$ marks	Att (2, 2, 2, 2)

Part (a)
$10(5,5)$ marks
Att (2,2)
(a) Solve $\log _{2}(x+6)-\log _{2}(x+2)=1$.

(a) Log law applied Value	5 marks 5 marks	$\begin{aligned} & \text { Att } 2 \\ & \text { Att } 2 \end{aligned}$
$\log _{2}(x+6)-\log _{2}(x+2)=1$.		
$\therefore \log _{2}\left(\frac{x+6}{x+2}\right)=1 \Rightarrow \frac{x+6}{x+2}=2$		
$\therefore 2 x+4=x+6 \Rightarrow x=2$.		

Blunders (-3)
B1 Log laws
B2 Indices
(b) Use induction to prove that

$$
2+(2 \times 3)+\left(2 \times 3^{2}\right)+\left(2 \times 3^{3}\right)+\ldots \ldots \ldots+\left(2 \times 3^{n-1}\right)=3^{n}-1
$$

where n is a positive integer.

Part (b) $P(\mathbf{1})$

5 marks

Att 2
$P(k)$
5 marks
Att 2
$P(k+1)$
10 marks
Att 3
5 (b)
Test for $n=1, P(1)=3^{1}-1=2$.
\therefore True for $n=1$.

Assume $P(k)$. (That is, assume true for $n=k$.).
i.e., assume $S_{k}=3^{k}-1$, where S_{k} is the sum of the first k terms.

Deduce $P(k+1)$. (That is, deduce truth for $n=k+1$.)
i.e. deduce that $S_{k+1}=3^{k+1}-1$.

Proof: $S_{k+1}=S_{k}+T_{k+1}=3^{k}-1+2 \times 3^{k}=3\left(3^{k}\right)-1=3^{k+1}-1$.
\therefore True for $n=k+1$.
So, $P(k+1)$ is true whenever $P(k)$ is true. Since $P(1)$ is true, then, by induction, $P(n)$ is true, for all positive integers n.

Blunders (-3)

B1 Indices
B2 Not T_{k+1} added to each side
B3 Not $n=1$

Worthless

W1 $P(0)$
(c) (i) Expand $\left(x+\frac{1}{x}\right)^{2}$ and $\left(x+\frac{1}{x}\right)^{4}$.
(ii) Hence, or otherwise, find the value of $x^{4}+\frac{1}{x^{4}}$, given that $x+\frac{1}{x}=3$.
(c) (i) $\left(x+\frac{1}{x}\right)^{2}$
$\left(x+\frac{1}{x}\right)^{4}$
(c) (ii) Terms collected

Value

$$
\left(x+\frac{1}{x}\right)^{2}=x^{2}+2+\frac{1}{x^{2}} .
$$

$$
\left(x+\frac{1}{x}\right)^{4}=x^{4}+{ }^{4} C_{1} x^{3}\left(\frac{1}{x}\right)+{ }^{4} C_{2} x^{2}\left(\frac{1}{x}\right)^{2}+{ }^{4} C_{3} x\left(\frac{1}{x}\right)^{3}+\left(\frac{1}{x}\right)^{4}
$$

$$
=x^{4}+4 x^{2}+6+\frac{4}{x^{2}}+\frac{1}{x^{4}} .
$$

OR
$\left(x+\frac{1}{x}\right)^{4}=\left[\left(x+\frac{1}{x}\right)^{2}\right]^{2}$
$=\left[\left(x^{2}+\frac{1}{x^{2}}\right)+2\right]^{2}$
$=\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+2(2)\left(x^{2}+\frac{1}{x^{2}}\right)+4$
$=x^{4}+2+\frac{1}{x^{4}}+4 x^{2}+\frac{4}{x^{2}}+4$

$$
=x^{4}+4 x^{2}+6+\frac{4}{x^{2}}+\frac{1}{x^{4}}
$$

5 (c) (ii)

$$
\begin{aligned}
& \left(x+\frac{1}{x}\right)^{4}=81=x^{4}+4 x^{2}+6+\frac{4}{x^{2}}+\frac{1}{x^{4}}=\left(x^{4}+\frac{1}{x^{4}}\right)+4\left(x^{2}+\frac{1}{x^{2}}\right)+6 \\
& \therefore x^{4}+\frac{1}{x^{4}}=75-4\left(x^{2}+\frac{1}{x^{2}}\right) . \\
& \text { But } x^{2}+2+\frac{1}{x^{2}}=9 \Rightarrow x^{2}+\frac{1}{x^{2}}=7 . \\
& \therefore x^{4}+\frac{1}{x^{4}}=75-28=47 .
\end{aligned}
$$

Blunders (-3)

B1 Binomial Expansion once only
B2 Indices
B3 Value $\binom{n}{r}$ or no $\binom{n}{r}$
B4 $x^{0} \neq 1$
B5 Expansion $\left(x+\frac{1}{x}\right)^{2}$ once only
B6 Expansion $\left(x+\frac{1}{x}\right)^{4}$ once only
B7 Value $\left(x^{2}+\frac{1}{x^{2}}\right)$ or no value $\left(x^{2}+\frac{1}{x^{2}}\right)$

OR

(c) (ii) Roots

Value
5 (c) (ii)

$$
\begin{aligned}
& \left(x+\frac{1}{x}\right)^{2}=(3)^{2} \\
& x^{4}-7 x^{2}+1=0 \\
& \begin{aligned}
x^{2}=\frac{7 \pm 3 \sqrt{5}}{2} \\
\begin{aligned}
x^{4}+\frac{1}{x^{4}} & =\left(\frac{7+3 \sqrt{5}}{2}\right)^{2}+\left(\frac{2}{7+3 \sqrt{5}}\right)^{2} \\
& =\frac{94+42 \sqrt{5}}{4}+\frac{4}{94+42 \sqrt{5}} \\
& =\frac{2209+987 \sqrt{5}}{47+21 \sqrt{5}} \cdot \frac{47-21 \sqrt{5}}{47-21 \sqrt{5}} \\
& =\frac{103823+46389 \sqrt{5}-46389 \sqrt{5}-103635}{2209-2205} \\
& =47
\end{aligned}
\end{aligned} . \begin{array}{l}
\end{array}
\end{aligned}
$$

Similarly, when $x^{2}=\frac{7-3 \sqrt{5}}{2}, \quad x^{4}+\frac{1}{x^{4}}=47$.
Note: must test two roots.

Blunders (-3)

B1 Roots formula once only
B2 Indices
B3 Expansion $\left(x+\frac{1}{x}\right)^{2}$ once only

Attempts

A1 Decimals used

QUESTION 6

Part (a)
$10(5,5)$ marks
Att (2,2)
Part (b)
$20(5,5,10)$ marks
$\operatorname{Att}(\mathbf{2 , 2 , 3)}$
Part (c)
Part (a)
$10(5,5)$ marks
Att (2,2)
(a) The equation $x^{3}+x^{2}-4=0$ has only one real root.

Taking $x_{1}=\frac{3}{2}$ as the first approximation to the root, use the Newton-Raphson method to find x_{2}, the second approximation.
(a) Differentiation

6 (a)

$$
\begin{aligned}
& x_{2}=f\left(\frac{3}{2}\right)-\frac{f\left(\frac{3}{2}\right)}{f^{\prime}\left(\frac{3}{2}\right)} . \\
& f(x)=x^{3}+x^{2}-4 \Rightarrow f\left(\frac{3}{2}\right)=\frac{27}{8}+\frac{9}{4}-4=\frac{13}{8} . \\
& f^{\prime}(x)=3 x^{2}+2 x \Rightarrow f^{\prime}\left(\frac{3}{2}\right)=\frac{27}{4}+3=\frac{39}{4} . \\
& \therefore x_{2}=\frac{3}{2}-\frac{\frac{13}{8}}{\frac{39}{4}}=\frac{3}{2}-\frac{1}{6}=\frac{8}{6}=\frac{4}{3} .
\end{aligned}
$$

Blunders (-3)
B1 Newton-Raphson formula once only
B2 Differentiation
B3 Indices
B4 $x_{1} \neq \frac{3}{2}$
(b) Parametric equations of a curve are:

$$
\begin{aligned}
& x=\frac{2 t-1}{t+2} \\
& y=\frac{t}{t+2}, \text { where } t \in \mathbb{R} \backslash\{-2\} .
\end{aligned}
$$

(i) Find $\frac{d y}{d x}$.
(ii) What does your answer to part (i) tell you about the shape of the graph?
(b)(i) $\frac{d x}{d t}$ or $\frac{d y}{d t}$
$\frac{d y}{d x}$
5 marks

5 marks
Att 2

Att 2
6 (b) (i)

$$
\begin{aligned}
& x=\frac{2 t-1}{t+2} \Rightarrow \frac{d x}{d t}=\frac{(t+2) 2-(2 t-1) 1}{(t+2)^{2}}=\frac{5}{(t+2)^{2}} . \\
& y=\frac{t}{t+2} \Rightarrow \frac{d y}{d t}=\frac{1(t+2)-t(1)}{(t+2)^{2}}=\frac{2}{(t+2)^{2}} . \\
& \therefore \frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}=\frac{2}{(t+2)^{2}} \cdot \frac{(t+2)^{2}}{5}=\frac{2}{5} .
\end{aligned}
$$

OR

(b) (i) Elimination of t
$\frac{d y}{d x}$

5 marks

5 marks

Att 2
Att 2

6 (b) (i)

$$
\begin{aligned}
& x=\frac{2 t-1}{t+2} \\
& \Rightarrow t=\frac{(-2 x-1)}{(x-2)} \\
& \quad t=\frac{(-2 x-1)}{(x-2)}=\frac{(-2 y)}{(y-1)} \\
& \quad \Rightarrow 2 x+1=5 y \\
& \quad \Rightarrow \frac{d y}{d x}=\frac{2}{5}
\end{aligned}
$$

$$
y=\frac{t}{t+2}
$$

$$
t=\frac{-2 y}{y-1}
$$

Blunders (-3)
B1 Indices
B2 Differentiation
B3 Incorrect $\frac{d y}{d x}$
Attempts
A1 Error in differentiation formula
(b) (ii)

10 marks
Att 3
6 (b) (ii)
Since the slope is constant, it is a (subset of a) straight line.
If "line" is not mentioned in the answer, can only get Att 3 at most.
(c) A curve is defined by the equation $x^{2} y^{3}+4 x+2 y=12$.
(i) Find $\frac{d y}{d x}$ in terms of x and y.
(ii) Show that the tangent to the curve at the point $(0,6)$ is also the tangent to it at the point $(3,0)$.
(c) (i) Differentiation

Isolate $\frac{d y}{d x}$
(c) (ii) Equation $1^{\text {st }}$ Tangent

Equation $2^{\text {nd }}$ Tangent

5 marks
Att 2
5 marks
Att 2
5 marks
Att 2
5 marks

6 (c) (i)

$$
\begin{aligned}
& x^{2} y^{3}+4 x+2 y=12 \Rightarrow x^{2} \cdot 3 y^{2} \frac{d y}{d x}+y^{3} \cdot 2 x+4+2 \frac{d y}{d x}=0 . \\
& \therefore \frac{d y}{d x}\left(3 x^{2} y^{2}+2\right)=-2 x y^{3}-4 \Rightarrow \frac{d y}{d x}=\frac{-2 x y^{3}-4}{3 x^{2} y^{2}+2} .
\end{aligned}
$$

6 (c) (ii)

$$
\frac{d y}{d x}=\frac{-2 x y^{3}-4}{3 x^{2} y^{2}+2}
$$

Slope of tangent at $(0,6)$ is $\frac{-4}{2}=-2$.
Equation of tangent at $(0,6)$ is $y-6=-2 x \Rightarrow 2 x+y=6$.
Slope of tangent at $(3,0)$ is $\frac{-4}{2}=-2$.
Equation of tangent at $(3,0)$ is $y=-2(x-3) \Rightarrow 2 x+y=6$.
\therefore same tangent.

Blunders (-3)

B1 Differentiation
B2 Indices
B3 Incorrect value of x or no value of x in slope
B4 Incorrect value of y or no value of y in slope
B5 Equation of tangent
B6 Incorrect conclusion or no conclusion
Slips (-1)
S1 Numerical

Attempts

A1 Error in differentiation formula
A2 $\frac{d y}{d x}=3 x^{2} y^{2} \frac{d y}{d x}+4+2 \frac{d y}{d x} \rightarrow$ and uses the three $\left(\frac{d y}{d x}\right)$ term

OR

6 (c) (ii)

$$
\frac{d y}{d x}=\frac{-2 x y^{3}-4}{3 x^{2} y^{2}+2}
$$

Slope of tangent at $A(0,6)$ is $\frac{-4}{2}=-2=m_{1}$
Slope of tangent at $B(3,0)$ is $\frac{-4}{2}=-2=m_{2}$
Slope of the line $[A B]$ is $m_{3}=\frac{-6}{3}=-2$
So, $m_{1}=m_{2}=m_{3}=-2$
\Rightarrow the line through A and B is the tangent at both points.
Blunders (-3)
B1 Slope omitted
B2 Incorrect deduction or no deduction

QUESTION 7

Part (a)	$10(5,5)$ marks	Att (2,2)
Part (b)	$20(10,10)$ marks	Att $(3,3)$
Part (c)	$20(5,5,5,5)$ marks	Att (2, 2, 2, 2)

Part (a)

$10(5,5)$ marks
Att (2,2)
(a) Differentiate x^{2} with respect to x from first principles.
$f(x+h)-f(x)$ simplified
5 marks
Att 2
Finish
5 marks
Att 2
7 (a)

$$
\begin{aligned}
& f(x)=x^{2} \Rightarrow f(x+h)=(x+h)^{2} . \\
& \frac{d y}{d x}=\operatorname{Limit}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\underset{h \rightarrow 0}{\operatorname{limit}} \frac{(x+h)^{2}-x^{2}}{h}=\operatorname{limit}_{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\operatorname{limit}_{h \rightarrow 0}(2 x+h)=2 x .
\end{aligned}
$$

Blunders (-3)

B1 $f(x+h)$
B2 Indices
B3 Expansion of $(x+h)^{2}$ once only
B4 $\quad h \rightarrow \infty$
B5 No limits shown or implied or no indication of $h \rightarrow 0$
(b) Let $y=\frac{\cos x+\sin x}{\cos x-\sin x}$.
(i) Find $\frac{d y}{d x}$.
(ii) Show that $\frac{d y}{d x}=1+y^{2}$.
(b) (i) Differentiation

10 marks

Att 3
(ii) Show

10 marks
Att 3
7 (b) (i)

$$
\begin{aligned}
& y=\frac{\cos x+\sin x}{\cos x-\sin x} \Rightarrow \frac{d y}{d x}=\frac{(\cos x-\sin x)(-\sin x+\cos x)-(\cos x+\sin x)(-\sin x-\cos x)}{(\cos x-\sin x)^{2}} . \\
& \frac{d y}{d x}=\frac{(\cos x-\sin x)^{2}+(\cos x+\sin x)^{2}}{(\cos x-\sin x)^{2}}=\frac{2}{(\cos x-\sin x)^{2}} .
\end{aligned}
$$

7 (b) (ii)

$$
\frac{d y}{d x}=\frac{(\cos x-\sin x)^{2}+(\cos x+\sin x)^{2}}{(\cos x-\sin x)^{2}}=1+\frac{(\cos x+\sin x)^{2}}{(\cos x-\sin x)^{2}}=1+y^{2} .
$$

OR

7 (b) (i) \& 7 (b) (ii)

$$
\begin{aligned}
y & =\frac{\cos x+\sin x}{\cos x-\sin x}=(\cos x+\sin x) \cdot(\cos x-\sin x)^{-1} \\
\frac{d y}{d x} & =(\cos x+\sin x)\left[-1 \cdot(\cos x-\sin x)^{-2}(-\sin x-\operatorname{cox})\right]+(\cos x-\sin x)^{-1}(-\sin x+\cos x) \\
& =\frac{(\cos x+\sin x)^{2}}{(\cos x-\sin)^{2}}+\frac{\cos x-\sin x}{\cos x-\sin x} \\
& =\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)^{2}+1 \\
& =y^{2}+1
\end{aligned}
$$

Blunders (-3)

B1 Differentiation
B2 Indices
B3 Trig formula

Attempts

A1 Error in differentiation Formula

Worthless

W1 Integration
(c) The function $f(x)=(1+x) \log _{e}(1+x)$ is defined for $x>-1$.
(i) Show that the curve $y=f(x)$ has a turning point at $\left(\frac{1-e}{e},-\frac{1}{e}\right)$.
(ii) Determine whether the turning point is a local maximum or a local minimum.
(c) (i) $f^{\prime}(x)$

Value of x Value of y
(c) (ii) Turning points

5 marks

 5 marks5 marks
5 marks

Att 2
Att 2
Att 2
Att 2

7 (c) (i)

$$
\begin{aligned}
& f(x)=(1+x) \log _{e}(1+x) \Rightarrow f^{\prime}(x)=(1+x) \cdot\left(\frac{1}{1+x}\right)+\log _{e}(1+x)=1+\log _{e}(1+x) . \\
& f^{\prime}(x)=0 \Rightarrow \log _{e}(1+x)=-1 \Rightarrow 1+x=e^{-1} . \quad \therefore x=\frac{1}{e}-1=\frac{1-e}{e} . \\
& y=\left(\frac{1}{e}\right) \log _{e}\left(\frac{1}{e}\right) \Rightarrow y=\frac{1}{e}\left(-\log _{e} e\right)=-\frac{1}{e} . \text { So turning point is }\left(\frac{1-e}{e},-\frac{1}{e}\right) . \\
& \text { OR }
\end{aligned}
$$

7 (c) (i) $\quad f^{\prime}(x)=\left[\log _{e}(1+x)\right]+1$

$$
\text { So turning point is }\left(\frac{1-e}{e},-\frac{1}{e}\right) \text {. }
$$

7 (c) (ii)

$$
f^{\prime \prime}(x)=\frac{1}{1+x} \Rightarrow f^{\prime \prime}\left(\frac{1-e}{e}\right)=\frac{1}{1+\frac{1-e}{e}}=\frac{e}{1}=e>0 . \therefore\left(\frac{1-e}{e},-\frac{1}{e}\right) \text { is a local minimum. }
$$

Blunders (-3)

B1 Differentiation
B2 $f^{\prime}(x) \neq 0$
B3 Indices
B4 Incorrect deduction or no deduction
Slips (-1)
S1 $\log _{e} e \neq 1$

Attempts

A1 Error in differentiation formula

Worthless

W1 Integration

$$
\begin{aligned}
& \text { At } x=\frac{1-e}{e}, f^{\prime}(x)=\log _{e}\left(1+\frac{1-e}{e}\right)+1=\log _{e}\left(\frac{e+1-e}{e}\right)+1=\log _{e}\left(\frac{1}{e}\right)+1 \\
& =\left[\log _{e}(1)-\log _{e}(e)\right]+1 \\
& =0-1+1=0 \text {. } \\
& \text { So } f^{\prime}(x)=0 \text { at } x=\frac{1-e}{e} \text {. } \\
& \text { Also, at } x=\frac{1-e}{e}, y=\left(\frac{1}{e}\right) \log _{e}\left(\frac{1}{e}\right) \Rightarrow y=\frac{1}{e}\left(-\log _{e} e\right)=-\frac{1}{e} \text {. }
\end{aligned}
$$

QUESTION 8

Part (a)	10 marks	Att3
Part (b)	$20(5,5,5,5)$ marks	Att (2, 2, 2, 2)
Part (c)	$20(5,5,10)$ marks	Att (2, 2, 3)
Part (a)	10 marks	Att 3
(a) Find		

$$
\text { (a) } 10 \text { marks Att } 3
$$

8 (a)

$$
\int\left(\sin 2 x+e^{4 x}\right) d x=-\frac{1}{2} \cos 2 x+\frac{1}{4} e^{4 x}+c
$$

Blunders (-3)
B1 Integration
B2 No ' c '

Attempts

A1 Only ' c ' correct \Rightarrow Att 3
Worthless
W1 Differentiation instead of integration
(b) The curve $y=12 x^{3}-48 x^{2}+36 x$ crosses the x-axis at $x=0, x=1$ and $x=3$, as shown.

Calculate the total area of the shaded regions enclosed by the curve and the x-axis.
(b) First area

Second area
Total Area

5 marks	Att 2
5 marks	Att 2
5 marks	Att 2

5 marks
Att 2
Att 2

8 (b)

$$
\begin{aligned}
& \text { Required area }=\left|\int_{0}^{1}\left(12 x^{3}-48 x^{2}+36 x\right) d x\right|+\left|\int_{1}^{3}\left(12 x^{3}-48 x^{2}+36 x\right) d x\right| \\
& \left|\int_{0}^{1}\left(12 x^{3}-48 x^{2}+36 x\right) d x\right|=\left|3 x^{4}-16 x^{3}+18 x^{2}\right|_{0}^{1}=|3-16+18|=5 . \\
& \left|\int_{1}^{3}\left(12 x^{3}-48 x^{2}+36 x\right) d x\right|=\left|3 x^{4}-16 x^{3}+18 x^{2}\right|_{1}^{3} \\
& =|(243-432+162)-(3-16+18)|=|-27-5|=32 \\
& \therefore \text { the required area is } 5+32=37 .
\end{aligned}
$$

Blunders (-3)

B1 Integration
B2 Indices
B3 Error in area formula
B4 Incorrect order in applying limits
B5 Not calculating substituted limits
B6 Uses $\pi \int y d x$ for area formula

Attempts

A1 Uses volume formula
A2 Uses y^{2} in formula

Worthless

W1 Wrong area formula and no work
(c) (i) Find, in terms of a and b

$$
I=\int_{a}^{b} \frac{\cos x}{1+\sin x} d x .
$$

(ii) Find in terms of a and b

$$
J=\int_{a}^{b} \frac{\sin x}{1+\cos x} d x .
$$

(iii) Show that if $a+b=\frac{\pi}{2}$, then $I=J$.
(c) (i)

5 marks

(ii)

5 marks

Att 2
(iii)

10 marks
8 (c) (i)

$$
\begin{gathered}
I=\int_{a}^{b} \frac{\cos x}{1+\sin x} d x . \quad \text { Let } u=1+\sin x \quad \therefore d u=\cos x d x . \\
I=\int_{1+\sin a}^{1+\sin b} \frac{d u}{u}=\left[\log _{e} u\right]_{1+\sin a}^{1+\sin b}=\log _{e}(1+\sin b)-\log _{e}(1+\sin a) . \\
I=\log _{e}\left(\frac{1+\sin b}{1+\sin a}\right) .
\end{gathered}
$$

8 (c) (ii)

$$
\begin{aligned}
J & =\int_{a}^{b} \frac{\sin x}{1+\cos x} d x . \quad \text { Let } u=1+\cos x \quad \therefore d u=-\sin x d x . \\
J & =\int_{1+\cos a}^{1+\cos b} \frac{-d u}{u}=-\left[\log _{e} u\right]_{1+\cos a}^{1+\cos b}=-\log _{e}(1+\cos b)+\log _{e}(1+\cos a) . \\
J & =\log _{e}\left(\frac{1+\cos a}{1+\cos b}\right) .
\end{aligned}
$$

8 (c) (iii)
When $a+b=\frac{\pi}{2}$, then

$$
I=\log _{e}\left(\frac{1+\sin b}{1+\sin a}\right)=\log _{e}\left(\frac{1+\sin \left(\frac{\pi}{2}-a\right)}{1+\sin \left(\frac{\pi}{2}-b\right)}\right)=\log _{e}\left(\frac{1+\cos a}{1+\cos b}\right)=J .
$$

Blunders (-3)
B1 Integration
B2 Differentiation
B3 Trig Formula
B4 Logs
B5 Limits
B6 Incorrect order in applying limits
B7 Not calculating substituted limits
B8 Not changing limits
B9 Incorrect deduction or no deduction
Slips (-1)
S1 Numerical
S2 Trig value

Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE 2010

MARKING SCHEME

MATHEMATICS - PAPER 2

HIGHER LEVEL

GENERAL GUIDELINES FOR EXAMINERS - PAPER 2

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions (-3)
- Slips - numerical errors
- Misreadings (provided task is not oversimplified)

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2, ..etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2, ...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work of merit is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5.50$ may be written as $€ 5,50$.

QUESTION 1

Part (a)	$\mathbf{1 0}$ marks	Att 3
Part (b)	$\mathbf{1 5}(\mathbf{5 , 1 0)}$ marks	Att $(\mathbf{2 , 3)}$
Part (c)	$\mathbf{2 5}(\mathbf{1 0 , 1 5) \text { marks }}$	Att $(3,5)$

Part (a)

10 marks
Att 3
1 (a) A circle with centre $(3,-4)$ passes through the point $(7,-3)$. Find the equation of the circle.
(a)

10 marks
Att 3
1 (a)
Centre is $(3,-4)$ and $r=\sqrt{(3-7)^{2}+(-4+3)^{2}}=\sqrt{16+1}=\sqrt{17}$.
Circle : $(x-3)^{2}+(y+4)^{2}=17$.
or
1 (a)

$$
\begin{aligned}
& x^{2}+y^{2}-6 x+8 y+c=0 \quad \text { But }(7,-3) \in \text { Circle } \\
& \Rightarrow 49+9-42-24+c=0 \Rightarrow c=8 \\
& \text { Equation of circle } x^{2}+y^{2}-6 x+8 y+8=0
\end{aligned}
$$

Blunders (-3)

B1 Error in substituting into distance formula
B2 Incorrect sign assigned to centre in equation of circle

Slips (-1)

S1 Arithmetic error

Attempts (3marks)

A1 Radius length
A2 Equation of circle without radius evaluated
A3 Equation of circle without substitution for c
A4 Substitution of $(7,-3)$ and stops
A5 $x^{2}+y^{2}=17$

Misreading(-1)

M1 $(7,-3)$ as centre of circle

1 (b) (i) Find the centre and radius of the circle

$$
x^{2}+y^{2}-8 x-10 y+32=0 .
$$

(ii) The line $3 x+4 y+k=0$ is a tangent to the circle $x^{2}+y^{2}-8 x-10 y+32=0$.

Find the two possible values of k.
(b)(i)

5 marks
Att 2
1 (b) (i) \quad Centre is $(4,5) . r=\sqrt{16+25-32}=\sqrt{9}=3$.
or
1 (b) (i) $\left(x^{2}-8 x+16\right)+\left(y^{2}-10 y+25\right)=-32+16+25$
$(x-4)^{2}+(y-5)^{2}=9$
Centre $(4,5)$ Radius $=\sqrt{9}$ or 3

Both correct 5 marks
One correct 2 marks
None correct 0 marks
(b) (ii)

1 (b) (ii)

$$
\begin{aligned}
& \left|\frac{3(4)+4(5)+k}{\sqrt{9+16}}\right|=3 \Rightarrow|32+k|=15 \Rightarrow 32+k= \pm 15 . \\
& 32+k=15 \text { or } 32+k=-15 \Rightarrow k=-17 \text { or } k=-47 .
\end{aligned}
$$

* Accept candidates centre and radius from (b)(i)

1 (b) (ii)
$y=\frac{-3 x-k}{4}$
$x^{2}+\left(\frac{-3 x-k}{4}\right)^{2}-8 x-10\left(\frac{-3 x-k}{4}\right)+32=0$
$25 x^{2}+(6 k-8) x+k^{2}+40 k+512=0$
Equal roots $\Rightarrow \quad(6 k-8)^{2}=100\left(k^{2}+40 k+512\right)$
$64 k^{2}+4096 k+51136=0$
$k^{2}+64 k+799=0$
$(k+17)(k+47)=0 \quad k=-17$ and $k=-47$

Blunders (-3)

B1 Error in substitution into perpendicular distance formula
B2 One value of k only
B3 Incorrect squaring
B4 Error in factors
Slips (-1)
S1 Arithmetic error

Attempts (3marks)

A1 Some correct substitution into perpendicular formula
A2 Some correct substitution of either x or y from linear equation into circle

1 (c) A circle has the line $y=2 x$ as a tangent at the point $(2,4)$. The circle also contains the point $(4,-2)$. Find the equation of the circle.
(c) First equation in two variables Finish

10 marks

15 marks

Att 3
Att 5

1 (c) \quad Slope of tangent $=2 \Rightarrow$ slope of normal at $(2,4)=-\frac{1}{2}$.
\therefore Equation of normal: $(y-4)=-\frac{1}{2}(x-2) \Rightarrow 2 y-8=-x+2 \Rightarrow x+2 y=10$.
Mid-point of chord joining $(2,4)$ and $(4,-2)$ is $(3,1)$.
Slope of chord $=\frac{4+2}{2-4}=-3$.
\therefore Equation of mediatior is $y-1=\frac{1}{3}(x-3) \Rightarrow 3 y-3=x-3 y=0$.

$$
\begin{aligned}
& \begin{array}{l}
x+2 y=10 \\
x-3 y=0
\end{array} \\
& \begin{array}{l}
5 y=10 \Rightarrow y=2 \text { and } x=6 \Rightarrow \text { Centre is }(6,2) . \\
r=\sqrt{(2-6)^{2}+(4-2)^{2}}=\sqrt{16+2}=\sqrt{20} . \\
\therefore \text { Equation of circle is }(x-6)^{2}+(y-2)^{2}=20 .
\end{array} .
\end{aligned}
$$

Or

$$
x^{2}+y^{2}+2 g x+2 f y+c=0 .
$$

$(2,4) \in$ Circle $\Rightarrow \quad 20+4 g+8 f+c=0$
$(4,-2) \in$ Circle $\Rightarrow \quad 20+8 g-4 f+c=0$

$$
\therefore g=3 f \Rightarrow \text { centre }(-3 f,-f)
$$

Slope of tangent $=2 \Rightarrow$ slope of normal at $(2,4)=-\frac{1}{2}$.
\therefore Equation of normal: $(y-4)=-\frac{1}{2}(x-2) \Rightarrow 2 y-8=-x+2 \Rightarrow x+2 y=10$.

$$
\text { . }-3 f+2(-f)=10 \Rightarrow f=-2 \Rightarrow \text { Centre is }(6,2)
$$

$$
r=\sqrt{(2-6)^{2}+(4-2)^{2}}=\sqrt{16+2}=\sqrt{20} .
$$

\therefore equation of circle is $(x-6)^{2}+(y-2)^{2}=20$.

First Equation:

Blunders (-3)
B1 Error in substituting into slope formula
B2 Error in substituting into midpoint formula
B3 Error in substituting into equation of line formula
B4 Incorrect signs for centre of circle
Slips (-1)
S1 Arithmetic error
Attempts (3marks)
A1 Slope of Tangent
A2 Midpoint of chord

Finish:

Slips and blunders do not apply. Award 0,5 or 15 marks, as follows:
Fully correct: 15 marks
Attempt (5 marks)
A1 Second equation in two variables

QUESTION 2

Part (a)
10 marks
Att 3
Part (b)
$20(5,15)$ marks
Part (c)

2 (a) A, B and C are points and O is the origin. $\vec{a}=2 \vec{i}+3 \vec{j}, \vec{b}=-3 \vec{i}-6 \vec{j}$ and $\overrightarrow{A C}=\overrightarrow{O B}$. Express \vec{c} in terms of \vec{i} and \vec{j}.
(a)

10 marks
Att 3
2 (a)

$$
\begin{aligned}
& \overrightarrow{A C}=\overrightarrow{O B} \Rightarrow \vec{c}-\vec{a}=\vec{b} \Rightarrow \vec{c}=\vec{b}+\vec{a}=-3 \vec{i}-6 \vec{j}+2 \vec{i}+3 \vec{j} . \\
& \therefore \vec{c}=-\vec{i}-3 \vec{j} .
\end{aligned}
$$

Blunders(-3)

B1 Error in $\overrightarrow{A C}=\vec{c}-\vec{a}$ or equivalent
B2 Answer not expressed in correct form

Slips (-1)

S1 Arithmetic error
Attempts (3marks)
A1 $\overrightarrow{A C}=\vec{c}-\vec{a}$ and stops

Part (b)
2 (b) $\vec{u}=2 \vec{i}+\vec{j}$ and $\vec{v}=-\vec{i}+k \vec{j}$ where $k \in \mathbb{R}$.
(i) Express $|\vec{v}|$ and $\vec{u} . \vec{v}$ in terms of k.
(ii) Given that $\cos \theta=-\frac{1}{\sqrt{2}}$, where θ is the angle between \vec{u} and \vec{v},
find the two possible values of k.
(b) (i)

2 (b) (i)

$$
\begin{aligned}
& |\vec{v}|=|-\vec{i}+k \vec{j}|=\sqrt{1+k^{2}} . \\
& \vec{u} . \vec{v}=(2 \vec{i}+\vec{j})(-\vec{i}+k \vec{j})=-2+k .
\end{aligned}
$$

Both correct: 5 marks
One correct: 2 marks
None correct: 0 marks
(b) (ii)

$$
\begin{aligned}
& \cos \theta=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot \vec{v} \mid} \Rightarrow \frac{-2+k}{\sqrt{5} \sqrt{1+k^{2}}}=-\frac{1}{\sqrt{2}} . \\
& \therefore \sqrt{2}(-2+k)=-\sqrt{5} \sqrt{1+k^{2}} \Rightarrow 2(-2+k)^{2}=5+5 k^{2} \Rightarrow 5 k^{2}+5=8-8 k+2 k^{2} \\
& \therefore 3 k^{2}+8 k-3=0 \Rightarrow(3 k-1)(k+3)=0 \Rightarrow k=\frac{1}{3}, k=-3 .
\end{aligned}
$$

Attempt (5 marks)

A1 Substitutes correctly

Part (c)

2 (c) $O A B C$ is a parallelogram where O is the origin.
Q is the midpoint of $[B C]$.
$[A Q]$ is extended to R such that $|A Q|=|Q R|$.
(i) Express \vec{q} in terms of \vec{a} and \vec{c}.
(ii) Express $\overrightarrow{A Q}$ in terms of \vec{a} and \vec{c}.
(iii) Show that the points O, C and R are collinear.

(c) (i) 5 marks Att 2
2 (c) (i)

$$
\vec{q}=\vec{c}+\frac{1}{2} \vec{a} .
$$

Blunders (-3)
B1 \quad fif $\neq \frac{1}{2} \stackrel{\text { fif }}{O A}$
B2 Answer not in required form
Slips (-1)
S1 Arithmetic error

Attempts (2 marks)

A1 A correct expression with \vec{q}
(c) (ii)

2 (c) (ii)

$$
\overrightarrow{A Q}=\vec{q}-\vec{a}=\frac{1}{2} \vec{a}+\vec{c}-\vec{a}=\vec{c}-\frac{1}{2} \vec{a} .
$$

Blunders (-3)
B1 $\overrightarrow{A Q} \neq \vec{q}-\vec{a}$
B2 Answer not in required form
Slips (-1)
S1 Arithmetic error
Attempts (2marks)
A1 A correct expression with $\overrightarrow{A Q}$
A2 $\quad \overrightarrow{A Q}=\vec{q}-\vec{a}$ and stops
(c) (iii)

2 (c) (iii)

$$
\begin{aligned}
& \vec{r}=\vec{a}+\overrightarrow{A R}=\vec{a}+2 \overrightarrow{A Q}=\vec{a}+2 \vec{c}-\vec{a}=2 \vec{c} . \\
& \text { As } \vec{r}=2 \vec{c} \text {, then points } O, C \text { and } R \text { are collinear. }
\end{aligned}
$$

QUESTION 3

Part (a)
Part (b)
Part (c)
Part (a)
3 (a) The line $3 x+4 y-7=0$ is perpendicular to the line $a x-6 y-1=0$.
Find the value of a.
(a)

10 marks
Att 3
3 (a)

$$
\begin{aligned}
& \text { Slope of } 3 x+4 y-7=0 \text { is }-\frac{3}{4} \text {. Slope of } a x-6 y-1=0 \text { is } \frac{a}{6} \text {. } \\
& \therefore \frac{-3}{4} \times \frac{a}{6}=-1 \Rightarrow-3 a=-24 \Rightarrow a=8 .
\end{aligned}
$$

Blunders (-3)

B1 Error in slope
B2 Product of slopes $\neq-1$
B3 Product of slopes $=-1$ but fails to finish

Slips (-1)

S1 Arithmetic error

Attempts (3marks)

A1 Slope of one line found

Part (b)
$10(5,5)$ marks
Att (2, 2)
3 (b) (i) \quad The line $4 x-5 y+k=0$ cuts the x-axis at P and the y-axis at Q.
Write down the co-ordinates of P and Q in terms of k.
(ii) The area of the triangle $O P Q$ is 10 square units, where O is the origin.

Find the two possible values of k.
(b) (i)

5 marks
Att 2
3 (b) (i)

$$
P\left(\frac{-k}{4}, 0\right), Q\left(0, \frac{k}{5}\right)
$$

Blunders (-3)

B1 $\quad P$ and Q not in coordinate form
B2 P or Q only correct
Slips (-1)
S1 Arithmetic error

A1 $\frac{-k}{4}$ or $\frac{k}{5}$ written
A2 $\left(0, \frac{-k}{4}\right)\left(\frac{k}{5}, 0\right)$
(b) (ii)

3 (b) (ii)

$$
\text { Area } \triangle O P Q=10 \Rightarrow \frac{1}{2}\left|\left(\frac{-k}{4}\right)\left(\frac{k}{5}\right)\right|=10 . \therefore k^{2}=400 \Rightarrow k= \pm 20 \text {. }
$$

Blunders (-3)

B1 Error in substitution into formula for area of triangle
B2 One value of k only found

Slips (-1)

S1 Arithmetic error

Attempts (2 marks)

A1 Some correct substitution into formula for area of triangle
A2 $k^{2}=-400$ or equivalent

Part (c)

3 (c) (i) f is the transformation $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$, where $x^{\prime}=x+y$ and $y^{\prime}=x-y$.
The line l has equation $y=m x+c$.
(i) Find the equation of $f(l)$, the image of l under f.
(ii) Find the value(s) of m for which $f(l)$ makes an angle of 45° with l.

(c) (i)

10 marks
Att 3
3 (c) (i)

$$
\begin{aligned}
& x^{\prime}=x+y \\
& y^{\prime}=x-y \\
& \hline x^{\prime}+y^{\prime}=2 x \Rightarrow x=\frac{1}{2}\left(x^{\prime}+y^{\prime}\right) . y=x^{\prime}-x=x^{\prime}-\frac{1}{2}\left(x^{\prime}+y^{\prime}\right) \Rightarrow y=\frac{1}{2}\left(x^{\prime}-y^{\prime}\right) . \\
& f(l): \frac{1}{2}\left(x^{\prime}-y^{\prime}\right)=\frac{m}{2}\left(x^{\prime}+y^{\prime}\right)+c \Rightarrow x^{\prime}-y^{\prime}=m x^{\prime}+m y^{\prime}+2 c . \\
& f(l): x^{\prime}(m-1)+y^{\prime}(m+1)+2 c=0 .
\end{aligned}
$$

Blunders (-3)

B1 Image of line not in the form $a x^{\prime}+b y^{\prime}+c=0$ or $y^{\prime}=m x^{\prime}+c$.
B2 Incorrect matrix
B3 Incorrect matrix multiplication

Slips (-1)

S1 Arithmetic error

Attempts (3marks)

A1 Expressing x or y in terms of primes
A2 Correct matrix for f when finding $f(l)$
A3 Correct image point on $f(l)$
(c) (ii)

3 (c) (ii)
Slope $l=m$ and slope $f(l)=\frac{-(m-1)}{m+1}=\frac{1-m}{1+m}$.
$\tan 45^{\circ}=\left|\frac{\frac{1-m}{1+m}-m}{1+\left(\frac{1-m}{1+m}\right) m}\right| \Rightarrow\left|\frac{1-m-m(1+m)}{1+m+(1-m) m}\right|=1$.
$\therefore\left|\frac{1-2 m-m^{2}}{1+2 m-m^{2}}\right|=1 \Rightarrow 1-2 m-m^{2}= \pm\left(1+2 m-m^{2}\right)$.
$\therefore \quad 1-2 m-m^{2}=1+2 m-m^{2} \Rightarrow 4 m=0 \Rightarrow m=0$.
OR $1-2 m-m^{2}=-1-2 m+m^{2} \Rightarrow-2 m^{2}=-2 \Rightarrow m^{2}=1 \Rightarrow m= \pm 1$.
($m=-1$ gives denominator of 0 for slope of $f(l)$, but is still a solution, since in this case $f(l)$ is vertical and l makes an angle of 45° with it.)
\therefore solutions are $m=0, m=1, m=-1$.

Attempt (6 marks)

A1 Substitutes correctly into formula.
Note: all three solutions not found \Rightarrow attempt mark at most.

(a)	10 marks	Att 3
4 (a)		
	Area $\triangle P Q R=20 \Rightarrow \frac{1}{2}(10)(8) \sin \angle Q P R=20$.	
	$\therefore \sin \angle P Q R=\frac{1}{2} \Rightarrow\|\angle P Q R\|=30^{\circ} \text { or } 150^{\circ} .$	

Blunders (-3)

B1 Error in substitution into area formula
B2 One angle only
B3 Angle outside the range
Slips (-1)
S1 Arithmetic error
Attempts (3 marks)
A1 Substitution into formula

4 (b) Find all the solutions of the equation $\cos 2 x=\cos x$ in the domain $0^{\circ} \leq x \leq 360^{\circ}$.
(b) Equation

Roots
Finish

5 marks

Att 2
5 marks
Att 2
5 marks
Att 2

4 (b)

$$
\begin{aligned}
& \cos 2 x=\cos x \Rightarrow 2 \cos ^{2} x-\cos x-1=0 . \quad \therefore(\cos x-1)(2 \cos x+1)=0 \\
& \Rightarrow \cos x=1 \Rightarrow x=0^{\circ}, x=360^{\circ} \text { or } \cos x=-\frac{1}{2} \Rightarrow x=120^{\circ}, 240^{\circ} . \\
& \therefore x=0^{\circ}, 120^{\circ}, 240^{\circ}, 360^{\circ} .
\end{aligned}
$$

4 (b)

$$
\begin{gathered}
\cos 2 x=\cos x \Rightarrow \cos 2 x-\cos x=0 \Rightarrow-2 \sin \frac{3 x}{2} \sin \frac{x}{2}=0 \\
\Rightarrow \sin \frac{3 x}{2}=0 \Rightarrow x=0^{\circ}, 120^{\circ}, 240^{\circ}, 360^{\circ} \\
\sin \frac{x}{2}=0 \Rightarrow x=0^{\circ}, 360^{\circ} \\
x=0^{\circ}, 120^{\circ}, 240^{\circ}, 360^{\circ}
\end{gathered}
$$

Blunders (-3)

B1 Incorrect substitution for $\cos 2 x$
B2 Error in factors
B3 Error in substitution in quadratic formula
B4 One value omitted for either root
B5 Angle outside the domain
Slips (-1)
S1 Arithmetic error
Attempts (2,2,2 marks)
A1 $\operatorname{Cos} 2 x=1-2 \sin ^{2} x$ and stops
A2 Correct factors and stops

4 (c) $A B C$ is a triangle with sides of lengths a, b and c, as shown. Its incircle has centre O and radius r.
(i) Show that the area of $\triangle A B C$ is $\frac{1}{2} r(a+b+c)$.

(ii) The lengths of the sides of a triangle are $a=p^{2}+q^{2}, b=p^{2}-q^{2}$ and $c=2 p q$, where p and q are natural numbers and $p>q$. Show that this triangle is rightangled.
(iii) Show that the radius of the incircle of the triangle in part (ii) is a whole number.
(c) (i)

5 marks
Att 2
4 (c) (i)

$$
\text { Area } \triangle A B C=\frac{1}{2}(a r)+\frac{1}{2}(b r)+\frac{1}{2}(c r)=\frac{1}{2} r(a+b+c) \text {. }
$$

Blunders (-3)

B1 Error in substitution into triangle area formula
B2 Answer not in correct format

Slips (-1)

S1 Arithmetic error
Attempts (2 marks)
A1 Area of one triangle found
(c) (ii)

4 (c) (ii)
$\left(p^{2}+q^{2}\right)^{2}=p^{4}+2 p^{2} q^{2}+q^{4}$.
$\left(p^{2}-q^{2}\right)^{2}+(2 p q)^{2}=p^{4}-2 p^{2} q^{2}+q^{4}+4 p^{2} q^{2}=p^{4}+2 p^{2} q^{2}+q^{4}=\left(p^{2}+q^{2}\right)^{2}$.
\therefore triangle is right-angled.

Blunders (-3)

B1 Error in squaring
B2 Incorrect application of Pythagoras
B3 Conclusion not stated or implied
Slips (-1)
S1 Arithmetic error

Attempts (2 marks)
A1 Squares any one side in terms of p and q

(c) (iii)

15 marks
Att 5
4 (c) (iii)
Area of $\Delta=\frac{1}{2}(2 p q)\left(p^{2}-q^{2}\right)=p q\left(p^{2}-q^{2}\right)$.
But, by part (i),
area of $\Delta=\frac{1}{2} r\left(p^{2}+q^{2}+p^{2}-q^{2}+2 p q\right)=\frac{1}{2} r\left(2 p^{2}+2 p q\right)=r\left(p^{2}+p q\right)$.
$\therefore r\left(p^{2}+p q\right)=p q\left(p^{2}-q^{2}\right) \Rightarrow r=\frac{p q(p+q)(p-q)}{p(p+q)}=q(p-q)$.
As p and q are natural numbers, and $p>q$, then $p-q$ is a natural number and thus $r=q(p-q)$ is a whole number.

Attempt (5 marks)

A1 Correct expression for r in terms of p and q

QUESTION 5

Part (a)
10 marks
Att 3
Part (b)
$15(10,5)$ marks
Att (3, 2)
Part (c)
$25(10,5,10)$ marks

5 (a) Given that $\tan \theta=\frac{1}{3}$, show that $\tan 2 \theta=\frac{3}{4}$.
(a)

10 marks
Att 3
5 (a)

$$
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{\frac{2}{3}}{1-\frac{1}{9}}=\frac{2}{3} \times \frac{9}{8}=\frac{3}{4} .
$$

or
5 (a) $\tan \theta=\frac{1}{3} \Rightarrow \theta$ in $1^{\text {st }}$ or $3^{\text {rd }}$ quadrant
$\sin \theta$ and $\cos \theta$ both positive in $1^{\text {st }}$ quadrant and both negative $3^{\text {rd }}$ quadrant
$\Rightarrow \sin \theta= \pm \frac{1}{\sqrt{10}}$ and $\cos \theta= \pm \frac{3}{\sqrt{10}}$, (both having same sign)
In the case of both positive:

$$
\tan 2 \theta=\frac{\sin 2 \theta}{\cos 2 \theta}=\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}=\frac{2\left(\frac{1}{\sqrt{10}}\right) \cdot\left(\frac{3}{\sqrt{10}}\right)}{\left(\frac{3}{\sqrt{10}}\right)^{2}-\left(\frac{1}{\sqrt{10}}\right)^{2}}=\frac{6}{8}=\frac{3}{4}
$$

and in the case of both negative:

$$
\tan 2 \theta=\frac{\sin 2 \theta}{\cos 2 \theta}=\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}=\frac{2\left(-\frac{1}{\sqrt{10}}\right) \cdot\left(-\frac{3}{\sqrt{10}}\right)}{\left(-\frac{3}{\sqrt{10}}\right)^{2}-\left(-\frac{1}{\sqrt{10}}\right)^{2}}=\frac{3}{4}
$$

Blunders (-3)

B1 Error substituting into $\tan 2 \theta$ formula
B2 Incorrect application of Pythagoras
B3 Error substituting into $\operatorname{Sin} 2 \theta$ and/ or $\operatorname{Cos} 2 \theta$ formula(e)
B4 One quadrant only
Slips (-1)
S1 Arithmetic error
Attempts (3 marks)
A1 Some substitution into $\tan 2 \theta$ formula
A2 Effort at application of Pythagoras

5 (b) A triangle has sides of lengths 4,5 and 6 .
The angles of the triangle are A, B and C, as in diagram.

(i) Using the cosine rule, show that $\cos A+\cos C=\frac{7}{8}$.
(ii) Show that $\cos (A+C)=-\frac{9}{16}$.
(b) (i)

10 marks
Att 3
5 (b) (i)

$$
\begin{aligned}
& \cos A=\frac{5^{2}+6^{2}-4^{2}}{2(5)(6)}=\frac{25+36-16}{60}=\frac{45}{60}=\frac{3}{4} \\
& \cos C=\frac{5^{2}+4^{2}-6^{2}}{2(4)(5)}=\frac{25+16-36}{40}=\frac{5}{40}=\frac{1}{8} . \\
& \therefore \quad \cos A+\cos C=\frac{3}{4}+\frac{1}{8}=\frac{7}{8} .
\end{aligned}
$$

Blunders (-3)

B1 Error substituting into cosine formula
B2 $\operatorname{Cos} A+\operatorname{Cos} C$ not indicated
Slips (-1)
S1 Arithmetic error

Attempts (3 marks)

A1 Some values substituted into cosine formula for either $\operatorname{Cos} A$ or $\operatorname{Cos} C$
A2 $\operatorname{Cos} A$ or $\operatorname{Cos} C$ formula expressed in terms of sides of a triangle
A3 $\operatorname{Cos} A$ or $\operatorname{Cos} C$ only and stops

Worthless (0)

W1 $\operatorname{Cos} A+\operatorname{Cos} C=\operatorname{Cos}(A+C)$
(b) (ii)

5 (b) (ii)

$$
\cos (A+C)=-\cos B=-\left[\frac{4^{2}+6^{2}-5^{2}}{2(4)(6)}\right]=-\left[\frac{16+36-25}{48}\right]=-\left[\frac{27}{48}\right]=-\frac{9}{16}
$$

or
5 (b) (ii)
$\operatorname{Cos}(A+C)=\operatorname{Cos} A \operatorname{Cos} C-\operatorname{Sin} A \operatorname{Sin} C=\frac{3}{4} \cdot \frac{1}{8}-\frac{\sqrt{7}}{4} \cdot \frac{3 \sqrt{7}}{8}=\frac{-18}{32}=\frac{-9}{16}$
Blunders (-3)
B1 $\quad \operatorname{Cos}(A+C) \neq-\operatorname{Cos} B$
B2 Incorrect ratio for $\operatorname{Sin} A$ or $\operatorname{Sin} C$
B3 Error substituting into expansion of $\operatorname{Cos}(A+C)$
B4 Conclusion not stated or implied

Slips (-1)

S1 Arithmetic error
Attempts (2 marks)
A1 $\operatorname{Cos}(A+C)=\operatorname{Cos}\left(180^{\circ}-B\right)$ and stops
A2 Some substitution into $\operatorname{Cos}(A+C)$ expansion
A3 Use of Pythagoras
Worthless (0)
W1 $\operatorname{Cos}(A+C)=\operatorname{Cos} A+\operatorname{Cos} C$
W2 $\operatorname{Cos}(A+C)=\operatorname{Cos} A . \operatorname{Cos} C$

Part (c)
25(10,5, 10) marks
Att (3, 2, 3)
5 (c) (i) Show that $(\cos A+\cos B)^{2}+(\sin A+\sin B)^{2}=2+2 \cos (A-B)$.
(ii) Hence solve the equation $(\cos 4 x+\cos x)^{2}+(\sin 4 x+\sin x)^{2}=2+2 \sqrt{3} \sin 3 x$ in the domain $0^{\circ} \leq x \leq 360^{\circ}$.
(c) (i)

10 marks

Att 3
5 (c) (i)

$$
\begin{aligned}
(\cos A+\cos B)^{2}+ & (\sin A+\sin B)^{2} \\
& =\cos ^{2} A+2 \cos A \cos B+\cos ^{2} B+\sin ^{2} A+2 \sin A \sin B+\sin ^{2} B \\
& =\left(\cos ^{2} A+\sin ^{2} A\right)+\left(\cos ^{2} B+\sin ^{2} B\right)+2(\cos A \cos B+\sin A \sin B) \\
& =2+2 \cos (A-B)
\end{aligned}
$$

Blunders (-3)

B1 Error in squaring
B2 $\quad \cos ^{2} A+\sin ^{2} A \neq 1$
B3 $\cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B} \neq \cos (A-B)$

Slips (-1)
S1 Arithmetic error
Attempts (3 marks)
A1 $\quad(\cos A+\cos B)^{2}$ or equivalent correct
(c) (ii) $\tan 3 x$ 5 marks

Att 2
Solutions 10 marks

Att 3
5 (c) (ii)

$$
\begin{aligned}
& (\cos 4 x+\cos x)^{2}+(\sin 4 x+\sin x)^{2}=2+2 \cos 3 x \text { by part (i). } \\
& \therefore 2+2 \cos 3 x=2+2 \sqrt{3} \sin 3 x \Rightarrow \sqrt{3} \sin 3 x=\cos 3 x \Rightarrow \frac{\sin 3 x}{\cos 3 x}=\frac{1}{\sqrt{3}} . \\
& \therefore \tan 3 x=\frac{1}{\sqrt{3}} \Rightarrow 3 x=30^{\circ}, 210^{\circ}, 390^{\circ}, 570^{\circ}, 750^{\circ}, 930^{\circ} . \\
& \therefore x=10^{\circ}, 70^{\circ}, 130^{\circ}, 190^{\circ}, 250^{\circ}, 310^{\circ} .
\end{aligned}
$$

Or
(c) (ii) $2 \cos \left(3 x+60^{\circ}\right)$

$$
\begin{aligned}
& (\cos 4 x+\cos x)^{2}+(\sin 4 x+\sin x)^{2}=2+2 \cos 3 x \text {, by part (i). } \\
& \therefore 2+2 \cos 3 x=2+2 \sqrt{3} \sin 3 x \Rightarrow \sqrt{3} \sin 3 x=\cos 3 x \Rightarrow \sqrt{3} \sin 3 x-\cos 3 x=0 \\
& \Rightarrow \cos 3 x-\sqrt{3} \sin 3 x=0 \Rightarrow 2\left(\frac{1}{2} \cos 3 x-\frac{\sqrt{3}}{2} \sin 3 x\right)=0 \\
& \Rightarrow 2 \cos \left(3 x+60^{\circ}\right)=0 \Rightarrow 3 x+60^{\circ}=90^{\circ}, 270^{\circ}, 450^{\circ}, 630^{\circ}, 810^{\circ}, 990^{\circ} \\
& \therefore x=10^{\circ}, 70^{\circ}, 130^{\circ}, 190^{\circ}, 250^{\circ}, 310^{\circ} .
\end{aligned}
$$

Equation:

Attempts (2 marks)
A1 A correct manipulation

Worthless (0)

W1 $\operatorname{Cos} 4 x=4 \operatorname{Cos} x$ or equivalent

Solutions:

Attempt (3marks)

A1 Solution set with one omitted or incorrect value
Worthless (0)
W1 Solution set with more than one omitted or incorrect value

QUESTION 6

Part (a)

10 marks
Att 3
Part (b)
$20(5,5,5,5)$ marks
Att (2, 2, 2, 2)
Part (c)
20 marks
Att 6
Part (a)
10 marks
Att 3
6 (a) One bag contains four red discs and six blue discs.
Another bag contains five red discs and seven yellow discs.
One disc is drawn from each bag.
What is the probability that both discs are red?
(a) 10 marks

Att 3
6 (a)
Numbers of favourable outcomes $={ }^{4} C_{1} \times{ }^{5} C_{1}=20$.
Numbers of possible outcomes ${ }^{10} C_{1} \times{ }^{12} C_{1}=120$.
\therefore Probability both discs are red $=\frac{20}{120}=\frac{1}{6}$.
Or
$\mathrm{P}($ Both red discs $)=\frac{4}{10} \times \frac{5}{12}=\frac{1}{6}$.

Blunders (-3)

B1 Incorrect number of possible outcomes
B2 Answer not in form of $\frac{a}{b}, \quad a \in \mathbb{N}, b \in \mathbb{N}$

Slips (-1)

S1 Arithmetic error

Attempts (3 marks)

A1 Correct number of possible outcomes
A2 Correct number of favourable outcomes
A3 ${ }^{4} C_{1}+{ }^{5} C_{1}$ or equivalent, with or without further work

6 (b) α and β are the roots of the quadratic equation $p x^{2}+q x+r=0$.

$$
u_{n}=l \alpha^{n}+m \beta^{n}, \text { for all } n \in \mathbb{N} .
$$

Prove that $p u_{n+2}+q u_{n+1}+r u_{n}=0$, for all $n \in \mathbb{N}$
(b) Uses root property correctly

Deduces u_{n+1}, u_{n+2}
Substitutes and tidies up
Conclusion

5 marks
Att 2
5 marks
Att 2
5 marks
Att 2
5 marks

6 (b)
α is a root of $p x^{2}+q x+r=0 \Rightarrow p \alpha^{2}+q \alpha+r=0$
Similarly: $p \beta^{2}+q \beta+r=0$
Given: $u_{n}=l \alpha^{n}+m \beta^{n} \Rightarrow u_{n+1}=l \alpha^{n+1}+m \beta^{n+1}, u_{n+2}=l \alpha^{n+2}+m \beta^{n+2}$
$\Rightarrow p u_{n+2}+q u_{n+1}+r u_{n}=p\left(l \alpha^{n+2}+m \beta^{n+2}\right)+q\left(l \alpha^{n+1}+m \beta^{n+1}\right)+r\left(l \alpha^{n}+m \beta^{n}\right)$
$=l \alpha^{n}\left(p \alpha^{2}+q \alpha+r\right)+m \beta^{n}\left(p \beta^{2}+q \beta+r\right)$
$=l \alpha^{n}(0)+m \beta^{n}(0)$
$=0$
Blunders (-3)
B1 Fails to use root property correctly
B2 Error in expressing value of term
B3 Error in substituting or tidying
B4 Incorrect conclusion or no conclusion implied
Slips (-1)
S1 Arithmetic error

Attempts (2,2,2,2 marks)

A1 Effort at substituting either root into quadratic
A2 Some correct substitution for u_{n+1} or equivalent

6 (c) In a café there are 11 seats in a row at the counter.
Six people are seated at the counter. How much more likely is it that all six are seated together than that no two of them are seated together?
(c)

20 marks
Att 6
6 (c) Taking arrangements as unordered:
Number of possible ways of seating six people in a row of 11 seats $={ }^{11} C_{6}=462$.
To seat six people together, seat them in seats 1 to 6 , or 2 to 7 , or 3 to 8 , or 4 to 9 , or 5 to 10 , or 6 to 11 .
\therefore Number of favourable outcomes $=6$.
\therefore Probability of six seated together $=\frac{6}{462}$.
In order to seat six people with no two together, seat them in seat 1 , seat 3 , seat 5 , seat 7 , seat 9 and seat 11 . There is no other possible way to seat them. There is only one favourable outcome.
\therefore Probability of no two of them seated together $=\frac{1}{462}$.
\therefore It is six times more likely that all six people are seated together.

OR

6 (c) Taking arrangements as ordered:
Number of possible ways of seating six people in a row of 11 seats $={ }^{11} P_{6}=332640$.
To seat six people together, seat them in seats 1 to 6 , or 2 to 7 , or 3 to 8 , or 4 to 9 , or 5 to 10 , or 6 to 11 .
\therefore Number of favourable outcomes $=6 \times 6!=4320$.
\therefore Probability of six seated together $=\frac{4320}{332640}$.

In order to seat six people with no two together, seat them in seat 1 , seat 3 , seat 5 , seat 7 , seat 9 and seat 11 . There is no other possible way to seat them. So there are $1 \times 6!=720$ favourable outcomes.
\therefore Probability that no two of them seated together $=\frac{720}{332640}$.
$4320=6 \times 720$, so it is six times more likely that all six people are seated together.

Attempt (6marks)

A1 Correct expression for one or other case

* Note special case: If the candidate has both probabilities correct but subtracts them instead of dividing: award 17 marks
* Apart from the special case mentioned, award 0, 6, or 20 marks.

QUESTION 7

Part (a)
10 marks
Att 3
Part (b)
$20(5,5,10)$ marks
Att (2, 2, 3)
Part (c)
$20(10,10)$ marks
Att (3, 3)

Part (a)
10 marks
Att 3
7 (a) A password for a website consists of capital letters A, B, C,.... Z and/or digits $0,1,2, \ldots 9$.
The password has four such characters and starts with a letter. For example, BA7A, C999 and DGKK are allowed, but 7DCA is not.
Show that there are more than a million possible passwords.
(a)

10 marks
Att 3
7 (a) Numbers of possible passwords $=26 \times 36 \times 36 \times 36=1,213,056>1,000,000$.
or
7 (a) Numbers of possible passwords: $26.26 .26 .26+3(26.26 .26 .10)+3(26.26 .10 .10)+26.10 .10 .10=1,213,056>1,000,000$.

Attempt (3marks)

A1 Solution with one error

Part (b)

$20(5,5,10)$ marks
Att (2, 2, 3)
7 (b) Karen is about to sit an examination at the end of an English course.
The course has twenty prescribed texts.
Six of these are novels, four are plays and ten are poems.
The examination consists of a question on one of the novels, a question on one of the plays and a question on one of the poems.
Karen has studied four of the novels, three of the plays and seven of the poems.
Find the probability that:
(i) Karen has studied all three of the texts on the examination
(ii) Karen has studied none of the texts on the examination
(iii) Karen has studied at least two of the texts on the examination.
(b) (i)

5 marks
Att 2
7 (b) (i)

$$
\text { Probability (studies all three texts) }=\frac{4 \times 3 \times 7}{6 \times 4 \times 10}=\frac{84}{240}=\frac{7}{20} .
$$

Blunders (-3)

B1 Incorrect number of possible outcomes
B2 Answer not expressed in form of $\frac{a}{b}, a \in \mathbb{N}, b \in \mathbb{N}$ or equivalent
Slips (-1)
S1 Arithmetic error

Attempts (2 marks)
A1 Correct number of possible outcomes
A2 Correct number of favourable outcomes
A3 $\frac{4}{6}+\frac{3}{4}+\frac{7}{10}$ with or without further work
(b) (ii)

7 (b) (ii)

$$
\text { Probability (studies none of the texts) }=\frac{2 \times 1 \times 3}{6 \times 4 \times 10}=\frac{6}{240}=\frac{1}{40} .
$$

Blunders (-3)

B1 Incorrect number of possible outcomes
B2 Answer not expressed in form of $\frac{a}{b}, a \in \mathbb{N}, b \in \mathbb{N}$ or equivalent
Slips (-1)
S1 Arithmetic error
Attempts (2 marks)
A1 Correct number of possible outcomes
A2 Correct number of favourable outcomes
A3 $\frac{2}{6}+\frac{1}{4}+\frac{3}{10}$ with or without further work
(b) (iii)

10 marks
Att 3
7 (b) (iii)
Probability (studies at least two of the texts)
$=$ Probability (studies two) + Probability (studies three)
$=\left(\frac{4 \times 3 \times 3}{6 \times 4 \times 10}+\frac{4 \times 1 \times 7}{6 \times 4 \times 10}+\frac{2 \times 3 \times 7}{6 \times 4 \times 10}\right)+\frac{84}{240}=\frac{36+28+42}{240}+\frac{84}{240}=\frac{190}{240}=\frac{19}{24}$.
Attempt (3marks)
A1 Correct expression all three terms in P (2 texts) or all three terms in $\mathrm{P}(1$ text $)$.
(c) The mean of the real numbers $a, 2 a, 3 a, 4 a$ and $5 a$ is μ and the standard deviation is σ.
(i) Express μ and σ in terms of a.
(ii) Hence write down in terms of a, the mean and the standard deviation of $3 a+5,6 a+5,9 a+5,12 a+5,15 a+5$.
(c) (i)

7 (c) (i)
$\mu=\frac{a+2 a+3 a+4 a+5 a}{5}=\frac{15 a}{5}=3 a$.
$\sigma^{2}=\frac{(a-3 a)^{2}+(2 a-3 a)^{2}+(3 a-3 a)^{2}+(4 a-3 a)^{2}+(5 a-3 a)^{2}}{5}=\frac{4 a^{2}+a^{2}+a^{2}+4 a^{2}}{5}$
$=\frac{10 a^{2}}{5}=2 a^{2}$.
$\therefore \sigma=\sqrt{2} a$.

Attempt (3marks)

A1 Expression for mean or standard deviation correct.
(c) (ii)

10 marks
Att3
7 (c) (ii)

$$
\begin{aligned}
& \text { Mean }=3 \mu+5=9 a+5 . \\
& \text { Standard deviation }=3 \sigma=3 \sqrt{2} a .
\end{aligned}
$$

* If not 'Hence' (i.e. otherwise) 3 marks for mean and/or standard deviation correct

Attempt (3marks)

A1 Mean or standard deviation correct

QUESTION 8

Part (a)
Part (b)
Part (c)

10 marks
$20(5,15)$ marks
$20(10,5,5)$ marks

Att 3
Att (-, 5) Att (3, -, -)

8 (a) Use integration by parts to find $\int \log _{e} x d x$.
(a)

10 marks
Att 3
8 (a)

$$
\begin{aligned}
& \int u d v=u v-\int v d u . \quad \text { Let } u=\log _{e} x \Rightarrow d u=\frac{1}{x} d x . \quad d v=d x \Rightarrow v=x . \\
& \therefore \int \log _{e} x d x=x \log _{e} x-\int x\left(\frac{1}{x}\right) d x=x \log _{e} x-\int d x=x \log _{e} x-x+C .
\end{aligned}
$$

Blunders (-3)

B1 Incorrect differentiation or integration
B2 Incorrect 'parts' formula
Slips (-1)
S1 Arithmetic error
S2 Omits constant of integration

Attempts (3 marks)

A1 One correct assigning to parts formula
A2 Correct differentiation or integration

Part (b)

$20(5,15)$ marks

Att (-,5)
8 (b) A rectangle is inscribed between the curve $y=9-x^{2}$ and the x-axis, as shown.
(i) Write an expression for the area of the rectangle in terms of p.

(ii) Hence, calculate the area of the largest possible rectangle.
(b) (i)
5 marks
Hit/Miss

8 (b) (i)
Length of rectangle $=2 p$ and its width $=9-p^{2}$.
Area of rectangle $=A=2 p\left(9-p^{2}\right)=18 p-2 p^{3}$.

8 (b) (ii)
$\therefore \frac{d A}{d p}=18-6 p^{2}$. For maximum, $\frac{d A}{d p}=0 \Rightarrow 18-6 p^{2}=0 \Rightarrow p=\sqrt{3}$.
$\frac{d^{2} A}{d p^{2}}=-12 p<0$ for $p=\sqrt{3}$.
$\therefore A=18 \sqrt{3}-6 \sqrt{3}=12 \sqrt{3}$ is largest possible rectangle.

* Note: If candidate gets no marks for (b)(i), then cannot get any marks for (b)(ii).

Attempt (5 marks)

A1 Correct differentiation

Part (c)
$\operatorname{Att}(3,-,-)$
8 (c) (i) Derive the Maclaurin series for $f(x)=\cos x$, up to and including the term containing x^{6}.
(ii) Hence, and using the identity $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$, show that the first three non zero terms of the Maclaurin series for $\sin ^{2} x$ are $x^{2}-\frac{x^{4}}{3}+\frac{2 x^{6}}{45}$.
(iii) Use these terms to find an approximation for $\operatorname{Sin}^{2}\left(\frac{1}{2}\right)$, as a fraction.
(c) (i)

10 marks
Att 3
8 (c) (i)

$$
\begin{aligned}
& f(x)=f(0)+\frac{f^{\prime}(0) x}{1!}+\frac{f^{\prime \prime}(0) x^{2}}{2!}+\frac{f^{\prime \prime \prime}(0) x^{3}}{3!}+\frac{f^{(4)}(0) x^{4}}{4!}+ \\
& f(x)=\cos x \quad \Rightarrow \quad f(0)=\cos 0=1 . \\
& f^{\prime}(x)=-\sin x \quad \Rightarrow \quad f^{\prime}(0)=-\sin 0=0 . \\
& f^{\prime \prime}(x)=-\cos x \quad \Rightarrow \quad f^{\prime \prime}(0)=-\cos 0=-1 . \\
& f^{\prime \prime \prime}(x)=\sin x \quad \Rightarrow \quad f^{\prime \prime \prime}(0)=\sin 0=0 . \\
& f^{(4)}(x)=\cos x \quad \Rightarrow \quad f^{(4)}(0)=\cos 0=1 . \\
& f^{(5)}(x)=-\sin x \quad \Rightarrow \quad f^{(5)}(0)=-\sin 0=0 . \\
& f^{(6)}(x)=-\cos x \quad \Rightarrow \quad f^{(6)}(0)=-\cos 0=-1 . \\
& \therefore f(x)=\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots . .
\end{aligned}
$$

Blunders (-3)

B1 Incorrect differentiation
B2 Incorrect evaluation of $f^{(n)}(0)$
B3 Each term not derived (to max of 2)
B4 Error in Maclaurin series
Slips (-1)
S1 Arithmetic error

Attempts (3 marks)
A1 Correct expansion for $\operatorname{Cos} x$ given but not derived
A2 $f(0)$ correct
A3 A correct differentiation
A4 Any one correct term
(c) (ii)

8 (c) (ii)

$$
\begin{aligned}
& \text { By part (i), } \cos 2 x=1-\frac{4 x^{2}}{2}+\frac{16 x^{4}}{24}-\frac{64 x^{6}}{720}=1-2 x^{2}+\frac{2 x^{4}}{3}-\frac{4 x^{6}}{45} . \\
& \sin ^{2} x=\frac{1}{2}(1-\cos 2 x)=\frac{1}{2}\left(1-\left\{1-2 x^{2}+\frac{2 x^{4}}{3}-\frac{4 x^{6}}{45}\right\}\right)=x^{2}-\frac{x^{4}}{3}+\frac{2 x^{6}}{45} .
\end{aligned}
$$

(c) (iii)

8 (c) (iii)

$$
\sin ^{2}\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}-\frac{\left(\frac{1}{2}\right)^{4}}{3}+\frac{2\left(\frac{1}{2}\right)^{6}}{45}=\frac{1}{4}-\frac{1}{48}+\frac{1}{1440}=\frac{360-30+1}{1440}=\frac{331}{1440} .
$$

Part (a)
Part (b)
$20(5,5,10)$ marks
$20(5,5,5,5)$ marks

Att 3
Att (2, 2, 3) Att (2,2, 2, 2)

Part (a)
10 marks
Att 3
9 (a) Z is a random variable with standard normal distribution. Find $P(-1<Z \leq 1)$.

Part (a)	10 marks	Att 3
9 (a)	$P(-1<Z \leq 1)=P(Z \leq 1)-[1-P(Z \leq 1)]=2(0.8413)-1=0.6826$	

or

9 (a)

$$
P(-1<Z \leq 1)=2(P(\mathrm{Z} \leq 1)-P(Z \leq 0))=2(0.8413-0.5)=0.6826
$$

Blunders (-3)
B1 $\quad P(\mathrm{z} \leq 1)$ incorrect or $P(Z \leq 0)$ incorrect
B2 Mishandles $P(-1<Z)$
Slips (-1)
S1 Arithmetic error.
Attempts (3 marks)
A1 $P(Z \leq 1)$ correct.

Part (b)
$20(5,5,10)$ marks
Att (2, 2, 3)
9 (b) A test consists of twenty multiple-choice questions. Each question has four possible answers, only one of which is correct. Seán decides to guess all the answers at random. Find the probability that:
(i) Seán gets none of the answers correct
(ii) Seán gets exactly five of the answers correct
(iii) Seán gets four, five or six of the answers correct.

Give each of your answers correct to three decimals places.
(b) (i)

5 marks
Att 2
9 (b) (i)

$$
p=\frac{1}{4}, q=\frac{3}{4} .
$$

Probability (none correct) $=\left(\frac{3}{4}\right)^{20} \approx 0.003$.

Blunders (-3)

B1 Incorrect p or q
B2 Binomial error
B3 Answer not in required form
Slips (-1)
S1 Arithmetic error
S2 Answer not to two decimal places
Attempts (2 marks)
A1 Correct p or q
(b) (ii)

9 (b) (ii)

$$
\text { Probability (exactly five correct) }={ }^{20} C_{5}\left(\frac{1}{4}\right)^{5}\left(\frac{3}{4}\right)^{15}=0 \cdot 202
$$

Blunders (-3)

B1 Binomial error
B2 Answer not in decimal form
Slips (-1)
S1 Arithmetic error
S2 Answer not to 3 decimal places
Attempts (2 marks)
A1 ${ }^{20} C_{5}$ used or implied
(b) (iii)

9 (b) (iii)
Probability $($ four, five or six $)=$
${ }^{20} C_{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{16}+{ }^{20} C_{5}\left(\frac{1}{4}\right)^{5}\left(\frac{3}{4}\right)^{15}+{ }^{20} C_{6}\left(\frac{1}{4}\right)^{6}\left(\frac{3}{4}\right)^{14}$
$=0 \cdot 1896+0 \cdot 2023+0 \cdot 1686=0 \cdot 5605=0.561$

Blunders (-3)

B1 Each term omitted
B2 Binomial error
B3 Answer not in decimal form
B4 Rounding off too early
Slips (-1)
S1 Arithmetic error
Attempts (3 marks)
A1 Effort at probability of four or six correct

9 (c) A bakery produces muffins. A random sample of 50 muffins is selected and weighed. The mean of the sample is 80 grams and the standard deviation is 6 grams.
Form a 95% confidence interval for the mean weight of muffins produced by the bakery.
(c) Correct S.E.

Two tailed
Mean \pm 1.96 SE
5 marks
Att 2 5 marks

Att 2
Finish 5 marks

Att 2
9 (c)

$$
\begin{aligned}
& \bar{x}=80, \sigma=6 \text { and } n=50 . \\
& \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{6}{\sqrt{50}}=\frac{6}{5 \sqrt{2}}=\frac{3 \sqrt{2}}{5} .
\end{aligned}
$$

The 95% confidence interval is
$\left[\bar{x}-1 \cdot 96\left(\sigma_{\bar{x}}\right), \bar{x}+1 \cdot 96\left(\sigma_{\bar{x}}\right)\right]$
$=\left[80-1 \cdot 96\left(\frac{3 \sqrt{2}}{5}\right), 80+1 \cdot 96\left(\frac{3 \sqrt{2}}{5}\right)\right]=[78 \cdot 3,81 \cdot 6]$ grams.

Blunders (-3)
B1 Error in standard error of mean.
B2 Error from tables.
B3 Answer not simplified.
Slips (-1)
S1 Arithmetic error.
Attempts (2,2, 2, 2 marks)
A1 Standard error of mean with some substitution.
A2 Incomplete substitution.

QUESTION 10

Part (a)
Att (2,2)
Part (b)
Part (a)
$10(5,5)$ marks
Att (2, 2)
10 (a) The binary operation * is defined by $x * y=x+y-x y$, where $x, y \in \mathbb{R} \backslash\{-1\}$.
(i) Find the identity element.
(ii) Express x^{-1}, the inverse of x, in terms of x.

(a) (i)	5 marks	Att 2
$\mathbf{1 0}$ (a) (i)	$x * e=x+e-x e=x \quad \Rightarrow \quad e(1-x)=0 \quad \forall x \Rightarrow \quad e=0$.	

Blunders (-3)
B1 $x * e$ incorrect
B2 $e-x e=0$ and stops
Slips (-1)
S1 Arithmetic error
Attempts (2 marks)
A1 $x * e=x$
A2 $\quad x * e=x+e-x e$
(a) (ii)

10 (a) (ii)

$$
\begin{aligned}
& x * x^{-1}=e \Rightarrow x+x^{-1}-x x^{-1}=0 \\
& \therefore x^{-1}(1-x)=-x \Rightarrow x^{-1}=\frac{x}{x-1},(\text { provided } x \neq 1)
\end{aligned}
$$

Blunders (-3)

B1 $x * x^{-1}$ incorrect

Slips (-1)

S1 Arithmetic error
Attempts (2 marks)
A1 $x * x^{-1}$ correct and stops
A2 $x * x^{-1}=0$

10 (b) $\quad G$ is the set of permutations of $\{1,2,3\}$ and the six elements of G are as follows:

$$
\begin{array}{lll}
a=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) & b=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) & c=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \\
d=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) & f=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) & g=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) .
\end{array}
$$

(G, \circ) is a group, where \circ denotes composition.
(i) Write down b^{-1} and d^{-1}, the inverses of b and d respectively.
(ii) Verify that $(b \circ d)^{-1}=d^{-1} \circ b^{-1}$.
(iii) Write down the subgroups of (G, \circ) of order 2.
(iv) K is the subgroup of (G, \circ) of order 3. List the elements of K.
(v) (H, \times) is a group, where $H=\left\{1, w, w^{2}\right\}$ and $w^{3}=1$.

Give an isomorphism ϕ from (K, \circ) to (H, \times), justifying fully that it is an isomorphism.
(b) (i) \boldsymbol{b}^{-1}

5 marks
Att 2
d^{-1}
5 marks
Att 2
10 (b) (i)

$$
b^{-1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), d^{-1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
$$

Blunders (-3)

B1 Incorrect element (max of 2)

Slips (-1)

S1 Arithmetic error
Attempts (2 marks)
A1 Permutation incomplete
A2 One element correct with another repeated
(b) (ii) One composition correct

5 marks
Att 2
Finish
5 marks
Att 2
10 (b) (ii)

$$
\begin{aligned}
& (b \circ d)^{-1}=\left[\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)\right]^{-1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)^{-1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) . \\
& d^{-1} \circ b^{-1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=(b \circ d)^{-1} .
\end{aligned}
$$

Blunders (-3)

B1 Incorrect element (max 2)
B2 $d \circ b$ 'correct' instead of $b \circ d$
B2 Incorrect conclusion or no conclusion implied

Slips (-1)

S1 Arithmetic error
Attempts (2,2 marks)
A1 Permutation incomplete
A2 One element correct with another repeated
(b) (iii) 5 marks

Att 2
10 (b) (iii) $\{a, b\},\{a, d\},\{a, g\}$ are subgroups of order two.
Blunders (-3)
B1 Subgroup omitted
B2 Incorrect subgroup
Slips (-1)
S1 Arithmetic error
Attempts (2 marks)
A1 One correct subgroup
(b) (iv) 5 marks

Att 2
10 (b) (iv) $K=\{a, c, f\}$ is a subgroup of order three.
Blunders (-3)
B1 One incorrect element (other than identity)
Slips (-1)
S1 Arithmetic error
Attempts (2 marks)
A1 $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$
Worthless (0)
W1 $\{b, d, g\}$
W2 No identity element

10 (b) (v)

a and 1 are the identities of (K, \circ) and (H, \times) respectively.
$\phi(c \circ c)=\phi(f)=w^{2}$ and $\phi(c) \times \phi(c)=w \times w=w^{2}$.
$\phi(f \circ f)=\phi(c)=w$ and $\phi(f) \times \phi(f)=w^{2} \times w^{2}=w^{4}=w$.
$\phi(c \circ f)=\phi(a)=1$ and $\phi(c) \times \phi(f)=w \times w^{2}=w^{3}=1$.
$\phi(f \circ c)=\phi(a)=1$ and $\phi(f) \times \phi(c)=w^{2} \times w=w^{3}=1$.
$\phi(a \circ a)=\phi(a)=1$ and $\phi(a) \times \phi(a)=1 \times 1=1$
$\phi(a \circ c)=\phi(c)=w \quad$ and $\phi(a) \times \phi(c)=w$
$\phi(a \circ f)=\phi(f)=w^{2}$ and $\phi(a) \times \phi(f)=w^{2}$
$\phi(c \circ a)=\phi(c)=w$ and $\phi(c) \times \phi(a)=w$
$\phi(f \circ a)=\phi(f)=w^{2}$ and $\phi(f) \times \phi(a)=w^{2}$
\therefore Isomorphism.

Alternative Methods:

K is a cyclic group with generator c.
$K:\{a, f, c\} \rightarrow \quad\left\{c^{3}, c, c^{2}\right\}$
H is a cyclic group with generator w
Isomorphism: $c^{3} \leftrightarrow 1\left(\right.$ or $\left.w^{3}\right), c \leftrightarrow w, c^{2} \leftrightarrow w^{2}$
Justification:
K and H are both cyclic groups of same order (order 3)
$\Rightarrow K$ and H isomorphic, under any function that maps a generator to a generator and corresponding powers accordingly, as this one does.

or (alternative justification)

Theorem: Any cyclic group of order n is isomorphic to the group of complex nth roots of unity
K is s cyclic group of order 3 , and H is the group of the cubic roots of unity $\Rightarrow K$ and H isomorphic under this function.

* Using alternative methods above, it is not sufficient to show the groups are isomorphic; an isomorphism must also be given.

Blunders (-3)

B1 Cayley table but links not established
B2 Incomplete justification
Slips (-1)
S1 Arithmetic error
Attempts (2,2 marks)
A1 Link identities only
A2 States order of groups.

QUESTION 11

Part (a)	$\mathbf{1 0}$ marks	Att 3
Part (b)	$\mathbf{2 0}(\mathbf{1 0 , 1 0)}$ marks	Att (3, 3)
Part (c)	$20(10,10)$ marks	Att (3, 3)

Part (a)

10 marks
Att 3
11 (a) An ellipse with centre $(0,0)$ has eccentricity $\frac{4}{5}$ and the length of its major axis is 2 units. Find its equation.
(a)
10 marks
Att 3

11 (a)

$$
\begin{aligned}
& 2 a=2 \Rightarrow a=1 . b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow b^{2}=1\left(1-\frac{16}{25}\right) \Rightarrow b^{2}=\frac{9}{25} . \\
& \text { Ellipse: } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow x^{2}+\frac{25 y^{2}}{9}=1 .
\end{aligned}
$$

Blunders (-3)
B1 Incorrect a
B2 $\quad b^{2}$ calculated, but equation not found
B3 Error in forming equation
Slips (-1)
S1 Arithmetic error
Attempts (3 marks)
A1 $a=1$
A2 Some substitution into b^{2} formula

11 (b) f is an affine transformation. The point M is the mid-point of the line segment $[A B]$.
(i) Show that $f(M)$ is the mid-point of the line segment $[f(A) f(B)]$.
(ii) A triangle $A B C$ has centroid G.

Show that the triangle $f(A) f(B) f(C)$ has centroid $f(G)$.

11 (b) (ii)

M is on $A B \Rightarrow f(M)$ is on $f(A B)$.
M is mid-point of $[A B] \Rightarrow|A M|:|M B|=1: 1$.
Ratio of lengths on parallel lines is an affine invariant.
But $A M$ is parallel to $M B \Rightarrow \frac{|f(A) f(M)|}{|f(M) f(B)|}=\frac{|A M|}{|M B|}=\frac{1}{1}$

$$
\Rightarrow f(M) \text { is mid - point of }[f(A) f(B)]
$$

or
Let f be the affine transformation such that $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ so that

$$
x^{\prime}=a x+b y+k \quad y^{\prime}=c x+d y+h, a, b, c, d, k, h \in \mathbb{R} \text { and } a d-b c \neq 0
$$

Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be the co-ordinates of A and B.
$f(A)=\left(a x_{1}+b y_{1}+k, c x_{1}+d y_{1}+h\right)$ and $f(B)=\left(a x_{2}+b y_{2}+k, c x_{2}+d y_{2}+h\right)$
Midpoint of $[f(A) f(B)]=\left(\frac{a\left(x_{1}+x_{2}\right)+b\left(y_{1}+y_{2}\right)+2 k}{2}, \frac{c\left(x_{1}+x_{2}\right)+d\left(y_{1}+y_{2}\right)+2 h}{2}\right)$
But M, (the midpoint of $[A B]$), is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

$$
\begin{aligned}
\therefore f(M) & =\left(a\left(\frac{x_{1}+x_{2}}{2}\right)+b\left(\frac{y_{1}+y_{2}}{2}\right)+k, \quad c\left(\frac{x_{1}+x_{2}}{2}\right)+d\left(\frac{y_{1}+y_{2}}{2}\right)+h\right) \\
& =\left(\frac{a\left(x_{1}+x_{2}\right)+b\left(y_{1}+y_{2}\right)+2 k}{2}, \frac{c\left(x_{1}+x_{2}\right)+d\left(y_{1}+y_{2}\right)+2 h}{2}\right) \\
& =\text { midpoint of }[f(A) f(B)] .
\end{aligned}
$$

Blunders (-3)

B1 Fails to establish relationship between M and end points of segment A and B
B2 Fails to establish relationship between segment length and its image under f
B3 Incorrect conclusion
Slips (-1)
S1 Arithmetic error
Attempts (3 marks)
A1 Shows some relevant mapping

11 (b) (ii)

D and E are mid-points of $[B C]$ and $[A C]$ respectively $\Rightarrow G$ is centroid of $\triangle A B C$.
$[A D]$ and $[B E]$, under f, map to $[f(A) f(D]$ and $[f(B) f(E)]$ respectively.
But mid-point is an affine invariant,
$\Rightarrow f(D)$ and $f(E)$ are the mid-points of $[f(B) f(C)]$ and $[f(A) f(C)]$ respectively.
$\therefore[f(A) f(D)] \cap[f(\mathrm{~B}) f(E)]=f(G)$ is the centroid of $\Delta f(A) f(B) f(C)$.

Blunders (-3)
B1 Fails to define centroid
B2 Fails to state mid point invariant
B3 Fails to state that $f(\mathrm{G})$ centroid
Slips (-1)
S1 Arithmetic error
Attempts (3 marks)
A1 Shows some relevant mapping

11 (c) An ellipse e has equation $\frac{x^{2}}{100}+\frac{y^{2}}{25}=1$. [$P Q]$ and $[R S]$ are diameters of the ellipse, where P is $(8,3)$ and R is $(6,-4)$.

(i) Using a transformation to or from the unit circle, or otherwise, show that the diameters $[P Q]$ and $[R S]$ are conjugate.
(ii) Find the area of the parallelogram that circumscribes the ellipse at the points P, S, Q, and R.

11 (c) (i)
f is the transformation $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ where $x^{\prime}=\frac{x}{10}, \quad y^{\prime}=\frac{y}{10}$.
Therefore, $x=10 x^{\prime}, y=5 y^{\prime}$
$\therefore f(e): \frac{100 x^{\prime 2}}{100}+\frac{25 y^{\prime 2}}{25}=1 \Rightarrow x^{\prime 2}+y^{\prime 2}=1$.
Also $f(P)=\left(\frac{8}{10}, \frac{3}{5}\right)=\left(\frac{4}{5}, \frac{3}{5}\right), f(R)=\left(\frac{6}{10}, \frac{-4}{5}\right)=\left(\frac{3}{5}, \frac{-4}{5}\right)$. Also $f(0,0)=(0,0)$.
Slope $f(P) f(Q)=\frac{\frac{3}{5}-0}{\frac{4}{5}-0}=\frac{3}{4}$ and slope $f(R) f(S)=\frac{\frac{-4}{5}-0}{\frac{3}{5}-0}=\frac{-4}{3}$.
But $\frac{3}{4} \times \frac{-4}{3}=-1 \Rightarrow[f(P) f(Q)]$ and $[f(R) f(S)]$ are conjugate diameters in the circle.
\therefore diameters $[P Q]$ and $[R S]$ are conjugate diameters in the ellipse.

Blunders (-3)

B1 Error in image of co-ordinates under transformation
B2 Error in substitution into slope formula
B3 Conclusion not justified or incorrect conclusion

Slips (-1)

S1 Arithmetic error

Attempts (3 marks)

A1 Image of one point correct
A2 x^{1} or equivalent correct

11 (c) (ii)
The area of the square that circumscribes the circle at the points $f(P), f(S), f(Q), f(R)$ is $4 r^{2}=4$ square units.
Area of parallelogram $P S Q R=\left|\operatorname{det} f^{-1}\right|$.(Area of square $\left.f(P) f(S) f(Q) f(R)\right)$ $=50 \times 4=200$ square units.

Blunders (-3)
B1 Error in establishing area of square
B2 Error in det f^{-1}
B3 Incomplete answer
Slips (-1)
S1 Arithmetic error
Attempts (3 marks)
A1 Area of square $4 r^{2}$ and stop

MARCANNA BREISE AS UCHT FREAGAIRT TRÍ GHAEILGE

(Bonus marks for answering through Irish)

Ba chóir marcanna de réir an ghnáthráta a bhronnadh ar iarrthóirí nach ngnóthaíonn níos mó ná 75% d'iomlán na marcanna don pháipéar. Ba chóir freisin an marc bónais sin a shlánú síos.

Déantar an cinneadh agus an ríomhaireacht faoin marc bónais i gcás gach páipéir ar leithligh.
Is é 5% an gnáthráta agus is é 300 iomlán na marcanna don pháipéar. Mar sin, bain úsáid as an ngnáthráta 5% i gcás iarrthóirí a ghnóthaíonn 225 marc nó níos lú, e.g. 198 marc $\times 5 \%=$ $9.9 \Rightarrow$ bónas $=9$ marc.

Má ghnóthaíonn an t-iarrthóir níos mó ná 225 marc, ríomhtar an bónas de réir na foirmle [300 - bunmharc] $\times 15 \%$, agus an marc bónais sin a shlánú síos. In ionad an ríomhaireacht \sin a dhéanamh, is féidir úsáid a bhaint as an tábla thíos.

Bunmharc	Marc Bónais
226	11
$227-233$	10
$234-240$	9
$241-246$	8
$247-253$	7
$254-260$	6
$261-266$	5
$267-273$	4
$274-280$	3
$281-286$	2
$287-293$	1
$294-300$	0

