Coimisiún na Scrúduithe Stáit State Examinations Commission

Scéim Mharcála<br>Scrúduithe Ardteistiméireachta, 2005<br>Matamaitic<br>Ardleibhéal<br>Marking Scheme Leaving Certificate Examination, 2005<br>Mathematics<br>Higher Level

Contents
Page
GENERAL GUIDELINES FOR EXAMINERS - PAPER 1 ..... 2
QUESTION 1 ..... 3
QUESTION 2 ..... 7
QUESTION 3 ..... 11
QUESTION 4 ..... 14
QUESTION 5 ..... 19
QUESTION 6 ..... 23
QUESTION 7 ..... 28
QUESTION 8 ..... 32
GENERAL GUIDELINES FOR EXAMINERS - PAPER 2 ..... 36
QUESTION 1 ..... 37
QUESTION 2 ..... 41
QUESTION 3 ..... 44
QUESTION 4 ..... 49
QUESTION 5 ..... 53
QUESTION 6 ..... 56
QUESTION 7 ..... 61
QUESTION 8 ..... 65
QUESTION 9 ..... 69
QUESTION 10 ..... 72
QUESTION 11 ..... 76
BONUS MARKS FOR ANSWERING THROUGH IRISH ..... 80

## MARKING SCHEME

## LEAVING CERTIFICATE EXAMINATION 2005

## MATHEMATICS - HIGHER LEVEL - PAPER 1

## GENERAL GUIDELINES FOR EXAMINERS - PAPER 1

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions (-3)
- Slips - numerical errors (-1)
- Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2, ..etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5.50$ may be written as $€ 5,50$.

## QUESTION 1



## Blunders (-3)

B1 second variable not found.
Slips (-1)
S1 numerical.
S2 not changing sign in subtraction.

## Attempts

A1 no solution.
A2 correct solution by trial and error.
Worthless
W1 values for $x$ and $y$.
Part (b)(i)
5 marks
Att 2
1(b)(i)
Express $2^{\frac{1}{4}}+2^{\frac{1}{4}}+2^{\frac{1}{4}}+2^{\frac{1}{4}}$ in the form $2^{\frac{p}{4}}$, where $p, q \in \mathbf{Z}$.

| Part (b)(i) |
| :--- |
| $\mathbf{5}$ marks |
| (b)(i) $\quad 2^{\frac{1}{4}}+2^{\frac{1}{4}}+2^{\frac{1}{4}}+2^{\frac{1}{4}}=4\left(2^{\frac{1}{4}}\right)=2^{2}\left(2^{\frac{1}{4}}\right)=2^{\frac{9}{4}}$ |

Blunders (-3)
B1 indices.
Slips (-1)
S1 not elements of $\mathbf{Z}$.

$$
\text { Let } f(x)=a x^{3}+b x^{2}+c x+d
$$

Show that $(x-t)$ is a factor of $f(x)-f(t)$

Part (b)(ii)
1(b)(ii)

$$
\begin{aligned}
f(x) & =a x^{3}+b x^{2}+c x+d \\
f(t) & =a t^{3}+b t^{2}+c t+d \\
f(x)-f(t) & =a\left(x^{3}-t^{3}\right)+b\left(x^{2}-t^{2}\right)+c(x-t) \\
& =a(x-t)\left(x^{2}+t x+t^{2}\right)+b(x-t)(x+t)+c(x-t) \\
& =(x-t)\left\lfloor a\left(x^{2}+t x+t^{2}\right)+b(x+t)+c\right\rfloor
\end{aligned}
$$

or
1(b)(ii)

$$
\begin{gathered}
f(x)=a x^{3}+b x^{2}+c x+d \\
f(t)=a t^{3}+b t^{2}+c t+d \\
f(x)-f(t)=a x^{3}+b x^{2}+c x-a t^{3}-b t^{2}-c t \\
(x-t)) \frac{a x^{2}+(a t+b) x+\left(a t^{2}+b t+c\right)}{x^{2}+c x-a t^{3}-b t^{2}-c t} \\
\frac{a x^{3}-a t x^{2}}{(a t+b) x^{2}} \\
\frac{(a t+b) x^{2}-(a t+b) t x}{\left(a t^{2}+b t+c\right) x-a t^{3}-b t^{2}-c t} \\
\frac{\left(a t^{2}+b t+c\right) x-a t^{3}-b t^{2}-c t}{0}
\end{gathered}
$$

* Accept solution by division by $(x-t)$ for full marks.


## Blunders (-3)

B1 indices.
B2 factors

## Slips (-1)

S1 numerical.
S2 not changing sign when subtracting in division.

1(c) $\quad(x-p)^{2}$ is a factor of $x^{3}+q x+r$
Show that $27 r^{2}+4 q^{3}=0$
Express the roots of $3 x^{2}+q=0$ in terms of $p$.

## Factor

Values
Show
Express

5 marks
Att 2
5 marks
5 marks
5 marks

Att 2
Att 2
Att 2

1(c) (Show)

$$
\begin{gathered}
x+2 p \\
x^{2}-2 p x+p^{2} \sqrt{x^{3}+q x+r} \\
\frac{x^{3}-2 p x^{2}+p^{2} x}{2 p x^{2}-p^{2} x+q x+r} \\
\frac{2 p x^{2}-4 p^{2} x+2 p^{3}}{3 p^{2} x+q x+r-2 p^{3}}=0
\end{gathered}
$$

Remainder must $=0$ since $(x-p)^{2}$ is a factor

$$
\begin{gathered}
\Rightarrow \quad\left(3 p^{2}+q\right) x+\left(r-2 p^{3}\right)=(0) x+(0) \\
\Rightarrow \quad \text { (i) }: 3 p^{2}+q=0 \quad \Rightarrow \quad q=-3 p^{2} \\
\\
\quad \text { (ii) }: r-2 p^{3}=0 \quad \Rightarrow \quad r=2 p^{3} \\
\therefore \quad 27 r^{2}+4 q^{3}=27\left(2 p^{3}\right)^{2}+4\left(-3 p^{2}\right)^{3} \\
\quad=108 p^{6}-108 p^{6} \\
\quad=0
\end{gathered}
$$

or
If $(x-p)^{2}$ is a factor of $f(x)$, then let $(x+a)$ be other factor.
$\therefore\left(x^{2}-2 p x+p^{2}\right)(x+a)=x^{3}+q x+r$
$x^{3}+(-2 p+a) x^{2}+\left(p^{2}-2 p a\right) x+p^{2}(a)=x^{3}+(0) x^{2}+(q) x+r$
Equating like to like
(i) $-2 p+a=0$
(ii) $p^{2}-2 p a=q$
(i) $a=2 p$
$q=p^{2}-2 p(2 p)=-3 p^{2}$
(iii) $p^{2} a=r$
$r=p^{2}(2 p)$
$=2 p^{3}$

$$
\begin{aligned}
27 r^{2}+4 q^{3} & =27\left(2 p^{3}\right)^{2}+4\left(-3 p^{2}\right)^{3} \\
& =108 p^{6}-108 p^{6} \\
& =0
\end{aligned}
$$

$$
\text { (Express) } \quad \begin{aligned}
3 x^{2}+q & =0 \\
3 x^{2} & =-q \\
3 x^{2} & =-\left(-3 p^{2}\right) \\
3 x^{2} & =3 p^{2} \\
x^{2} & =p^{2} \\
x & = \pm p
\end{aligned}
$$

## Blunders (-3)

B1 indices.
B2 not like to like.
B3 root from equation.
B4 $r$ not found, having found $q$.
B5 roots from equation (in "express" part).

## Slips (-1)

S1 numerical.
S2 not changing sign in subtraction (division).
Attempts
A1 remainder $\neq 0$ in division.
A2 any attempt at division.

## QUESTION 2

Part (a)
10 marks
Att 3
Part (b)
$20(5,5,5,5)$ marks
Att (2, 2, 2, 2)
Part (c)
Part (a)
10 marks
Att 3
2(a) Solve for $x$ : $|x-1|<7$, where $x \in \boldsymbol{R}$

Part (a)
10 marks
Att 3
2(a)

$$
\begin{aligned}
&|x-1|<7 \\
& \Rightarrow-7<x-1<7
\end{aligned}
$$

$$
\therefore \quad-6<x<8
$$

or
2(a) $|x-1|<7$

$$
\begin{gathered}
(x-1)^{2}<(7)^{2} \\
x^{2}-2 x+1<49 \\
x^{2}-2 x-48<0
\end{gathered}
$$

Solve: $\quad x^{2}-2 x-48=0$

$$
(x+6)(x-8)=0
$$

$$
\begin{aligned}
x+6 & =0 & \text { or } & x-8 & =0 \\
x & =-6 & & x & =8
\end{aligned}
$$

$$
+x^{2} \Rightarrow \text { U-shaped: }
$$



$$
f(x)<0 \text { when }-6<x<8
$$

or
2(a) $\quad|x-1|<7$

$$
\begin{gathered}
(x-1)^{2}<49 \\
x^{2}-2 x-48<0 \\
(x-8)(x+6)<0
\end{gathered}
$$

case I:

$$
\begin{array}{rlrl}
(x-8) & >0 & \text { and } & (x+6) \\
x>8 & \text { and } & x<-6 \\
\text { not possible } & &
\end{array}
$$

case II:

Blunders (-3)
B1 upper limit.
B2 lower limit.
B3 expansion of $(x-1)^{2}$, once only.

$$
\begin{aligned}
& (x-8)<0 \quad \text { and } \quad(x+6)>0 \\
& x<8 \text { and } x>-6 \\
& \therefore \quad-6<x<8
\end{aligned}
$$

$$
\begin{aligned}
& \therefore-7<x-1 \text { and } \quad x-1<7 \\
& -6<x \quad x<8
\end{aligned}
$$

B4 inequality sign.
B5 indices.
B6 factors once only.
B7 root formula, once only.
B8 deduction root from factor.
B9 incorrect range.
B10 answer not stated.
Slips (-1)
S1 numerical.

## Attempts

A1 one inequality only.
A2 inequality signs ignored.

Part (b)
2(b) The cubic equation $4 x^{3}+10 x^{2}-7 x-3=0$ has one integer root and two irrational roots.
Express the irrational roots in simplest surd form.

| Test | 5 marks | Att 2 |
| :--- | :--- | :--- |
| Linear Factor | 5 marks | Att 2 |
| Other Factor | 5 marks | Att 2 |
| Roots | 5 marks | Att 2 |

2(b)

$$
f(x)=4 x^{3}+10 x^{2}-7 x-3
$$

Integral root must be $\pm 1, \pm 3$

$$
f(1): 4+10-7-3 \neq 0
$$

$$
f(-1): \quad \neq 0
$$

$$
f(3): 108+90-21-3 \neq 0
$$

$$
f(-3):-108+90+21-3=0
$$

$\Rightarrow x=-3$ is a root $\quad \Rightarrow(x+3)$ is a factor

$$
\begin{array}{r}
x + 3 \longdiv { 4 x ^ { 2 } - 2 x - 1 } \\
\frac{4 x^{3}+10 x^{2}-7 x-3}{2 x^{2}} \\
\frac{-2 x^{2}-7 x}{2}-6 x \\
-x-3 \\
\end{array}
$$

So, need to solve: $\quad 4 x^{2}-2 x-1=0$

$$
x=\frac{2 \pm \sqrt{4+16}}{2(4)}=\frac{2 \pm \sqrt{20}}{8}=\frac{2 \pm 2 \sqrt{5}}{8}=\frac{1 \pm \sqrt{5}}{4}
$$

Irrational roots: $\frac{1+\sqrt{5}}{4}, \frac{1-\sqrt{5}}{4}$

2(b) Finds root $x=-3$ as above, and continues as follows:

$$
\begin{aligned}
& x=-3 \text { is a root } \quad \Rightarrow(x+3) \text { is a factor } \\
& \quad \therefore \text { other factor }=\left(4 x^{2}+a x-1\right) \\
& \therefore(x+3)\left(4 x^{2}+a x-1\right)=4 x^{3}+10 x^{2}-7 x-3 \\
& 4 x^{3}+12 x^{2}+a x^{2}+3 a x-x-3=4 x^{3}+10 x^{2}-7 x-3 \\
& 4 x^{3}+(a+12) x^{2}+(3 a-1) x-3=4 x^{3}+10 x^{2}-7 x-3
\end{aligned}
$$

Equating coefficients:
(i) $a+12=10$
and/or
(ii) $(3 a-1)=-7$
$3 a=-6$
$a=-2$
$f(x)=(x+3)\left(4 x^{2}-2 x-1\right)=0$
Irrational roots: $\frac{1 \pm \sqrt{5}}{4}$, as above.

## Blunders (-3)

B1 indices.
B2 root formula, once only.
B3 not like to like..
B4 deduction factor from root or no factor.
Slips (-1)
S1 numerical.
S2 not changing sign in subtraction (Division).
S3 roots not in simplest form, once only.

Part (c)

Let $f(x)=\frac{x^{2}+k^{2}}{m x}$, where $k$ and $m$ are constants and $m \neq 0$
(i) Show that $f(k m)=f\left(\frac{k}{m}\right)$
(ii) $\quad a$ and $b$ are real numbers such that $a \neq 0, b \neq 0$ and $a \neq b$.

Show that if $f(a)=f(b)$, then $a b=k^{2}$.
(i) $f(\mathrm{~km})$

5 marks
5 marks
Att 2

## 5 marks

Att 2
5 marks
Att 2
$f\left(\frac{k}{m}\right)$
(ii) $f(a)=f(b)$ $a b$

2(c)

$$
f(x)=\frac{x^{2}+k^{2}}{m x},[k, m \text { constants }]
$$

(i) show that $f(k m)=f\left(\frac{k}{m}\right)$

$$
\begin{aligned}
& f(k m)=\frac{(k m)^{2}+k^{2}}{m(k m)}=\frac{k^{2}\left(m^{2}+1\right)}{k\left(m^{2}\right)}=\frac{k}{m^{2}}\left(m^{2}+1\right) \\
& \begin{aligned}
f\left(\frac{k}{m}\right)=\frac{\left(\frac{k}{m}\right)^{2}+k^{2}}{m\left(\frac{k}{m}\right)}=\frac{\frac{k^{2}}{m^{2}}+k^{2}}{k} & =\frac{k^{2}+m^{2} k^{2}}{m^{2} k} \\
& =\frac{k^{2}\left(1+m^{2}\right)}{k\left(m^{2}\right)} \\
& =\frac{k}{m^{2}}\left(m^{2}+1\right)
\end{aligned} \\
& \Rightarrow f(k m)=f\left(\frac{k}{m}\right)
\end{aligned}
$$

(ii) $\quad f(a)=\frac{a^{2}+k^{2}}{m a}$

$$
f(b)=\frac{b^{2}+k^{2}}{m b}
$$

$$
f(a)=f(b) \quad \Rightarrow \quad \frac{a^{2}+k^{2}}{m a}=\frac{b^{2}+k^{2}}{m b}
$$

multiply across by mab:

$$
\begin{aligned}
b\left(a^{2}+k^{2}\right) & =a\left(b^{2}+k^{2}\right) \\
a^{2} b+b k^{2} & =a b^{2}+a k^{2} \\
a^{2} b-a b^{2} & =a k^{2}-b h^{2} \\
a b(a-b) & =k^{2}(a-b) \\
(a-b) \neq 0 \quad \Rightarrow a b & =k^{2}
\end{aligned}
$$

Blunders (-3)
B1 indices

## QUESTION 3

| Part (a) | $\mathbf{1 0}(\mathbf{5}, \mathbf{5})$ marks | Att $\mathbf{( 2 , 2 )}$ |
| :--- | :---: | ---: |
| Part (b) | $20(5,10,5)$ marks | Att $\mathbf{2 , 3 , 2 )}$ |
| Part (c) | $\mathbf{2 0}(5,5,5,5)$ marks | Att $(2,2,2,2)$ |
| Part (a) $A^{3}$ | 5 marks | Att 2 |
|  | $A^{-1}$ | 5 marks |

3(a) Given that $A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, show that $A^{3}=A^{-1}$.
Part (a) $A^{3}$
5 marks
Att 2
$A^{-1}$
5 marks
3(a) $\quad A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
$A^{-1}=\frac{1}{-1-0}\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)=(-1)\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=A$
$A^{3}=A \cdot A \cdot A=A^{2} \cdot A$
$A^{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I$
$A^{3}=A^{2} \cdot A=I \cdot A=A=A^{-1}$
$A^{-1}=A$ as above, and:
$A^{3}=A \cdot A \cdot A$
$=A^{-1} \cdot A \cdot A$
$=I A$
$=A^{-1}$
or
$A^{-1}=A$ as above, and:
$A^{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)^{3}$
$=\left(\begin{array}{ll}(1)^{3} & (0)^{3} \\ (0)^{3} & (-1)^{3}\end{array}\right)$
$=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
$=A$
Blunders (-3)
B1 formula inverse.

## Slips (-1)

S1 each incorrect element.
S2 numerical.

3(b) Solve the quadratic equation:

$$
2 i z^{2}+(6+2 i) z+(3-6 i)=0, \text { where } i^{2}=-1
$$

Part (b) Values in formula

5 marks

## Att 2

10 marks
Att 3
Att 2

3(b) Solve: $2 i z^{2}+(6+2 i) z+(3-6 i)=0$

$$
\begin{aligned}
z & =\frac{-(6+2 i) \pm \sqrt{(6+2 i)^{2}-4(2 i)(3-6 i)}}{2(2 i)} \\
& =\frac{-(6+2 i) \pm \sqrt{36+24 i+4 i^{2}-24 i+48 i^{2}}}{4 i} \\
& =\frac{-(6+2 i) \pm \sqrt{36-52}}{4 i} \\
& =\frac{-(6+2 i) \pm \sqrt{-16}}{4 i} \\
& =\frac{-(6+2 i) \pm 4 i}{4 i} \quad \text { or } \quad \frac{-6-2 i-4 i}{4 i} \\
& =\frac{-6-2 i+4 i}{4 i} \quad \text { or } \quad \frac{-6-6 i}{4 i} \\
& =\frac{-6+2 i}{4 i} \\
& =\frac{-3+i}{2 i} \quad \frac{-3-3 i}{2 i} \\
z_{1} & =\frac{-3+i}{2 i} \cdot \frac{i}{i}=\frac{-3 i+i^{2}}{2 i^{2}}=\frac{-3 i-1}{-2}=\frac{1+3 i}{2} \\
z_{2} & =\frac{-3-3 i}{2 i} \cdot \frac{i}{i}=\frac{-3 i-3 i^{2}}{2 i^{2}}=\frac{3-3 i}{-2}=\frac{-3+3 i}{2}
\end{aligned}
$$

Blunders (-3)
B1 indices.
B2 $i$.
B3 expansion $(6+2 i)^{2}$ once only.
B4 root formula, once only
Slips (-1)
S1 numerical.
S2 $i$ in denominator

## Attempts

A1 3 marks for $\sqrt{a+b i}$ and stops
A2 2 marks for $z=a+b i$ and stops.

3(c) (i) $z=\cos \theta+i \sin \theta$. Use De Moivre's theorem to show that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta, \text { for } n \in \mathbf{N}
$$

(ii) Expand $\left(z+\frac{1}{z}\right)^{4}$ and hence express $\cos ^{4} \theta$ in terms of $\cos 4 \theta$ and $\cos 2 \theta$.

Part (c) (i) $\frac{1}{z^{n}}$
Value
(ii) Expansion

Express

5 marks
5 marks
5 marks
5 marks

Att 2
Att 2
Att 2
Att 2

3(c)(i) $\quad z=\cos \theta+i \sin \theta$

$$
z^{n}=\cos n \theta+i \sin n \theta
$$

$$
\frac{1}{z^{n}}=\frac{1}{(\cos \theta+i \sin \theta)^{n}}=(\cos \theta+i \sin \theta)^{-n}
$$

$$
=\cos (-n \theta)+i \sin (-n \theta)
$$

$$
=\cos n \theta-i \sin n \theta
$$

$$
z^{n}+\frac{1}{z^{n}}=(\cos n \theta+i \sin n \theta)+(\cos n \theta-i \sin n \theta)
$$

$$
=2 \cos n \theta
$$

3(c)(ii)

$$
\begin{aligned}
z+\frac{1}{z} & =(\cos \theta+i \sin \theta)+(\cos \theta+i \sin \theta)^{-1} \\
& =\cos \theta+i \sin \theta+\cos \theta-i \sin \theta \\
& =2 \cos \theta \\
\left(z+\frac{1}{z}\right)^{4}= & z^{4}+\binom{4}{1} z^{3}\left(\frac{1}{z}\right)+\binom{4}{2} z^{2}\left(\frac{1}{z}\right)^{2}+\binom{4}{3} z\left(\frac{1}{z}\right)^{3}+\left(\frac{1}{z}\right)^{4} \\
(2 \cos \theta)^{4} & =z^{4}+4 z^{2}+6+4\left(\frac{1}{z^{2}}\right)+\frac{1}{z^{4}} \\
16 \cos ^{4} \theta & =\left(z^{4}+\frac{1}{z^{4}}\right)+4\left(z^{2}+\frac{1}{z^{2}}\right)+6 \\
16 \cos ^{4} \theta & =(2 \cos 4 \theta)+4[2 \cos 2 \theta]+6 \\
16 \cos ^{4} \theta & =2 \cos 4 \theta+8 \cos 2 \theta+6 \\
\cos ^{4} \theta & =\frac{1}{16}[2 \cos 4 \theta+8 \cos 2 \theta+6] \\
& =\frac{1}{8}[\cos 4 \theta+4 \cos 2 \theta+3]
\end{aligned}
$$

Blunders (-3)
B1 statement De Moivre, once only.
B2 application De Moivre.
B3 binomial expansion.
B4 $i$
B5 answer not in required form.
B6 indices.

Slips (-1)
S1 numerical

## Worthless

W1 not using De Moivre.
W2 not using "hence" in part (ii).

## QUESTION 4

| Part (a) | 10 marks | Att 3 |
| :--- | :---: | ---: |
| Part (b) | $20(5,5,5,5)$ marks | Att $(2,2,2,2)$ |
| Part (c) | $20(15,5)$ marks | Att $\mathbf{( 5 , 2 )}$ |

## Part (a)

10 marks
Att 3
4(a) Write the recurring decimal $0.636363 \ldots \ldots$ as an infinite geometric series and hence as a fraction.

Part (a)
10 marks
Att 3
4(a) $\quad 0.6 \ddot{3}=0.636363$.

$$
=0.63+0.0063+0.000063+
$$

$$
=\frac{63}{100}+\frac{63}{10000}+\frac{63}{1000000}+\ldots \ldots .
$$

$$
\therefore \quad a=\frac{63}{100} \quad r=\frac{1}{100}
$$

$$
S_{\infty}=\frac{a}{1-r}
$$

$$
=\frac{\frac{63}{100}}{1-\frac{1}{100}}=\frac{\left(\frac{63}{100}\right)}{\left(\frac{99}{100}\right)}=\frac{63}{99}=\frac{7}{11}
$$

Blunders (-3)
B1 indices.
B2 formula for infinite series.
B3 incorrect $a$.
B4 incorrect $r$.
B5 not as infinite series.
Slips (-1)
S1 numerical.

## Attempts

A1 correct answer with no work or by other method (i.e. not using geometric series).

4(b)(i) $\quad$ The first three terms in the binomial expansion of $(1+k x)^{n}$ are $1-21 x+189 x^{2}$ Find the value of $n$ and the value of $k$.

| Part(b)(i) equations | 5 marks | Att 2 |
| :---: | :---: | :---: |
| values | 5 marks | Att 2 |

4 (b)(i) $\quad(1+k x)^{n}=1+\binom{n}{1}(k x)+\binom{n}{2}(k x)^{2}+\ldots \ldots .$.
$=1+(n k) x+\frac{n(n-1)}{2!} \cdot k^{2} x^{2}+\ldots \ldots \ldots$.
$=1+(n k) x+\left[\frac{n(n-1) \cdot k^{2}}{2}\right] x^{2}+\ldots \ldots \ldots .$.
$=1-21 x+189 x^{2}$ $\qquad$
[i]: $\quad n k=-21$ [ii]: $\frac{n(n-1) \cdot k^{2}}{2}=189$

$$
\begin{aligned}
& {[\mathrm{i}] \Rightarrow k=\frac{-21}{n}} \\
& {[\mathrm{ii}] \Rightarrow n(n-1) k^{2}=378}
\end{aligned}
$$

sub. in: $\quad n(n-1)\left(\frac{-21}{n}\right)^{2}=378$

$$
\begin{gathered}
\left(n^{2}-n\right)(441)=378 n^{2} \\
441 n^{2}-441 n-378 n^{2}=0 \\
63 n^{2}-441 n=0 \\
63 n(n-7)=0
\end{gathered}
$$

$\Rightarrow n=0$ or $n=7$ $\therefore \quad n=7 \Rightarrow k=\frac{-21}{7}=-3$

$$
n=7 ; \quad k=-3
$$

* Since must be integers, accept correct values by observation from $n k=-21$, with verification.

Blunders (-3)
B1 errors in binomial expansion, once only.
B2 $\binom{n}{r}$
B3 indices.
B4 not like to like
B5 factors
B6 value from factor.
B7 second value not found, having found first.
Slips (-1)
S1 numerical.

4 (b) (ii)
A sequence is defined by $u_{n}=(2-n) 2^{n-1}$.
Show that $u_{n+2}-4 u_{n+1}+4 u_{n}=0$, for all $n \in \mathrm{~N}$.

Part (b) (ii) Terms simplified

Att 2
Att 2

4 (b)(ii) $\quad u_{n}=(2-n) 2^{n-1}$
$u_{n+1}=[2-(n+1)] 2^{(n+1)-1}=(1-n) 2^{n}$
$u_{n+2}=[2-(n+2)] 2^{(n+2)-1}=(-n) 2^{n+1}$
$u_{n+2}-4 u_{n+1}+4 u_{n}=\left(-n .2^{n+1}\right)-4\left\lfloor(1-n) 2^{n}\right\rfloor+4\left\lfloor(2-n) 2^{n-1}\right\rfloor$
$=-n .2^{n+1}-\left(2^{2}\right)\left(2^{n}\right)(1-n)+2^{2}\left(2^{n-1}\right)(2-n)$
$=-n .2^{n+1}-2^{n+2}+2 n .2^{n+1}+2.2^{n+1}-n .2^{n+1}$
$=2.2^{n+1}-2^{n+2}$
$=2.2^{n+1}-2.2^{n+1}=0$
or
4 (b)(ii) $\quad u_{n}=(2-n) 2^{n-1}=2^{n}-n \cdot 2^{n-1}=2^{n}-\frac{n}{2}\left(2^{n}\right)$
$u_{n+1}=[2-(n+1)] 2^{(n+1)-1}=(1-n) 2^{n}$
$u_{n+2}=[2-(n+2)] 2^{(n+2)-1}=(-n) 2^{n+1}=-2 n \cdot 2^{n}$

Let $a=2^{n}$

$$
\begin{aligned}
\therefore u_{n+2}-4 u_{n+1}+4 u_{n} & =-2 n a-4(1-n) a+4\left[a-\frac{n a}{2}\right] \\
& =-2 n a-4 a+4 n a+4 a-2 n a \\
& =0
\end{aligned}
$$

Blunders (-3)
B1 indices.
B2 factors.
Slips (-1)
S1 numerical.

## Attempts

A1 must do some correct relevant work with indices in "show".

4 (c) (i) Show that $\frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}$, where a and $b$ are real numbers.
(ii) The lengths of the sides of a right-angled triangle are $a, b$ and $c$, where $c$ is the length of the hypotenuse.
Using the result from part (i), or otherwise, show that $a+b \leq c \sqrt{2}$.
Part (c)(i)

## 15 marks

Att 5
Part (c) (ii)
5 marks
Att 2
4(c)(i) $\frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}$
case: $(a+b)$ positive:

$$
\begin{aligned}
\Leftrightarrow\left(\frac{a+b}{2}\right)^{2} & \leq \frac{a^{2}+b^{2}}{2} \\
\frac{a^{2}+2 a b+b^{2}}{4} & \leq \frac{a^{2}+b^{2}}{2} \\
a^{2}+2 a b+b^{2} & \leq 2 a^{2}+2 b^{2} \\
0 & \leq a^{2}-2 a b+b^{2} \\
0 & \leq(a-b)^{2}
\end{aligned}
$$

$\Rightarrow$ True when $(a+b)$ positive.
case: $(a+b)$ negative:

$$
\begin{aligned}
(a+b)<0 & \Rightarrow \frac{(a+b)}{2}<0 \\
& \Rightarrow \frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}, \text { since } \sqrt{x}>0 \text { always. }
\end{aligned}
$$

$\Rightarrow$ True when $(a+b)$ negative.
or
4(c)(i) $\quad(a-b)^{2} \geq 0 \quad$ for all $a, b \in \mathbf{R}$.

$$
\begin{gathered}
a^{2}-2 a b+b^{2} \geq 0 \\
\left(a^{2}-2 a b+b^{2}\right)+\left(a^{2}+b^{2}\right) \geq\left(a^{2}+b^{2}\right) \\
2 a^{2}+2 b^{2} \geq a^{2}+2 a b+b^{2} \\
2\left(a^{2}+b^{2}\right) \geq(a+b)^{2}
\end{gathered}
$$

divide across by 4 :

$$
\begin{aligned}
& \frac{a^{2}+b^{2}}{2} \geq \frac{(a+b)^{2}}{4} \\
& \frac{a^{2}+b^{2}}{2} \geq\left(\frac{a+b}{2}\right)^{2} \\
& \sqrt{\frac{a^{2}+b^{2}}{2}} \geq \sqrt{\left(\frac{a+b}{2}\right)^{2}} \geq \frac{a+b}{2}
\end{aligned}
$$

4(c)(ii) $\quad$ From (i) above, $\frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}=\sqrt{\frac{c^{2}}{2}}=\frac{c}{\sqrt{2}}$.

$$
\begin{aligned}
& \frac{a+b}{2} \leq \frac{c}{\sqrt{2}} \\
& a+b \leq \frac{2 c}{\sqrt{2}} \\
& a+b \leq c \sqrt{2}
\end{aligned}
$$



$$
a^{2}+b^{2}=c^{2}
$$

Blunders (-3)
B1 indices
B2 inequality sign.
B3 deduction.
B4 $a$ and $b$ both positive.
B5 expansion $(a-b)^{2}$.
B6 right angled triangle.
Slips (-1)
S1 numerical.
Worthless
W1 particular values for $a$ and $b$.

## QUESTION 5



Blunders (-3)
B1 indices.
B2 expansion $(4-x)^{2}$ once only.
B3 factors.
B4 root formula once only.
B5 deduction values from factors.
Slips (-1)
S1 numerical.
S2 excess value.

## Attempts

A1 $x=1$ and no other works merits 2 marks.

5(b) Prove by induction that $\quad \sum_{r=1}^{n}(3 r-2)=\frac{n}{2}(3 n-1)$

Part (b) P(1)
Assume
$P(k+1)$

Att 2
Att 2
Att 2
5(b) $\quad \sum_{r=1}^{n}(3 r-2)=\frac{n}{2}(3 n-1)$
Test

$$
\begin{aligned}
& n=1: u_{1}=3(1)-2=1 \\
& \frac{n}{2}(3 n-1)=\frac{1}{2}(3-1)=\frac{1}{2}(2)=1
\end{aligned}
$$

$\therefore$ True for $\quad n=1$
$P(1)$
Assume true for $n=k$

$$
\begin{equation*}
S_{k}=\frac{k}{2}(3 k-1) \tag{k}
\end{equation*}
$$

To prove:

$$
\begin{aligned}
S_{k+1} & =\frac{(k+1)}{2}[3(k+1)-1] \\
& =\frac{k+1}{2}[3 k+2] \\
& =\frac{1}{2}(k+1)(3 k+2)
\end{aligned}
$$

Proof:

$$
\begin{aligned}
S_{k+1} & =S_{k}+U_{k+1} \\
& =\frac{k}{2}(3 k-1)+[3(k+1)-2] \\
& =\frac{k}{2}(3 k-1)+(3 k+1) \\
& =\frac{3 k^{2}-k+6 k+2}{2} \\
& =\frac{1}{2}\left[3 k^{2}+5 k+2\right] \\
& =\frac{1}{2}[(k+1)(3 k+2)]
\end{aligned}
$$

So, $P(k+1)$ true whenever $P(k)$ true. Since $P(1)$ true, then by induction $P(n)$ true for all positive integers $n(n \in \mathbf{N}, n \geq 1)$.

## Blunders (-3)

B1 indices.
B2 $n \neq 1$ (must prove $n=1$ not enough to say true for $n=1$ )
B3 factors.
Slips (-1)
S1 numerical.

5(c) (i) Show that $\frac{1}{\log _{a} b}=\log _{b} a$, where $a, b>0$ and $a, b \neq 1$
(ii) Show that $\frac{1}{\log _{2} c}+\frac{1}{\log _{3} c}+\frac{1}{\log _{4} c}+\ldots \ldots . .+\frac{1}{\log _{r} c}=\frac{1}{\log _{r!} c}$, where $c>0, c \neq 1$.

Part (c) (i)
(ii) $\log _{x} c$ to a new base
$\log (2.3 .4 . . . r)$
completion

## 5 marks

5 marks
5 marks
5 marks

Att 2
Att 2
Att 2
Att 2

5(c)(i) $\quad \log _{b} a=\frac{\log _{a} a}{\log _{a} b}=\frac{1}{\log _{a} b}$

$$
\begin{aligned}
& \text { 5(c)(ii) } \quad \text { From (i): } \log _{c} 2=\frac{1}{\log _{2} c} \\
& \text { Similarly } \log _{c} 3=\frac{1}{\log _{3} c}, \quad \cdots \quad, \log _{c} r=\frac{1}{\log _{r} c} \\
& \therefore \quad \frac{1}{\log _{2} c}+\frac{1}{\log _{3} c}+\frac{1}{\log _{4} c}+\ldots \ldots . .+\frac{1}{\log _{r} c} \\
& =\log _{c} 2+\log _{c} 3+\log _{c} 4+\ldots \ldots .+\log _{c} r \\
& =\log _{c}(2.3 .4 \ldots \ldots . . . . . . . . r) \\
& =\log _{c}(r!) \\
& =\frac{1}{\log _{r!} c} \text {. }
\end{aligned}
$$

or

$$
\begin{aligned}
\mathbf{5}(\mathbf{c})(\text { ii })
\end{aligned} \begin{aligned}
& \log _{2} c=\frac{\log _{r!} c}{\log _{r!} 2} \Rightarrow \frac{1}{\log _{2} c}=\frac{\log _{r!} 2}{\log _{r} c} \\
& \text { Similarly, } \frac{1}{\log _{3} c}=\frac{\log _{r!} 3}{\log _{r} c}, \text { etc. } \\
& \therefore \quad \frac{1}{\log _{2} c}+\frac{1}{\log _{3} c}+\frac{1}{\log _{4} c}+\ldots \ldots . .+\frac{1}{\log _{r} c} \\
&=\frac{\log _{r!} 2}{\log _{r!} c}+\frac{\log _{r!} 3}{\log _{r!} c}+\frac{\log _{r!} 4}{\log _{r!} c}+\ldots \ldots \ldots . .+\frac{\log _{r!} r}{\log _{r!} c} \\
&=\frac{\log _{r!} 2+\log _{r!} 3+\log _{r!} 4+\ldots \ldots \ldots . . \log _{r!} r}{\log _{r!} c} \\
&=\frac{\log _{r!}(2.3 .4 \ldots \ldots . . r)}{\log _{r!} c} \\
&=\frac{\log _{r!}(r!)}{\log _{r!} c} \\
&=\frac{1}{\log _{r!} c}
\end{aligned}
$$

$$
\text { 5(c)(ii) } \begin{aligned}
\log _{2} c & =\frac{\log _{10} c}{\log _{10} 2}, \quad \log _{3} c=\frac{\log _{10} c}{\log _{10} 3}, \quad \text { etc. } \\
\therefore \quad & \frac{1}{\log _{2} c}+\frac{1}{\log _{3} c}+\frac{1}{\log _{4} c}+\ldots \ldots .+\frac{1}{\log _{r} c} \\
& =\frac{\log _{10} 2}{\log _{10} c}+\frac{\log _{10} 3}{\log _{10} c}+\frac{\log _{10} 4}{\log _{10} c}+\ldots \ldots \ldots . .+\frac{\log _{10} r}{\log _{10} c} \\
& =\frac{\log _{10} 2+\log _{10} 3+\log _{10} 4+\ldots \ldots \ldots . . \log _{10} r}{\log _{10} c} \\
& =\frac{\log _{10}(2.3 .4 \ldots \ldots \ldots r)}{\log _{10} c} \\
& =\frac{\log _{10}(r!)}{\log _{10}(c)} \\
& =\log _{c} r! \\
& =\frac{1}{\log _{r!} c}
\end{aligned}
$$

Blunders (-3)
B1 log laws.
B2 factorial.
B3 change of base.
Worthless
W1 no change of base.

## QUESTION 6

## Part (a)

Part (b)
$10(5,5)$ marks
20 marks
Part (c)
$20(10,5,5)$ marks
Note: The marking of Question 6 is not based on slips, blunders and attempts. In the case of each part, descriptions or typical examples of work meriting particular numbers of marks are given. The mark awarded must be one of the marks indicated. For example, in part (a)(i), descriptions are given for work meriting 0,2 or 5 marks. It is therefore not permissible to award, 1,3 or 4 marks for this part.

Part (a)

## $10(5,5)$ marks

6 (a) Differentiate with respect to $x$
(i) $(1+7 x)^{3}$
(ii) $\sin ^{-1}\left(\frac{x}{5}\right)$.

Part (a) (i)
5 marks
6(a)(i) $\quad \frac{d y}{d x}=3(1+7 x)^{2} .(7)=21(1+7 x)^{2}$.
5 marks: correct derivative in any form. (e.g. middle step above is acceptable, as is expansion followed by correct differentiation, unsimplified).
2 marks: differentiates with one or more errors, provided at least some aspect correct.
0 marks: no correct differentiation done. (e.g. integrates or expands the given expression).
Part (a) (ii)

## 5 marks

6(a)(ii) $y=\sin ^{-1}\left(\frac{x}{5}\right)=\sin ^{-1}\left(\frac{x}{a}\right) \Rightarrow a=5$

$$
\frac{d y}{d x}=\frac{1}{\sqrt{a^{2}-x^{2}}}=\frac{1}{\sqrt{25-x^{2}}}
$$

or
6(a)(ii) $\quad y=\sin ^{-1}\left(\frac{x}{5}\right)=\sin ^{-1}[f(x)]$

$$
\begin{aligned}
\frac{d y}{d x}= & \frac{1}{\sqrt{1-f(x)^{2}}} \cdot f^{\prime}(x)=\frac{1}{\sqrt{1-\left(\frac{x}{5}\right)^{2}}} \cdot\left(\frac{1}{5}\right) \\
& =\frac{1}{5 \sqrt{\frac{25-x^{2}}{25}}} \\
& =\frac{1}{\sqrt{25-x^{2}}}
\end{aligned}
$$

$$
\text { 6(a)(ii) } \begin{aligned}
& y=\sin ^{-1}\left(\frac{x}{5}\right) \Rightarrow \sin y=\frac{x}{5} \\
& \therefore \cos y \frac{d y}{d x}=\frac{1}{5} \\
& \therefore \frac{d y}{d x}=\frac{1}{\cos y} \cdot \frac{1}{5} \\
&=\frac{1}{\frac{\sqrt{25-x^{2}}}{5} \cdot 5} \\
&=\frac{1}{\sqrt{25-x^{2}}}
\end{aligned} \quad \sin y=\frac{x}{5} \Rightarrow \cos y=\frac{\sqrt{25-x^{2}}}{5}
$$

5 marks: correct derivative in terms of $x$, simplified or otherwise.
2 marks: differentiates with at least some aspect correct; fails to give answer in terms of $x$.
0 marks: no correct differentiation done. (e.g. integrates or rearranges the given expression, or gives only the first step in the second method above)

Part (b)
20 marks

| 6 (b) | Let $y=\frac{1-\cos x}{1+\cos x}$. Show that $\frac{d y}{d x}=t+t^{3}$, where $t=\tan \frac{x}{2}$. |  |
| :---: | :---: | :---: |
| Part (b) | 20 marks | - |
| 6(b)(ii) | $\begin{aligned} y & =\frac{1-\cos x}{1+\cos x}=\frac{u}{v} \\ \frac{d y}{d x} & =\frac{(1+\cos x)(\sin x)-(1-\cos x)(-\sin x)}{(1+\cos x)^{2}} \\ & =\frac{\sin x+\sin x \cos x+\sin x-\sin x \cos x}{(1+\cos x)^{2}} \\ & =\frac{2 \sin x}{(1+\cos x)^{2}} \\ & =\frac{2\left(2 \sin \frac{x}{2} \cos \frac{x}{2}\right)}{\left(2 \cos ^{2} \frac{x}{2}\right)^{2}} \\ & =\frac{4 \sin \frac{x}{2} \cos ^{\frac{x}{2}}}{4 \cos ^{4} \frac{x}{2}} \\ & =\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \cdot \frac{1}{\cos ^{2} \frac{x}{2}} \\ & =\tan \frac{x}{2}\left(\sec ^{2} \frac{x}{2}\right)^{2} \\ & =\tan \frac{x}{2}\left(1+\tan ^{2} \frac{x}{2}\right) \\ & =t\left(1+t^{2}\right) \\ & =t+t^{3} \end{aligned}$ |  |

or

6(b)(ii) | $\frac{d y}{d x}=\frac{2 \sin x}{(1+\cos x)^{2}}$ | $=\frac{2\left[\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right]}{\left[1+\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right]^{2}}$ |
| ---: | :--- |
|  | $=\frac{\frac{4 t}{1+t^{2}}}{\left[\frac{\left(1+t^{2}\right)+\left(1-t^{2}\right)}{1+t^{2}}\right]^{2}}$ |
|  | $=\frac{4 t}{\left(1+t^{2}\right)\left[\frac{2}{1+t^{2}}\right]^{2}}$ |
|  | $=t\left(1+t^{2}\right)$ |
|  | $=t+t^{3}$ |

or

$$
\text { 6(b)(ii) } \begin{aligned}
\frac{d y}{d x} & =\frac{2 \sin x}{(1+\cos x)^{2}}=\frac{2\left[\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right]}{\left[2 \cos ^{2} \frac{x}{2}\right]^{2}} \\
& =\frac{4 \tan \frac{x}{2}}{\left(1+\tan ^{2} \frac{x}{2}\right) \cdot 4 \cos ^{2} \frac{x}{2} \cdot \cos ^{2} \frac{x}{2}} \\
& =\frac{4 t}{\sec ^{2} \frac{x}{2} \cdot 4 \frac{1}{\sec ^{2} \frac{x}{2}} \cdot \frac{1}{\sec ^{2} \frac{x}{2}}} \\
& =t \cdot\left(\sec ^{2} \frac{x}{2}\right) \\
& =t\left(1+\tan ^{2} \frac{x}{2}\right) \\
& =t\left(1+t^{2}\right) \\
& =t+t^{3}
\end{aligned}
$$

6(b)(ii) | $y$ | $=\frac{1-\cos x}{1+\cos x}$ |  |  |
| ---: | :--- | ---: | :--- |
| $y$ | $=\frac{2 t^{2}}{2}=t^{2}$ | $\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{1-t^{2}}{1+t^{2}}}$ | $=\frac{\left(1+t^{2}\right)-\left(1-t^{2}\right)}{\left(1+t^{2}\right)+\left(1-t^{2}\right)}$ |
| $y$ | $=\left(\tan \frac{x}{2}\right)^{2}$ | $y$ |  |
| $\frac{d y}{d x}$ | $=2\left(\tan \frac{x}{2}\right)^{1} \cdot\left(\sec ^{2} \frac{x}{2}\right) \cdot \frac{1}{2}$ | $\frac{d y}{d x}$ | $=2 t \frac{d t}{d x}$ |
|  | $=\left(\tan \frac{x}{2}\right)\left(1+\tan ^{2} \frac{x}{2}\right)$ |  | $=2 t\left[\frac{1}{2} \sec ^{2} \frac{x}{2}\right]$ |
|  | $=t\left(1+t^{2}\right)$ |  | $=2 t\left[\frac{1}{2}\left(1+\tan ^{2} \frac{x}{2}\right)\right]$ |
|  | $=t+t^{3}$ |  | $=t\left(1+t^{2}\right)$ |
|  | $=t+t^{3}$ |  |  |

20 marks: fully correct solution.
17 marks: correct expression for $\frac{d y}{d x}$ in terms of $t$ alone, but not simplified to required form or solution with one or two non-critical errors, simplified fully.
[critical error $=$ one that significantly alters the nature or complexity of the task].
14 marks: correct expression for $\frac{d y}{d x}$ in terms of $x$, simplified or correctly establishes that $y=t^{2}$ or that $\frac{d t}{d x}=\frac{1}{2}\left(1+t^{2}\right)$

7 marks: correct or almost-correct expression for $\frac{d y}{d x}$ in terms of $x$ or correct expression for $\frac{d t}{d x}$ in terms of $x$ or correct but unsimplified expression for $y$ in terms of $t$ or $\tan \frac{x}{2}$

0 marks: no relevant work.

6 (c) The equation of a curve is $y=\frac{x}{x-1}$, where $x \neq 1$.
(i) Show that the curve has no local maximum or local minimum point.

6 (c) (i)

$$
\begin{aligned}
y & =\frac{x}{x-1} \\
\frac{d y}{d x} & =\frac{(x-1)(1)-(x)(1)}{(x-1)^{2}} \\
& =\frac{x-1-x}{(x-1)^{2}} \\
& =\frac{-1}{(x-1)^{2}} \neq 0
\end{aligned}
$$

$\therefore$ No local max/local min
10 marks: Correct solution, including assertion that derivative $\neq 0$ or $<0$ or similar conclusion.
7 marks: Correct derivative.
3 marks: Substantial error(s) in differentiation.
0 marks: No relevant work

Part (c) (ii)
6 (c) (ii) Write down the equations of the asymptotes and hence sketch the curve.

6 (c) (ii)
Vertical asymptote: $x-1=0 \quad \Rightarrow x=1$
Horizontal asymptote:
$y=\frac{x}{x-1}=\frac{1}{1-\frac{1}{x}} \rightarrow 1$ as $x \rightarrow \pm \infty \quad \Rightarrow y=1$


5 marks: Correct solution, (equations of both asymptotes, and sketch).
2 marks: One or two equations correct, or sketch of correct form.
0 marks: No significant work of merit.

6 (c) (iii) Show that the curve is its own image under the symmetry in the point of intersection of the asymptotes.

6 (c) (iii) $\quad S_{p}(a)=b \quad p$ : point of intersection of asymptotes $=(1,1)$.

$$
a=(x, y) \Rightarrow b=(2-x, 2-y)
$$

Test to see if $b(2-x, 2-y)$ is on curve $y=\frac{x}{x-1}$ :

$$
\begin{aligned}
& (2-y)=\frac{(2-x)}{(2-x)-1} \\
& 2-y=\frac{2-x}{1-x} \\
& 2-\frac{2-x}{1-x}=y \\
& \Leftrightarrow y=\frac{2(1-x)-(2-x)}{1-x}=\frac{-x}{1-x} \\
& \Leftrightarrow y=\frac{x}{x-1} \quad \text { (i.e. } b \text { is on the curve if and only if } a \text { is.) }
\end{aligned}
$$

or
6 (c) (iii) $p(1,1)$ : point of intersection of asymptotes

$$
\begin{gathered}
a\left(x, \frac{x}{x-1}\right) \text { is on curve } y=\frac{x}{x-1} \\
S_{p}(a)=b \Rightarrow b\left[2-x, 2-\frac{x}{x-1}\right] \\
b\left(2-x, \frac{2(x-1)-x}{x-1}\right) \\
b\left(2-x, \frac{x-2}{x-1}\right)
\end{gathered}
$$

Symmetry if $b\left(2-x, \frac{x-2}{x-1}\right) \in y=\frac{x}{x-1}$ :

$$
\frac{(2-x)}{(2-x)-1}=\frac{2-x}{1-x}=\frac{x-2}{x-1} .
$$

5 marks: Fully correct solution.
2 marks: Correctly finds image of general point on the curve, or Identifies general point on the curve in terms of one variable, or Fully or partially works a particular case, or Identifies $(1,1)$ as the point of intersection of the asymptotes.
0 marks: no relevant work.

## QUESTION 7

Part (a)
Part (b)
$20(5,5,5,5)$ marks
Att 3
Part (c)

7 (a) Find from first principles the derivative of $x^{2}$ with respect to $x$.

Part (a)
10 marks
Att 3
7(a)

$$
\begin{aligned}
f(x) & =x^{2} \\
f(x+h) & =(x+h)^{2} \\
f(x+h)-f(x) & =\left(x^{2}+2 h x+h^{2}\right)-x^{2} \\
f(x+h)-f(x) & =2 h x+h^{2} \\
\frac{f(x+h)-f(x)}{h} & =2 x+h \\
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =2 x
\end{aligned}
$$

or

$$
\text { 7(a) } \begin{aligned}
y & =x^{2} \\
y+\Delta y & =(x+\Delta x)^{2} \\
\Delta y & =(x+\Delta x)^{2}-x^{2} \\
& =x^{2}+2 x \Delta x+\Delta x^{2}-x^{2} \\
& =2 x \cdot \Delta x+\Delta x^{2} \\
\frac{\Delta y}{\Delta x} & =2 x+\Delta x \\
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} & =2 x
\end{aligned}
$$

## Blunders (-3)

B1 expansion of $(a+b)^{2}$ once only.
B2 indices.
B3 no limit shown or implied, or no indication $\rightarrow 0$.
B4 $x . \Delta x=\Delta x^{2}$

## Worthless

W1 not from $1^{\text {st }}$ principles.

> The parametric equations of a curve are:

$$
\begin{aligned}
& x=8+\ln t^{2} \\
& y=\ln \left(2+t^{2}\right), \text { where } t>0 .
\end{aligned}
$$

Find $\frac{d y}{d x}$ in terms of $t$ and calculate its value at $t=\sqrt{2}$.
Part (b)(i) $\frac{d x}{d t}, \frac{d y}{d t}$

5 marks
5 marks

7 (b) (i)

$$
\begin{array}{rlrl}
x & =8+\ln t^{2} & y & =\ln \left(2+t^{2}\right), \\
x & =8+2 \ln t & \frac{d y}{d t} & =\frac{1}{2+t^{2}} \cdot 2 t \\
\frac{d x}{d t} & =2\left(\frac{1}{t}\right)=\frac{2}{t} & & =\frac{2 t}{2+t^{2}}
\end{array}
$$

$$
\frac{d y}{d x}=\frac{\left(\frac{d y}{d y}\right)}{\left(\frac{d x}{d t}\right)}=\frac{\left(\frac{2 t}{2+t^{2}}\right)}{\left(\frac{2}{t}\right)}=\frac{t^{2}}{2+t^{2}}
$$

$$
\text { At } t=\sqrt{2}: \quad t^{2}=2 \quad \Rightarrow \frac{d y}{d x}=\frac{t^{2}}{2+t^{2}}=\frac{2}{2+2}=\frac{1}{2}
$$

* $f^{\prime}(x)$ must be expressed as a function of $t$ for second 5 marks.

Blunders (-3)
B1 differentiation.
B2 logs.
B3 indices
B4 definition of $\frac{d y}{d x}$
B5 incorrect value or no value.

## Attempts

A1 error in differentiation formula.
Worthless
W1 integration.
W2 no differentiation.

7 (b) (ii)

$$
\text { Find the slope of the tangent to the curve } x y^{2}+y=6 \text { at the point }(1,2) \text {. }
$$

5 marks
Att 2
5 marks
7 (b) (ii) $x y^{2}+y=6$

$$
\begin{aligned}
\left(x .2 y \frac{d y}{d x}+y^{2}\right)+\frac{d y}{d x} & =0 \\
\frac{d y}{d x}(2 x y+1) & =-y^{2} \\
\frac{d y}{d x} & =\frac{-y^{2}}{2 x y+1}
\end{aligned}
$$

$$
\text { At } p(1,2) \quad \begin{array}{ll}
x=1 \text { and } y=2 \\
& m=\frac{d y}{d x}=\frac{-(2)^{2}}{2(1)(2)+1}=\frac{-4}{5}
\end{array}
$$

## Blunders (-3)

B1 differentiation.
B2 indices.
B3 incorrect value of $x$ or no value of $x$.
B4 incorrect value of $y$ or no value of $y$.
Slips (-1)
S1 numerical.

## Attempts

A1 error in differentiation formula.
A2 $\frac{d y}{d x}=2 x y \frac{d y}{d x}+y^{2}+\frac{d y}{d x}$ and uses all three $\left(\frac{d y}{d x}\right)$ terms.

Part (c)
$20(5,5,5,5)$ marks
$\operatorname{Att}(2,2,2,2)$
7 (c) (i) Write down a quadratic equation whose roots are $\pm \sqrt{k}$.
(ii) Hence use the Newton-Raphson method to show that the rule

$$
u_{n+1}=\frac{\left(u_{n}\right)^{2}+k}{2 u_{n}}
$$

can be used to find increasingly accurate approximations for $\sqrt{k}$.
(iii) Using the above rule and taking $\frac{3}{2}$ as the first approximation for $\sqrt{3}$, find the third approximation, as a fraction.
(ii) Newton-Raphson

5 marks

7(c) (i) Roots $\pm \sqrt{k} \Rightarrow$ Equation: $x^{2}-k=0$.
7(c)(ii) Equation: $\quad x^{2}=k$ or $x^{2}-k=0$, so let $f(x)=x^{2}-k$.

$$
\begin{gathered}
\therefore \quad f\left(u_{n}\right)=u_{n}^{2}-k \\
\\
f^{\prime}\left(u_{n}\right)=2 u_{n}
\end{gathered}
$$

Newton-Raphson: $\quad u_{n+1}=u_{n}-\frac{f\left(u_{n}\right)}{f^{\prime}\left(u_{n}\right)}$

$$
=u_{n}-\frac{u_{n}{ }^{2}-k}{2 u_{n}}
$$

$$
=\frac{2 u_{n}^{2}-\left(u_{n}^{2}-k\right)}{2 u_{n}}
$$

$$
u_{n+1}=\frac{u_{n}^{2}+k}{2 u_{n}}
$$

Hence the given rule is the Newton-Raphson method applied to $f(x)=x^{2}-k$. Thus it can be used with a suitable initial value to find increasingly accurate approximations for $\sqrt{k}$.

7(c)(iii) $\quad u_{2}=\frac{u_{1}{ }^{2}+k}{2 u_{1}} \quad k=3 ; \quad u_{1}=\frac{3}{2}$

$$
\begin{aligned}
& u_{2}=\frac{\left(\frac{3}{2}\right)^{2}+3}{2\left(\frac{3}{2}\right)}=\frac{\frac{9}{4}+3}{3}=\frac{21}{12}=\frac{7}{4} \\
& u_{3}=\frac{\left(u_{2}\right)^{2}+k}{2 u_{2}}=\frac{\left(\frac{7}{4}\right)^{2}+3}{2\left(\frac{7}{4}\right)}=\frac{\frac{49}{16}+3}{\frac{7}{2}}=\frac{\left(\frac{97}{16}\right)}{\left(\frac{7}{2}\right)}=\frac{97}{56}
\end{aligned}
$$

## Blunders (-3)

B1 equation
B2 Newton-Raphson formula; apply once only to second 5 marks in (ii) or to 5 marks in (iii).
B3 differentiation.
B4 indices.
B5 $k \neq 3$.
B6 $U_{1} \neq \frac{3}{2}$, once only
B7 $U_{3}$ not found.
Slips (-1)
S1 numerical.
S2 not as fraction.

## Misreadings (-1)

M1 takes "above rule" in c(iii) to mean "Newton-Raphson method" and uses this in (iii).

## QUESTION 8

| Part (a) | $10(5,5)$ marks |  |  |  | Att (2, 2) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Part (b) | $20(10,10)$ marks |  |  |  | Att (3, 3) |
| Part (c) | $20(10,10)$ marks |  |  |  | Att (3, 3) |
| Part (a) | $10(5,5)$ marks |  |  |  | Att (2,2) |
| 8 (a) | Find (i) | $\int\left(2+x^{3}\right) d x$ | (ii) | $\int e^{3 x}$ |  |
| Part (i) <br> (ii) |  |  | $\begin{aligned} & 5 \mathrm{ma} \\ & 5 \mathrm{ma} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \hline \text { Att } 2 \\ & \text { Att } 2 \\ & \hline \end{aligned}$ |
| 8 (a) | (i) <br> (ii) $\int$ | $\begin{aligned} & \left.x^{3}\right) d x=2 x+ \\ & d x=\frac{e^{3 x}}{3}+c \end{aligned}$ | $-+c$ |  |  |

If $c$ shown once, then no penalty

## Blunders (-3)

B1 integration.
B2 no ' $c$ ' (Penalise $1^{\text {st }}$ integration)
B3 indices.

## Attempts

A1 anything $+c$.

## Worthless

W1 differentiation instead of integration.
Part (b)
8 (b) (i) Evaluate $\int_{1}^{4} \frac{2 x+1}{x^{2}+x+1} d x$.
(ii) Evaluate $\int_{0}^{\frac{\pi}{8}} \sin ^{2} 2 \theta d \theta$.

Part (b) (i)
(ii)

10 marks

$$
\text { 8(b)(i) } \begin{array}{rlr}
\int_{1}^{4} \frac{2 x+1}{x^{2}+x+1} d x \\
= & \int_{\text {Let }}\left(\frac{(2 x+1) d x}{\left(x^{2}+x+1\right)}\right. \\
=\int \frac{d u}{u}= & =\ln u \\
\frac{d u}{d x} & =2 x \\
d u & =(2 x \\
\left.=\ln \left(x^{2}+x+1\right)\right]_{1}^{4}=\ln (16+4+1)-\ln (1+1+1) & =\ln \frac{21}{3} \quad & =\ln 7
\end{array}
$$

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{8}} \sin ^{2} 2 \theta d \theta . & =\frac{1}{2}\left[\theta-\frac{\sin 4 \theta}{4}\right]_{0}^{\frac{\pi}{8}} \\
& =\frac{1}{2}\left[\left(\frac{\pi}{8}-\frac{\sin \frac{4 \pi}{8}}{4}\right)-(0-0)\right] \\
& =\frac{1}{2}\left(\frac{\pi}{8}-\frac{1}{4}\right) \\
& =\frac{\pi}{16}-\frac{1}{8}
\end{aligned}
$$

or

| 8(b)(ii) | $\begin{aligned} & \int_{0}^{\frac{\pi}{8}} \sin ^{2} 2 \theta d \theta \\ & =\int \frac{1}{2}(1-\cos 4 \theta) d \theta \end{aligned}$ |  | $\begin{aligned} \sin ^{2} \theta & =\frac{1}{2}(1-\cos 2 \theta) \\ \Rightarrow \sin ^{2} 2 \theta & =\frac{1}{2}(1-\cos 4 \theta) \end{aligned}$$=\frac{\pi}{16}-\frac{1}{8}$ |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  | $=\frac{1}{2}\left[\theta-\frac{\sin 4 \theta}{4}\right]_{0}^{\frac{\pi}{8}}$ |  |  |
|  | $=\frac{1}{2}\left[\left(\frac{\pi}{8}-\frac{\sin \frac{4 \pi}{8}}{4}\right)-(0-0)\right]$ | $=\frac{1}{2}\left(\frac{\pi}{8}-\frac{1}{4}\right)$ |  |

Blunders (-3)
B1 integration.
B2 indices.
B3 limits.
B4 no limits.
B5 incorrect order in applying limits.
B6 not calculating substituted limits.
B7 not changing limits.
B8 differentiation.
B9 trig formula.
Slips (-1)
S1 numerical.
S2 trig value.

## Worthless

W1 differentiation instead of integration except where other work merits attempt.
Note: Incorrect substitution and unable to finish yields attempt at most.
Note: (-3) is maximum deduction when evaluating limits
Note: In 8 (b)(ii), do not penalise $\frac{\pi}{16}=11.25^{\circ}$, etc.

8 (c) (i) Evaluate $\int_{1}^{2} \frac{1}{\sqrt{3+2 x-x^{2}}} d x$.
Part (c)(i)
8 (c) (i) $\int_{1}^{2} \frac{1}{\sqrt{3+2 x-x^{2}}} d x$
$\int \frac{d x}{\sqrt{3+2 x-x^{2}}}=\int \frac{d x}{\sqrt{2^{2}-(x-1)^{2}}}$
$\begin{aligned} & 3+2 x-x^{2} \\ = & 4-\left(x^{2}-2 x+1\right)\end{aligned}$
$=(2)^{2}-(x-1)^{2}$
$\int \frac{d u}{\sqrt{2^{2}-u^{2}}}$
$\left[\right.$ Let $\left.u=x-1 \Rightarrow \frac{d u}{d x}=1 \Rightarrow d u=d x\right]$
$=\sin ^{-1}\left(\frac{u}{2}\right)$
$\left.=\sin ^{-1}\left(\frac{x-1}{2}\right)\right]_{1}^{2}$
$=\sin ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1}(0)=\frac{\pi}{6}-0 \quad=\frac{\pi}{6}$
or


## Blunders (-3)

B1 integration
B2 completing square once only.
B3 limits
B4 no limits
B5 incorrect order in applying limits
B6 not calculating substituted limits
B7 not changing limits.
B8 differentiation.
Slips (-1)
S1 numerical
S2 trig value.

## Worthless:

W1 no effort at completing square
W2 differentiation instead of integration except where other work merits attempt.
W3 puts $u=3+2 x-x^{2}$
Note: Incorrect substitution and unable to finish yields attempt at most.
Note: ( -3 ) is maximum deduction when evaluating limits

Part (c) (ii)
10 marks
Att 3
8 (c) (ii) Use integration methods to derive a formula for the volume of a cone.
Part (c)(ii) 10 marks Att 3

8 (c) (ii) Vol of cone, with height $=h$, and base-radius $=r$
Equation $o p:$ slope $=\frac{r}{h} ;$ through $(0,0) \Rightarrow y=\frac{r}{h}(x)$

$$
\begin{aligned}
V & =\int_{0}^{h} \pi y^{2} d x=\pi \int_{0}^{h}\left(\frac{r x}{h}\right)^{2} d x=\frac{\pi r^{2}}{h^{2}} \int_{0}^{h} x^{2} d x \\
& =\frac{\pi r^{2}}{3 h^{2}}\left[x^{3}\right]_{0}^{h}=\frac{\pi r^{2}}{3 h^{2}}\left[h^{3}-0\right]=\frac{1}{3} \pi r^{2} h
\end{aligned}
$$



## Blunders (-3)

B1 integration
B2 slope of line.
B3 equation of line.
B4 volume formula provided it is quadratic
B5 limits
B6 no limits.
B7 incorrect order in applying limits.
B8 indices.
Slips (-1)
S1 numerical

## Attempts

A1 uses $v=\pi y$

## Worthless

W1 differentiation instead of integration.
Note: (-3) is maximum deduction when evaluating limits.

## MARKING SCHEME

## LEAVING CERTIFICATE EXAMINATION 2005

## MATHEMATICS - HIGHER LEVEL - PAPER 2

## GENERAL GUIDELINES FOR EXAMINERS - PAPER 2

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions (-3)
- Slips - numerical errors (-1)
- Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5.50$ may be written as $€ 5,50$.

## QUESTION 1



## Blunders (-3)

B1 Error in distance formula.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 5 marks)

A1 Distance between centres.
A2 Correct condition for circles touching externally.
Part (b)

$$
20(5,5,10) \text { marks }
$$

Att (2, 2, 3)
Part (b) (i)
10 marks $(5,5)$
Att (2, 2)
1(b) (i) Prove that the equation of the tangent to the circle $x^{2}+y^{2}=r^{2}$ at the point $\left(x_{1}, y_{1}\right)$ is $x x_{1}+y y_{1}=r^{2}$.
Slope of tangent 5 marks Att 2

Finish 5 marks Att 2
1(b) (i)
Equation of tangent $T: y-y_{1}=m\left(x-x_{1}\right)$.
Slope of normal $o p=\frac{y_{1}-0}{x_{1}-0}=\frac{y_{1}}{x_{1}}$.
$\therefore$ Slope of $T$ at point $p\left(x_{1}, y_{1}\right)=-\frac{x_{1}}{y_{1}}$.


Equation of $T: y-y_{1}=\frac{-x_{1}}{y_{1}}\left(x-x_{1}\right) \Rightarrow y y_{1}-y_{1}{ }^{2}=-x x_{1}+x_{1}{ }^{2}$
$x x_{1}+y y_{1}=x_{1}^{2}+y_{1}{ }^{2}$.
But $\left(x_{1}, y_{1}\right) \in x^{2}+y^{2}=r^{2} \Rightarrow x_{1}^{2}+y_{1}^{2}=r^{2}$.
$\therefore$ Equation of tangent $T: x x_{1}+y y_{1}=r^{2}$.

1(b) (i) $x^{2}+y^{2}=r^{2} \Rightarrow 2 x+2 y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{-x}{y}$.
Slope of tangent $T$ at point $p\left(x_{1}, y_{1}\right)=\frac{-x_{1}}{y_{1}}$.
Equation of $T: y-y_{1}=\frac{-x_{1}}{y_{1}}\left(x-x_{1}\right) \Rightarrow y y_{1}-y_{1}{ }^{2}=-x x_{1}+x_{1}{ }^{2}$
$x x_{1}+y y_{1}=x_{1}^{2}+y_{1}{ }^{2}$.
But $\left(x_{1}, y_{1}\right) \in x^{2}+y^{2}=r^{2} \Rightarrow x_{1}^{2}+y_{1}^{2}=r^{2}$.
$\therefore$ Equation of tangent $T: x x_{1}+y y_{1}=r^{2}$.

## Blunders (-3)

B1 Incorrect sign in slope formula.
B2 Slope formula inverted.
B3 Incorrect perpendicular slope.
B4 Error in differentiation.
B5 Fails to show that $x_{1}^{2}+y_{1}^{2}=r^{2}$.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 2, 2 marks)

A1 Correct slope of normal.
A2 Correct differentiation.
A3 Correct substitution into tangent formula and stops.
A4 Stops at $x x_{1}+y y_{1}=x_{1}{ }^{2}+y_{1}{ }^{2}$.

Part (b) (ii)
10 marks
Att 3
1 (b) (ii) Hence, or otherwise, find the two values of $b$ such that the line $5 x+b y=169$ is a tangent to the circle $x^{2}+y^{2}=169$.

Values of $\boldsymbol{b}$
10 marks
Att 3
1 (b) (ii) By part (i) the line $5 x+b y=169$ is a tangent to the circle $x^{2}+y^{2}=169$ at the point $(5, b)$.
But $(5, b) \in x^{2}+y^{2}=169 \Rightarrow 25+b^{2}=169$.
$b^{2}=144 \Rightarrow b= \pm 12$.
or
1 (b) (ii) Perpendicular distance from centre of circle to tangent $5 x+b y=169$ equals radius.

$$
\begin{aligned}
& \left|\frac{5(0)+b(0)-169}{\sqrt{25+b^{2}}}\right|=13 \Rightarrow|-169|=13 \sqrt{25+b^{2}} \\
& \sqrt{25+b^{2}}=13 \Rightarrow 25+b^{2}=169 \Rightarrow b^{2}=144 . \quad \therefore b= \pm 12 .
\end{aligned}
$$

## Blunders (-3)

B1 Error in solving for $b$ other than slip.
B2 Only one correct value of $b$ given.
B3 Incorrect radius.
Slips (-1)
S1 Arithmetic error.
Attempts ( 3 marks)
A1 $(5, b)$ point of tangency.
A2 Perpendicular distance formula with substitution.

## Part (c)

15 marks $(5,5,5)$
Att (2, 2, 2)
1 (c) A circle passes through the points $(7,2)$ and $(7,10)$.
The line $x=-1$ is a tangent to the circle.
Find the equation of the circle.

| Two equations in $g, f$ and $c$ | 5 marks | Att 2 |
| :--- | :--- | :--- |
| Value of $f$ | 5 marks | Att 2 |
| Finish | 5 marks | Att 2 |

1 (c) Circle: $x^{2}+y^{2}+2 g x+2 f y+c=0$.
$(7,2) \in C \Rightarrow 49+4+14 g+4 f+c=0 \quad \Rightarrow 14 g+4 f+c=-53$
$(7,10) \in C \Rightarrow 49+100+14 g+20 f+c=0 \Rightarrow 14 g+20 f+c=-149$
$\therefore 16 f=-96 \Rightarrow f=-6$.
$x+1=0$ is a tangent.
$\therefore$ Perpendicular distance from $(-g,-f)$ to $x+1=0$ equals radius.
$\therefore\left|\frac{-g+1}{1}\right|=\sqrt{g^{2}+36-c} \Rightarrow g^{2}-2 g+1=g^{2}+36-c \Rightarrow 2 g-c=-35$.
But $14 g+4 f+c=-53 \Rightarrow 14 g+c=-29$. But $2 g-c=-35$.
$\Rightarrow 16 g=-64 . \therefore g=-4$ and $c=27$.
$\therefore$ Circle : $x^{2}+y^{2}-8 x-12 y+27=0$.

## $y$ value of centre

'Quadratic' in $x$
Finish
1 (c) $\quad a(7,2)$ and $b(7,10) . \therefore$ Mid-point of $[a b]$ is $(7,6)$.
Equation of mediator of chord $[a b]$ is $y=6$.
Centre point of circle is $c(x, 6)$.
As $x=-1$ is a tangent then point of tangency is $d(-1,6)$.
$|c d|^{2}=|c a|^{2} \Rightarrow(x+1)^{2}=(x-7)^{2}+16$.
$\therefore x^{2}+2 x+1=x^{2}-14 x+49+16 \Rightarrow 16 x=64 \Rightarrow x=4$.
$\therefore$ Centre is $(4,6)$ and radius $=5$
$\therefore$ Equation of circle is $(x-4)^{2}+(y-6)^{2}=25$.

Blunders (-3)
B1 Error in mid-point formula.
B2 Error in perpendicular distance formula.
B3 Error in radius formula.
B4 Circle equation formula error.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2, 2, 2 marks)
A1 One equation in $f, g$ and $c$.
A2 Mid-point of [ab].
A3 Attempt at solving simultaneous equations.
A4 $|c a|,|c b|_{\text {or }}|c d|$ found.
A5 Distance from centre to tangent with substitution.
A6 Attempt at solving quadratic for $x$.
A7 Value of third unknown.
A8 Length of radius.

## QUESTION 2

Part (a)
Part (b)
5 marks
$25(10,5,10)$ marks
Part (c)
$20(15,5)$ marks
Note: The marking of Question 2 is not based on slips, blunders and attempts. In the case of each part, descriptions or typical examples of work meriting particular numbers of marks are given. The mark awarded must be one of the marks indicated. For example, in part (a) (i), descriptions are given for work meriting 2, 4 or 5 marks. It is therefore not permissible to award, 1 or 3 marks for this part.
Part (a)

## 5 marks

2 (a) Copy the parallelogram $o a b c$ into your answerbook. Showing your work, construct the point $d$ such that $\vec{d}=\frac{1}{2} \vec{a}+\frac{1}{2} \vec{b}-\vec{c}$, where $o$ is the origin.


Point $d$
5 marks
2 (a)


* Accept any labelled parallelogram with vertices $o, a, b, c$.

5 marks: point $d$ shown in correct position in diagram. Point $d$ need not be joined to origin.
4 marks: Correct work with one error or omission e.g. $\frac{1}{2}(\vec{a}+\vec{b})$ or $\frac{1}{2} \vec{a}-\vec{c}$ or $\frac{1}{2} \vec{b}-\vec{c}$ correctly on diagram.
2 marks: One correct significant step e.g. $\frac{1}{2} \vec{a}$ or $\frac{1}{2} \vec{b}$ or $-\vec{c}$ or $(\vec{a}+\vec{b})$ correctly shown on diagram.
0 marks: No significant work of merit.

Part (b)

## $25(10,5,10)$ marks

Part (b) (i)
$15(10,5)$ marks
2 (b) (i) $\vec{p}=3 \vec{i}+4 \vec{j}, \vec{q}$ is the unit vector in the direction of $\vec{p}$.
(i) Express $\vec{q}$ and $\vec{q}^{\perp}$ in terms of $\vec{i}$ and $\vec{j}$.

Express $\vec{q}$
10 marks
2 (b)(i)
$\vec{q}=\frac{\vec{p}}{|\vec{p}|}=\frac{3 \vec{i}+4 \vec{j}}{\sqrt{9+16}}=\frac{3}{5} \vec{i}+\frac{4}{5} \vec{j}$.

10 marks: Correct solution for $\vec{q}$, simplified or otherwise.
7 marks: Calculates $|\vec{p}|$ correctly but does not give unit vector or writes $\frac{\vec{p}}{|\vec{p}|}$ and stops or divides $3 \vec{i}+4 \vec{j}$ by any number.
3 marks: Unit vector expressed as $\frac{a \vec{i}+b \vec{j}}{\sqrt{a^{2}+b^{2}}}$.
0 marks: No significant work of merit.
Express $\overrightarrow{\boldsymbol{q}}$
2 (b) (i)

$$
\vec{q}^{\perp}=-\frac{4}{5} \vec{i}+\frac{3}{5} \vec{j}, \text { or equivalent from candidates } \vec{q}
$$

5 marks: Fully correct answer.
2 marks: Gives $\vec{q}^{\perp}=\frac{4}{5} \vec{i}-\frac{3}{5} \vec{j}$ as solution, or equivalent from candidates $\vec{q}$.
0 marks: Any other answer.

Part (b) (ii)
10 marks
2 (b) (ii) Express $11 \vec{i}-2 \vec{j}$ in the form $k \vec{q}+l \vec{q}^{\perp}$, where $k, l \in \mathbf{R}$.

Express
10 marks
2 (b) (ii)

$$
\begin{aligned}
& k \vec{q}+l \vec{q}^{\perp}=11 \vec{i}-2 \vec{j} . \\
& k\left(\frac{3}{5} \vec{i}+\frac{4}{5} \vec{j}\right)+l\left(-\frac{4}{5} \vec{i}+\frac{3}{5} \vec{j}\right)=11 \vec{i}-2 \vec{j} . \\
& \left(\frac{3}{5} k-\frac{4}{5} l\right) \vec{i}+\left(\frac{4}{5} k+\frac{3}{5} l\right) \vec{j}=11 \vec{i}-2 \vec{j} . \\
& \therefore 3 k-4 l=55 \text { and } 4 k+3 l=-10 . \\
& 9 k-12 l=165 \\
& 16 k+12 l=-40 \\
& \begin{array}{l}
25 k=125 \quad \therefore k \\
\hline
\end{array} .5 . \text { But } 3(5)-4 l=55 \Rightarrow l=-10 . \\
& \therefore 11 \vec{i}-2 \vec{j}=5 \vec{q}-10 \vec{q}^{\perp} .
\end{aligned}
$$

10 marks: Correct $k$ and $l$ found.
7 marks: Solves for $k$ and/or for $l$ with minor error(s).
3 marks: One equation in $k$ and $l$ allowing for minor error(s).
0 marks: No significant work of merit.

Part (c)
Part (c) (i)
2 (c) $\quad \vec{u}=\vec{i}+5 \vec{j}$ and $\vec{v}=4 \vec{i}+4 \vec{j}$.
(i) Find $\cos \angle u o v$, where $o$ is the origin.

2 (c) (i)

$$
\cos \angle u o v=\frac{(\vec{i}+5 \vec{j})(4 \vec{i}+4 \vec{j})}{|(\vec{i}+5 \vec{j})||(4 \vec{i}+4 \vec{j})|}=\frac{4+20}{\sqrt{26} \sqrt{32}}=\frac{24}{8 \sqrt{13}}=\frac{3}{\sqrt{13}} .
$$

15 marks: $\cos \angle u o v$ expressed as fraction of real numbers, simplified or otherwise.
10 marks: Correctly evaluates $\vec{u} \cdot \vec{v}$ and either $|\vec{u}|$ or $|\vec{v}|$ allowing for minor error(s).
5 marks: Correctly evaluates $|\vec{u}|$ or $|\vec{v}|$ or $\vec{u} \cdot \vec{v}$.
0 marks: No significant work of merit.

## Part (c) (ii)

## 5 marks

2 (c) (ii) $\quad \vec{r}=(1-k) \vec{u}+k \vec{v}$, where $k \in \mathbf{R}$ and $k \neq 0$.
Find the value of $k$ for which $|\angle u o v|=|\angle v o r|$.

2 (c) (ii) $\quad \vec{r}=(1-k)(\vec{i}+5 \vec{j})+k(4 \vec{i}+4 \vec{j})=(1+3 k) \vec{i}+(5-k) \vec{j}$.

$$
\begin{aligned}
& \cos \angle v o r=\frac{(4 \vec{i}+4 \vec{j})[(1+3 k) \vec{i}+(5-k) \vec{j}]}{\sqrt{32} \sqrt{(1+3 k)^{2}+(5-k)^{2}}}=\frac{3}{\sqrt{13}} . \\
& \therefore \frac{4+12 k+20-4 k}{4 \sqrt{2} \sqrt{26-4 k+10 k^{2}}}=\frac{3}{\sqrt{13}} \\
& \sqrt{13}(24+8 k)=12 \sqrt{2} \sqrt{26-4 k+10 k^{2}} \\
& \sqrt{13}(6+2 k)=3 \sqrt{2} \sqrt{26-4 k+10 k^{2}} \\
& 568+312 k+52 k^{2}=468-72 k+180 k^{2} \Rightarrow 128 k^{2}-384=0 \\
& \therefore k^{2}-3 k=0 \Rightarrow k-3=0 \text { as } k \neq 0 . \therefore k=3 .
\end{aligned}
$$

5 marks: Fully correct solution.
4 marks: Complete solution with minor error(s).
3 marks: Correct or substantially correct equation in $k$ (without $\vec{i}$ and $\vec{j}$ ).
2 marks: $\quad \vec{r}$ expressed in the form $a \vec{i}+b \vec{j}$, allowing for minor error(s).
0 marks: No significant work of merit.

Part (b)

3 (a) The line $L_{1}: 3 x-2 y+7=0$ and the line $L_{2}: 5 x+y+3=0$ intersect at the point $p$.
Find the equation of the line through $p$ perpendicular to $L_{2}$.

Equation of line
15 marks
3 (a)

$$
\begin{aligned}
& \begin{array}{l}
3 x-2 y+7=0 \Rightarrow 3 x-2 y=-7 \\
5 x+y+3=0 \Rightarrow \frac{10 x+2 y=-6}{13 x=-13} \Rightarrow x=-1 . \quad \therefore y=2 . \quad p(-1,2) . \\
L_{2}: y=-5 x-3 \Rightarrow \text { slope } L_{2}=-5 . \therefore \text { perpendicular slope }=m=\frac{1}{5} .
\end{array}
\end{aligned}
$$

Equation of line : $y-2=\frac{1}{5}(x+1) \Rightarrow x-5 y+11=0$.

## or

3 (a)
Required line: $3 x-2 y+7+\lambda(5 x+y+3)=0$.
$\therefore x(3+5 \lambda)+y(\lambda-2)+(7+3 \lambda)=0$
Slope $=\frac{3+5 \lambda}{2-\lambda}$.
$L_{2}: y=-5 x-3 \Rightarrow$ slope $L_{2}=-5 . \therefore$ Slope of required line $=\frac{1}{5}$.
$\frac{3+5 \lambda}{2-\lambda}=\frac{1}{5} \Rightarrow 15+25 \lambda=2-\lambda \Rightarrow 26 \lambda=-13 . \therefore \lambda=-\frac{1}{2}$.
$\therefore \frac{1}{2} x-\frac{5}{2} y+\frac{11}{2}=0 \Rightarrow$ Required line : $x-5 y+11=0$.

## Blunders ( -3 )

B1 Error in slope of $L_{2}$ other than slip.
B2 Incorrect perpendicular slope.
Slips (-1)
S1 Arithmetic error.
Attempts ( 5 marks)
A1 $x$ or $y$ coordinate of point $p$.
A2 Correct slope of $L_{2}$.
A3 Correct perpendicular slope.

3 (b) (i) The line $K$ passes through the point $(-4,6)$ and has slope $m$, where $m>0$.
Write down the equation of $K$ in terms of $m$.
Equation of $K$

## 10 marks

Att 3
3 (b) (i)

$$
y-6=m(x+4) .
$$

Blunders (-3)
B1 Error in equation line formula.
Slips (-1)
S1 Arithmetic error.
Attempts ( 3 marks)
A1 Equation of line with some substitution.

Part (b) (ii)
5 marks
Att 2
3 (b) (ii) Find, in terms of $m$, the co-ordinates of the points where $K$ intersects the axes.

Co-ordinates
5 marks
Att 2
3 (b) (ii)
$y-6=m(x+4) \Rightarrow m x-y+6+4 m=0$.
Cuts $x$-axis at $p(x, 0) . \quad m x=-6-4 m \Rightarrow x=\frac{-6-4 m}{m} . \quad p\left(\frac{-6-4 m}{m}, 0\right)$.
Cuts $y$-axis at $q(0, y) . \quad y=6+4 m . q(0,6+4 m)$.

Blunders (-3)
B1 Equation of axes incorrect.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 One correct coordinate.

3 (b) (iii) The area of the triangle formed by $K$, the $x$-axis and the $y$-axis is 54 square units. Find the possible values of $m$.

Values of $m$
5 marks
Att 2
(b) (iii)

Area triangle $o p q=54$ square units.
Area triangle $o p q=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right|$.
$\therefore \frac{1}{2}\left|(0)(0)-\left(\frac{-6-4 m}{m}\right)(6+4 m)\right|=54$.
$(6+4 m)(6+4 m)=108 m$.
$\therefore 16 m^{2}+48 m+36=108 m \Rightarrow 16 m^{2}-60 m+36=0$
$4 m^{2}-15 m+9=0 \Rightarrow(4 m-3)(m-3)=0$.

$\therefore m=\frac{3}{4}$ or $m=3$.

## Blunders (-3)

B1 Error in triangle area formula.
B2 Error in factors or quadratic formula.
B3 Misuse of modulus in formula.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 2 marks)

A1 Triangle area formula with some substitution.
A2 Quadratic in $m$.

3 (c) (i) $f$ is the transformation $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$, where $x^{\prime}=3 x-y$ and $y^{\prime}=x+2 y$.
(i) Prove that $f$ maps every pair of parallel lines to a pair of parallel lines.

You may assume that $f$ maps every line to a line.

Prove
10marks
Att 3
3(c)(i)

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
3 & -1 \\
1 & 2
\end{array}\right)\binom{x}{y} \Rightarrow\binom{x}{y}=\frac{1}{7}\left(\begin{array}{cc}
2 & 1 \\
-1 & 3
\end{array}\right)\binom{x^{\prime}}{y^{\prime}}
$$

Let $L$ have equation: $a x+b y+c=0$, and $M: a x+b y+d=0$.
$\therefore f(L): \frac{a}{7}\left(-x^{\prime}+3 y^{\prime}\right)+\frac{b}{7}\left(2 x^{\prime}+y^{\prime}\right)+c=0 \Rightarrow f(L):(-a+2 b) x^{\prime}+(3 a+b) y^{\prime}+7 c=0$
and $f(M): \frac{a}{7}\left(-x^{\prime}+3 y^{\prime}\right)+\frac{b}{7}\left(2 x^{\prime}+y^{\prime}\right)+d=0 \Rightarrow f(L):(-a+2 b) x^{\prime}+(3 a+b) y^{\prime}+7 d=0$
So, $f(L) \| f(M)$, since $(-a+2 b)(3 a+b)=(3 a+b)(-a+2 b)$, [i.e. $a_{1} b_{2}=a_{2} b_{1}$ ]
3 (c) (i)
$L: y=m x+c$ and $M: y=m x+k$ are two parallel lines.
$x^{\prime}=3 x-y \Rightarrow 2 x^{\prime}=6 x-2 y$
$y^{\prime}=x+2 y \Rightarrow y^{\prime}=x+2 y . \therefore 2 x^{\prime}+y^{\prime}=7 x \Rightarrow x=\frac{1}{7}\left(2 x^{\prime}+y^{\prime}\right)$.
But $y^{\prime}=x+2 y \Rightarrow y^{\prime}=\frac{1}{7}\left(2 x^{\prime}+y^{\prime}\right)+2 y \Rightarrow y=\frac{1}{7}\left(-x^{\prime}+3 y^{\prime}\right)$.
$\therefore f(L): \frac{1}{7}\left(-x^{\prime}+3 y^{\prime}\right)=\frac{m}{7}\left(2 x^{\prime}+y^{\prime}\right)+c \Rightarrow f(L):-x^{\prime}+3 y^{\prime}=2 m x^{\prime}+m y^{\prime}+7 c$.
$\therefore f(L):(3-m) y^{\prime}=(1+2 m) x^{\prime}+7 c \Rightarrow f(L): y^{\prime}=\left(\frac{1+2 m}{3-m}\right) x^{\prime}+\frac{7 c}{3-m}$.
Similarly $f(M): y^{\prime}=\left(\frac{1+2 m}{3-m}\right) x^{\prime}+\frac{7 k}{3-m}$.
Both lines have same slope, $\frac{1+2 m}{3-m}, \therefore$ parallel.
or
Let $L$ and $M$ pass through $p$ and $q$ respectively and both be in the direction $\vec{m}$.
$\therefore L=\vec{p}+t \vec{m} \quad$ and $\quad M=\vec{q}+t \vec{m}$, where $t \in \mathbf{R}$
$\therefore f(L)=f(\vec{p}+t \vec{m})=f(\vec{p})+t f(\vec{m}) \quad$ and $\quad f(M)=f(\vec{q}+t \vec{m})=f(\vec{q})+t f(\vec{m})$
$\therefore f(L)$ and $f(M)$ are both lines in the direction of $f(\vec{m})$, and hence are parallel.
Note: second method above fails to deal with the case where $L$ and $M$ are vertical, or where they have slope 3. Do not penalise this.

## Blunders (-3)

B1 Error in determining slope other than slip.
B2 Incorrect matrix or matrix multiplication.
B3 Failure to establish image lines parallel.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 3 marks)

A1 Expressing $x$ or $y$ in term of primes.
A2 correct matrix for $f$.
A3 Finds image of one line and stops.
Part (c) (ii)
3 (c) (ii) $o a b c$ is a parallelogram, where $[o b]$ is a diagonal and $o$ is the origin.
Given that $f(c)=(-1,9)$, find the slope of $a b$.

Slope $a b$
3 (c) (ii) $\quad f(\mathrm{c})=(-1,9) . \quad x=\frac{1}{7}\left(2 x^{\prime}+y^{\prime}\right)$ and $y=\frac{1}{7}\left(-x^{\prime}+3 y^{\prime}\right)$.
$\therefore x=1$ and $y=4 \Rightarrow c(1,4)$.
Slope $o c=4 \Rightarrow$ slope $a b=4$ as $a b$ is parallel to $o c$.

3 (c)(ii)
Matrix $f=\left(\begin{array}{cc}3 & -1 \\ 1 & 2\end{array}\right) \Rightarrow\left(\begin{array}{cc}3 & -1 \\ 1 & 2\end{array}\right)^{-1}\binom{-1}{9}=\frac{1}{7}\left(\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right)\binom{-1}{9}=\left(\frac{1}{7}\right)\binom{7}{28}=\binom{1}{4}=c$.
$\therefore$ Slope $o c=4 \Rightarrow$ slope $a b=4$.
or
3 (c) (ii) $\quad f(c)=(-1,9) . x^{\prime}=3 x-y$ and $y^{\prime}=x+2 y$.
$3 x-y=-1 \Rightarrow 6 x-2 y=-2$
$x+2 y=9 \Rightarrow x+2 y=9$

$$
\overline{7 x=7 \Rightarrow x}=1 \text { and hence } y=4 .
$$

$\therefore c(1,4)$ and slope $o c=4$.
But $a b$ is parallel to $o c \Rightarrow$ slope $a b=4$.

## Blunders (-3)

B1 Slope oc and stops.
B2 Incorrect matrix.
B3 Incorrect matrix multiplication other than slip.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 Two simultaneous equations.
A2 Correct point $c$ and stops.

Part (a)
$20(10,5,5)$ marks
Att (3, 2, 2)
Part (b) $20(10,5,5)$ marks
4 (a) Evaluate $\lim _{\theta \rightarrow 0} \frac{\sin 4 \theta}{3 \theta}$.

* Accept correct answer without work. If candidate's answer is correct, ignore the work.

Evaluate 10 marks Att 3
4 (a)

$$
\lim _{\theta \rightarrow 0} \frac{\sin 4 \theta}{3 \theta}=\lim _{\theta \rightarrow 0}\left(\frac{\frac{\sin 4 \theta}{4 \theta} \times 4 \theta}{3 \theta}\right)=\lim _{\theta \rightarrow 0}\left(\frac{\sin 4 \theta}{4 \theta}\right) \times \frac{4}{3}=\frac{4}{3}
$$

$$
\text { or } \quad f(\theta)=\sin 4 \theta \text { and } g(\theta)=3 \theta . \quad \therefore \lim _{\theta \rightarrow 0} \frac{f(\theta)}{g(\theta)}=\frac{f^{\prime}(0)}{g^{\prime}(0)}=\frac{4 \cos (0)}{3}=\frac{4}{3} .
$$

Blunders (-3)
B1 $\sin 4 \theta=4 \sin \theta$.
B2 Error in differentiation.
Slips (-1)
S1 Arithmetic error.
Attempts ( 3 marks)
A1 Has $\frac{\sin 4 \theta}{4 \theta}$ in solution.
A2 Correct differentiation.

Part (b)
Part (b) (i)
10 marks
Att 3
4 (b) (i) Using $\cos 2 A=\cos ^{2} A-\sin ^{2} A$, or otherwise,

$$
\text { prove } \cos ^{2} A=\frac{1}{2}(1+\cos 2 A) \text {. }
$$

Prove
10 marks
Att 3
4 (b) (i)

$$
\begin{aligned}
& \cos 2 A=\cos ^{2} A-\sin ^{2} A=\cos ^{2} A-\left(1-\cos ^{2} A\right) \\
& \therefore 2 \cos ^{2} A=1+\cos 2 A \Rightarrow \cos ^{2} A=\frac{1}{2}(1+\cos 2 A)
\end{aligned}
$$

Blunders (-3)
B1 Error in $\cos 2 \mathrm{~A}$ formula.
B2 Error in $\sin ^{2} \mathrm{~A}$ formula.
Slips (-1)
S1 Arithmetic error.
Attempts ( 3 marks)
A1 Correct substitution for $\cos 2 \mathrm{~A}$.
A2 $\quad \operatorname{Sin}^{2} \mathrm{~A}=1-\cos ^{2} \mathrm{~A}$.

Part (b) (ii)
$10(5,5)$ marks
Att (2,2)
4 (b) (ii) Hence, or otherwise, solve the equation
$1+\cos 2 x=\cos x$, where $0^{\circ} \leq x \leq 360^{\circ}$.

Quadratic in Cosx

## 5 marks

Att 2
Solution for $x$
5 marks
Att 2
4 (b) (ii)

$$
\begin{aligned}
& 1+\cos 2 x=\cos x \Rightarrow 2 \cos ^{2} x=\cos x . \\
& \cos x(2 \cos x-1)=0 \Rightarrow \cos x=0 \text { or } \cos x=\frac{1}{2} . \\
& \therefore x=90^{\circ}, 270^{\circ} \text { or } x=60^{\circ}, 300^{\circ} . \therefore \text { solution }=\left\{60^{\circ}, 90^{\circ}, 270^{\circ}, 300^{\circ}\right\} .
\end{aligned}
$$

## Blunders (-3)

B1 Incorrect substitution for $1+\cos 2 x$ or $\cos 2 x$.
B2 Error in factors.
B3 Each incorrect solution or missing solution.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2, 2 marks)
A1 $\cos 2 x=\cos ^{2} x-\sin ^{2} x$.
A2 Correct factors.
A3 One correct solution.

4 (c) (i) $S_{1}$ is a circle of radius 9 cm and $S_{2}$ is a circle of radius 3 cm .
$S_{1}$ and $S_{2}$ touch externally at $f$.
A common tangent touches $S_{1}$ at point $a$ and $S_{2}$ at $b$.
(i) Find the area of the quadrilateral $a b c d$. Give your answer in surd form.


Find lec|
Area quadrilateral abcd 5 marks Att 2
4 (c) (i)


$$
|e c|^{2}=|d c|^{2}-|d e|^{2} \Rightarrow|e c|^{2}=144-36=108 . \therefore|e c|=\sqrt{108}=6 \sqrt{3} . \text { But }|e c|=|a b| .
$$

Area of the quadrilateral $a b c d \quad=\frac{1}{2}|a b|\left[a d|+|b c|]=\frac{1}{2}(6 \sqrt{3})[9+3]=36 \sqrt{3} \mathrm{~cm}^{2}\right.$.
4 (c) (i)

$$
\text { Area of quadrilateral } \begin{aligned}
a b c d & =\text { triangle } d c e+\text { rectangle } e c b a \\
& =\frac{1}{2}(6)(6 \sqrt{3})+3(6 \sqrt{3})=36 \sqrt{3} .
\end{aligned}
$$

## Blunders (-3)

B1 Incorrect application of Pythagoras.
B2 Error in area formula.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 3, 2 marks)

A1 Correct length of $|d c|$ or $|d e|$.
A2 Area of triangle $d c e$ or rectangle $e c b a$ correct.
A3 Area formula for trapezium $a b c d$ with some substitution.

Area of shaded region
4 (c) (ii)

$$
\begin{aligned}
& \cos |\angle e d c|=\frac{6}{12}=\frac{1}{2} \Rightarrow|\angle e d c|=60^{\circ} . \quad \therefore|\angle b c f|=30^{\circ}+90^{\circ}=120^{\circ} . \\
& \text { Area of sector } a d f=\frac{1}{2} r^{2} \theta=\frac{1}{2}(81)\left(\frac{\pi}{3}\right)=\frac{27 \pi}{2} . \\
& \text { Area of sector } b c f=\frac{1}{2} r^{2} \theta=\frac{1}{2}(9)\left(\frac{2 \pi}{3}\right)=3 \pi . \\
& \therefore \text { Area of shaded region }=36 \sqrt{3}-\frac{27 \pi}{2}-3 \pi=36 \sqrt{3}-\frac{33 \pi}{2} .
\end{aligned}
$$

## Blunders (-3)

B1 Error in sector area formula.
B2 Finds area of both sectors but fails to finish.
B3 Incorrect conversion from degree to radians.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 $|\angle e d c|=60^{\circ}$ or $|\angle e c d|=30^{\circ}$ or $|\angle b c f|=120^{\circ}$.
A2 $\cos \angle e d c=\frac{6}{12}$ or $\sin \angle e c d=\frac{6}{12}$.

## QUESTION 5

Part (a)

Part (b)
$20(15,5)$ marks
Att (5, 2)
Part (c)
$15(5,5,5)$ marks
Part (a)
15 marks
Att 5
5(a) The area of an equilateral triangle is $4 \sqrt{3} \mathrm{~cm}^{2}$. Find the length of a side of the triangle.

Length of side

## 15 marks

Att 5
5 (a) Area of triangle $=\frac{1}{2} a b \operatorname{Sin} C$, where $a=b$ and $|\angle C|=\frac{\pi}{3}$.
$\therefore \frac{1}{2} a^{2} \sin \frac{\pi}{3}=4 \sqrt{3} \Rightarrow \frac{1}{2} a^{2} \frac{\sqrt{3}}{2}=4 \sqrt{3}$.
$\therefore a^{2}=16 \Rightarrow a=4$. Length of side $=4 \mathrm{~cm}$.
Blunders (-3)
B1 Error in triangle area formula.
B2 Incorrect evaluation of $\sin 60^{\circ}$.
B3 $\sin 60^{\circ}$ in decimal form.
Slips (-1)
S1 Arithmetic error.
Attempts ( 5 marks)
A1 Triangle area formula with substitution.

Part (b)

5 (b) (i) In the triangle $x y z,|\angle x y z|=2 \beta$ and $|\angle x z y|=\beta$. $|x y|=3$ and $|x z|=5$.
(i) Use this information to express $\sin 2 \beta$ in the form $\frac{a}{b} \sin \beta$, where $a, b \in \mathbf{N}$.


Express
15 marks
Att 5
5 (i)

$$
\frac{\sin 2 \beta}{5}=\frac{\sin \beta}{3} \Rightarrow \sin 2 \beta=\frac{5}{3} \sin \beta
$$

## Blunders (-3)

B1 Error in substitution into Sine rule.
Slips (-1)
S1 Arithmetic error.
Attempts ( 5 marks)
A1 $\frac{3}{\sin \beta}$ or $\frac{5}{\sin 2 \beta}$.

Part (b) (ii)
5 (b) (ii) Hence express $\tan \beta$ in the form $\frac{\sqrt{c}}{d}$, where $c, d \in \mathbf{N}$.

Express $\tan \beta$
5 (b) (ii)

$$
\begin{aligned}
& \sin 2 \beta=\frac{5}{3} \sin \beta \Rightarrow 2 \sin \beta \cos \beta=\frac{5}{3} \sin \beta . \\
& \therefore \cos \beta=\frac{5}{6} \Rightarrow \tan \beta=\frac{\sqrt{11}}{5}
\end{aligned}
$$



## Blunders (-3)

B1 Error in $\sin 2 \beta$ formula.
B2 Incorrect ratio of sides for $\cos \beta$ or $\tan \beta$.
B3 Incorrect application of Pythagoras.
B4 $\cos \beta=\frac{5}{6}$ and stops.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 Equation in $\beta$.

5 (c) pqrs is a vertical wall of height $h$ on level ground. $p$ is a point on the ground in front of the wall. The angle of elevation of $r$ from $p$ is $\theta$ and the angle of elevation of $s$ from $p$ is $2 \theta$.

$$
|p q|=3|p t| .
$$

Find $\theta$.

## 5 marks <br> Att 2 <br> 5 marks <br> Att 2 <br> 5 marks <br> Att 2

Tan $\theta$ or Tan $2 \theta$ in terms of $h$ and $x$ Equation in $\tan 3 \theta$ or $\tan 2 \theta$
Find $\theta$
5 (c)

$$
\begin{aligned}
& \tan \theta=\frac{h}{3 x} \Rightarrow h=3 x \tan \theta . \text { Also } \tan 2 \theta=\frac{h}{x} \Rightarrow h=x \tan 2 \theta . \\
& \therefore 3 x \tan \theta=x \tan 2 \theta \Rightarrow 3 \tan \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \Rightarrow 3 t\left(1-t^{2}\right)=2 t, \text { where } t=\tan \theta . \\
& \therefore 3 t-3 t^{3}=2 t \Rightarrow 3 t^{3}-t=0 . \quad t\left(3 t^{2}-1\right)=0 \Rightarrow t^{2}=\frac{1}{3}, t \neq 0 . \\
& \therefore t=\tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=\frac{\pi}{6} .
\end{aligned}
$$

## Blunders (-3)

B1 Incorrect ratio of sides for tan.
B2 Error in $\tan 2 \theta$ formula.
B3 Incorrect factors.
B4 Incorrect value for $\theta$.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2, 2, 2 marks)
A1 $\operatorname{Tan} \theta$ or $\tan 2 \theta$ expressed as ratio of sides.
A2 $\operatorname{Tan} 2 \theta$ expressed in terms of $\tan \theta$.
A3 Correct value for $\tan ^{2} \theta$.

## QUESTION 6



6 (a) (i) Answer $={ }^{5} P_{3}=5 \times 4 \times 3=60$.

Part (a) (ii)
5 marks
Att 2
6 (a) (ii) How many three-digit numbers can be formed from the digits $1,2,3,4$, 5 , if
(ii) the three digits are all the same?

6(a) (ii) $\quad$ Answer $=5 \times 1 \times 1=5$.
Blunders ( -3 )
B1 $5 \times 5 \times 1$.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 $5 \times 5 \times 5$.

Part (b) (i)
$20(5,5,5,5)$ marks
Att (2, 2, 2, 2)
6 (b) (i) Solve the difference equation $u_{n+2}-4 u_{n+1}-8 u_{n}=0$, where $n \geq 0$, given that $u_{0}=0$ and $u_{1}=2$.

Characteristic equation
Characteristic roots
Simultaneous equations

5 marks
Att 2
5 marks
5 marks
5 marks

Att 2
Att 2
Att 2

6 (b) (i)

$$
\begin{aligned}
& u_{n+2}-4 u_{n+1}-8 u_{n}=0 \Rightarrow x^{2}-4 x-8=0 . \\
& \therefore x=\frac{4 \pm \sqrt{16+32}}{2}=\frac{4 \pm \sqrt{48}}{2}=\frac{4 \pm 4 \sqrt{3}}{2}=2 \pm 2 \sqrt{3} . \\
& u_{n}=k(2+2 \sqrt{3})^{n}+l(2-2 \sqrt{3})^{n} . \\
& u_{\mathrm{o}}=0 \Rightarrow k+l=0 . l=-k . \\
& u_{1}=2 \Rightarrow k(2+2 \sqrt{3})+l(2-2 \sqrt{3})=2 \\
& \therefore k(2+2 \sqrt{3})-k(2-2 \sqrt{3})=2 \Rightarrow 2 k+2 k \sqrt{3}-2 k+2 k \sqrt{3}=2 \\
& \therefore 4 k \sqrt{3}=2 \Rightarrow k=\frac{1}{2 \sqrt{3}}=\frac{\sqrt{3}}{6} . \therefore l=-\frac{\sqrt{3}}{6} . \\
& \therefore u_{n}=\frac{\sqrt{3}}{6}(2+2 \sqrt{3})^{n}-\frac{\sqrt{3}}{6}(2-2 \sqrt{3})^{n} .
\end{aligned}
$$

## Blunders (-3)

B1 Error in characteristic equation.
B2 Error in quadratic formula.
B3 Incorrect use of initial conditions.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2, 2, 2, 2 marks)
A1 An equation in $k$ and $l$.
A2 Correct value for $k$ or $l$.

6 (b) (ii) Verify that your solution gives the correct value for $u_{2}$.
Verify
5 marks
Att 2
6 (b) (ii)
$u_{2}-4 u_{1}-8 u_{0}=0 . \quad$ But $u_{1}=2$ and $u_{0}=0$.
$\therefore u_{2}=8+0=8$.
But $u_{2}=\frac{\sqrt{3}}{6}(2+2 \sqrt{3})^{2}-\frac{\sqrt{3}}{6}(2-2 \sqrt{3})^{2}=\frac{\sqrt{3}}{6}(4+8 \sqrt{3}+12-4+8 \sqrt{3}-12)$
$u_{2}=\frac{\sqrt{3}}{6}(16 \sqrt{3})=8 . \therefore$ Verified.
or
6 (b) (ii)

$$
\begin{aligned}
& u_{n}=\frac{\sqrt{3}}{6}(2+2 \sqrt{3})^{n}-\frac{\sqrt{3}}{6}(2-2 \sqrt{3})^{n} . \\
& \therefore u_{2}=\frac{\sqrt{3}}{6}(2+2 \sqrt{3})^{2}-\frac{\sqrt{3}}{6}(2-2 \sqrt{3})^{2} . \\
& u_{2}=\frac{\sqrt{3}}{6}(4+8 \sqrt{3}+12-4+8 \sqrt{3}-12) \Rightarrow u_{2}=\frac{\sqrt{3}}{6}(16 \sqrt{3}) \Rightarrow u_{2}=8 .
\end{aligned}
$$

Substituting $u_{\mathrm{o}}=0, u_{1}=2$ and $u_{2}=8$ into $u_{n+2}-4 u_{n+1}-8 u_{n}$, gives $8-4(2)-0=0 . \therefore$ Verified.

## Blunders (-3)

B1 Error in calculating $u_{2}$ other than slip.
B2 Finds $u_{2}$ but fails to verify.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 Correct value for $u_{2}$.

6 (c) (i) Nine cards are numbered from 1 to 9 . Three cards are drawn at random from the nine cards.
(i) Find the probability that the card numbered 8 is not drawn.

Probability
5 marks
Att 2
6 (c) (i) Total outcomes (choose three cards from nine): ${ }^{9} C_{3}=84$.
Outcomes of interest (choose three from the eight allowed): ${ }^{8} C_{3}=56$.
$\therefore$ Probability $=\frac{56}{84}=\frac{2}{3}$.
or
6 (c) (i) (first card not 8) and (second card not 8) and (third card not 8)
$\Rightarrow$ Probability $=\frac{8}{9} \times \frac{7}{8} \times \frac{6}{7}=\frac{2}{3}$.

## Blunders (-3)

B1 Incorrect number of possible outcomes.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 Correct number of possible outcomes.
A2 Correct number of favourable outcomes.
Part (c) (ii)
6 (c) (ii) Nine cards are numbered from 1 to 9 . Three cards are drawn at random from the nine cards.
(ii) Find the probability that all three cards drawn have odd numbers.
Probability 5 marks Att 2

6 (c) (ii) Outcomes of interest (choose three from the five odd-numbered): ${ }^{5} C_{3}=10$.

$$
\therefore \text { Probability }=\frac{10}{84}=\frac{5}{42} .
$$

or
6 (c) (ii) (first card odd) and (second card odd) and (third card odd)

$$
\therefore \text { Probability }=\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7}=\frac{60}{504}=\frac{5}{42} .
$$

## Blunders (-3)

B1 Incorrect number of possible outcomes.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 2 marks)

A1 Correct number of possible outcomes.
A2 Correct number of favourable outcomes.

6 (c) (iii) Nine cards are numbered from 1 to 9 . Three cards are drawn at random from the nine cards.
(iii) Find the probability that the sum of the numbers on the cards drawn is greater than the sum of the numbers on the cards not drawn.

## Probability

5 marks
Att 2
6 (c) (iii) Outcomes of interest:
Sum of all the cards numbered 1 to 9 is 45 .
$\therefore$ Sum of three drawn cards must be $\geq 23$, (i.e. more than half of total).
Sum of cards 7, 8, $9=24$
Sum of cards $6,8,9=23$
No other possibilities.
$\therefore$ Only two possible favourable outcomes.
$\therefore$ Probability $=\frac{2}{84}=\frac{1}{42}$.

## Blunders (-3)

B1 Incorrect number of possible outcomes.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 Correct number of favourable outcomes.
A2 Correct number of possible outcomes.
A3 One correct element properly identified e.g. $9+8+7=24>21$.

## QUESTION 7

| Part (a) | $10(5,5)$ marks | Att (-, 2) |
| :---: | :---: | :---: |
| Part (b) | $20(5,5,5,5)$ marks | Att (2, 2, 2, 2) |
| Part (c) | $20(5,5,5,5)$ marks | Att (2, 2, -, 2) |
| Part (a) | $10(5,5)$ marks | Att (-, 2) |
| Part (a) (i) | 5 marks | Hit/Miss |
| 7 (a) (i) | How many different groups of four can be selected from five boys and six girls? |  |

7 (a) (i) Choose four from eleven $\Rightarrow$ answer $={ }^{11} C_{4}=330$.

## Part (a) (ii)

7 (a) (ii) How many of these groups consist of two boys and two girls?

7 (a) (ii) Choose two from five and choose two from six $\Rightarrow$ answer $={ }^{5} C_{2} \times{ }^{6} C_{2}=10 \times 15=150$.
Blunders ( -3 )
B1 ${ }^{5} C_{2}+{ }^{6} C_{2}$.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 ${ }^{5} C_{2}$ or ${ }^{6} C_{2}$.
Part (b)
$20(5,5,5,5)$ marks
Att (2, 2, 2, 2)
Part (b) (i) 5 marks

Att 2
7 (b) (i) There are sixteen discs in a board-game: five blue, three green, six red and two yellow. Four discs are chosen at random. What is the probability that
(i) the four discs are blue

Part (b) (i)
5 marks
Att 2
7 (b) (i) Total outcomes (choose four discs from sixteen): ${ }^{16} C_{4}=1820$.
Outcomes of interest (choose four of the five blue): ${ }^{5} C_{4}=5$.
$\therefore$ Probability $=\frac{5}{1820}=\frac{1}{364}$.
or
7 (b) (i) (first blue) and (second blue) and (third blue) and (fourth blue)

$$
\therefore \text { Probability }=\frac{5}{16} \times \frac{4}{15} \times \frac{3}{14} \times \frac{2}{13}=\frac{120}{43680}=\frac{1}{364} .
$$

## Blunders (-3)

B1 Incorrect number of possible outcomes.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 2 marks)

A1 Correct number of possible outcomes.
A2 Correct number of favourable outcomes.

7 (b) (ii) There are sixteen discs in a board-game: five blue, three green, six red and two yellow. Four discs are chosen at random. What is the probability that
(ii) the four discs are the same colour
Probability 5 marks Att 2

Part (b) (ii) Outcomes of interest: (four blue or four red): ${ }^{5} C_{4}+{ }^{6} C_{4}=5+15=20$.

$$
\therefore \text { Probability } \frac{20}{1820}=\frac{1}{91} .
$$

or

7 (b) (ii) $\quad$ Probability $=\mathrm{P}(4$ blue) $+\mathrm{P}(4$ red $)$

$$
=\left(\frac{5}{16} \times \frac{4}{15} \times \frac{3}{14} \times \frac{2}{13}\right)+\left(\frac{6}{16} \times \frac{5}{15} \times \frac{4}{14} \times \frac{3}{13}\right)=\frac{120+360}{43680}=\frac{480}{43680}=\frac{1}{91} .
$$

## Blunders (-3)

B1 Incorrect number of possible outcomes.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 Correct number of possible outcomes.
A2 Correct number of favourable outcomes.
A3 P (4 red) correct.

Part (b) (iii)

## Att 2

7 (b) (iii) There are sixteen discs in a board-game: five blue, three green, six red and two yellow. Four discs are chosen at random. What is the probability that
(iii) all four discs are different in colour

## Probability

5 marks
Att 2
7 (b) (iii) Outcomes of interest: one blue and one green and one red and one yellow: ${ }^{5} C_{1} \times{ }^{3} C_{1} \times{ }^{6} C_{1} \times{ }^{2} C_{1}=180$.
$\therefore$ Probability $=\frac{180}{1820}=\frac{9}{91}$.
or
7 (b) (iii) (first blue) and (second green) and (third red) and (fourth yellow) or any permutation;

$$
\therefore \text { Probability }=\frac{5}{16} \times \frac{3}{15} \times \frac{6}{14} \times \frac{2}{13} \times 4!=\frac{4320}{43680}=\frac{9}{91} .
$$

## Blunders (-3)

B1 Incorrect number of possible outcomes.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 Correct number of possible outcomes.
A2 Correct number of favourable outcomes.

7 (b) (iv) There are sixteen discs in a board-game: five blue, three green, six red and two yellow. Four discs are chosen at random. What is the probability that
(iv) two of the discs are blue and two are not blue?
Probability 5 marks Att 2

7 (b) (iv) Of interest: (choose two of five blue and two of remaining eleven) ${ }^{5} C_{2} \times{ }^{11} C_{2}=550$.
$\therefore$ Probability $=\frac{550}{1820}=\frac{55}{182}$.
or
7 (b) (iv) (first blue) and (second blue) and (third not blue) and (fourth not blue), or any permutation thereof;
$\therefore$ Probability $=\frac{5}{16} \times \frac{4}{15} \times \frac{11}{14} \times \frac{10}{13} \times \frac{4!}{2!.2!}=\frac{52800}{174720}=\frac{55}{182}$.

## Blunders (-3)

B1 Incorrect number of possible outcomes.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 2 marks)

A1 Correct number of possible outcomes.
A2 Correct number of favourable outcomes.
A3 P (two blue) correct.
A4 P (two are not blue) correct.

7 (c) (i) On 1st September 2003 the mean age of the first-year students in a school is 12.4 years and the standard deviation is 0.6 years. One year later all of these students have moved into second year and no other students have joined them.
(i) State the mean and the standard deviation of the ages of these students on 1st September 2004. Give a reason for each answer.

Mean
Standard deviation
(c) (i) Mean $=13.4$ years.

As all the students are one year older, the mean is increased by one.
Standard deviation $=0.6$ years.
The spread of ages in the group is still the same.

## or

As they are each one year older and the mean is increased by one, each deviation from the mean is unchanged, and hence so is the standard deviation.

## Blunders (-3)

B1 Reason for new mean not given or incorrect reason.
B2 Reason for new standard deviation not given or incorrect reason.

Slips (-1)
S1 Arithmetic error.

Attempts ( 2, 2 marks)
A1 Correct new mean.
A2 Correct new standard deviation.

Part (c) (ii)
5 marks
7 (c) (ii) A new group of first-year students begin on 1st September 2004. This group has a similar age distribution and is of a similar size to the first-year group of September 2003.
(ii) State the mean age of the combined group of the first-year and second-year students on 1st September 2004.

Combined mean
5 marks

## Hit/Miss

Part (c) (ii)

$$
\text { Mean } \approx \frac{12.4+13.4}{2}=12.9 \text { years. }
$$

7 (c) (iii) State whether the standard deviation of the ages of this combined group is less than, equal to, or greater than 0.6 years. Give a reason for your answer.

State \& reason
5 marks
Att 2
7 (c) (iii) Standard deviation $>0.6$ years. There is a greater spread of ages in the combined group than in a single year group. [or: Data more spread out.]

## Blunders (-3)

B1 Incorrect reason given.
B2 No reason given.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 2 marks)

A1 States greater than 0.6 years.
[Aside: the actual value is approximately 0.8; this is not required.]

| Part (a) | 15 marks | Att 5 |
| :--- | :---: | ---: |
| Part (b) | $20(10,5,5)$ marks | Att $(3,2,2)$ |
| Part (c) | $15(5,5,5)$ marks | Att $(2,2,2)$ |

## Part (a)

15 marks
Att 5
8 (a) Use integration by parts to find $\int x^{2} \ln x d x$.

Integration by parts

8 (a) $\quad$| $\quad \int x^{2} \ln x d x$ | $=u v-\int v d u$. |
| ---: | :--- |
| $u=\ln x \Rightarrow d u=\frac{1}{x} d x . d v=x^{2} d x \Rightarrow v=\int x^{2} d x=\frac{1}{3} x^{3}$. |  |
| $\therefore \int x^{2} \ln x d x$ | $=\frac{1}{3} x^{3} \ln x-\int \frac{1}{3} x^{3}\left(\frac{1}{x}\right) d x=\frac{1}{3} x^{3} \ln x-\int \frac{1}{3} x^{2} d x$ |
|  | $=\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+$ constant. |

Blunders (-3)
B1 Incorrect differentiation or integration.
B2 Constant of integration omitted.
B3 Incorrect 'parts' formula.
Slips (-1)
S1 Arithmetic error.
Attempts ( 5 marks)
A1 Correct assigning to parts formula.
A2 Correct differentiation or integration.

Part (b) (i)
8 (b) (i) Derive the Maclaurin series for $f(x)=\ln (1+x)$ up to and including the term containing $x^{3}$.
Maclaurin series

| $\mathbf{8}(\mathbf{b})$ (i) marks |  |
| :--- | :--- | :--- |
| $f(x)=f(0)+\frac{f^{\prime}(0) x}{1!}+\frac{f^{\prime \prime}(0) x^{2}}{2!}+\frac{f^{\prime \prime \prime}(0) x^{3}}{3!}+\ldots$ |  |
| $f(x)=\ln (1+x)$ | $\Rightarrow \quad f(0)=\ln 1=0$. |
| $f^{\prime}(x)=\frac{1}{1+x}=(1+x)^{-1}$ | $\Rightarrow \quad f^{\prime}(0)=1$. |
| $f^{\prime \prime}(x)=-1(1+x)^{-2}$ | $\Rightarrow \quad f^{\prime \prime}(0)=-1$. |
| $f^{\prime \prime \prime}(x)=2(1+x)^{-3}$ | $\Rightarrow \quad f^{\prime \prime \prime}(0)=2$. |
| $\therefore f(x)=\ln (1+x)=0+x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\ldots=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\ldots$. |  |

## Blunders (-3)

B1 Incorrect differentiation.
B2 Incorrect evaluation of $f^{(n)}(0)$.
B3 Each term not derived.
B4 Error in Maclaurin series.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 3 marks)

A1 Correct expansion of $\ln (1+x)$ given but not derived.
A2 $f(0)$ correct.
A3 Any one correct term derived.
Part (b) (ii)

## 5 marks

Att 2
8 (b) (ii) Use those terms to find an approximation for $\ln \frac{11}{10}$.
Find approximation
5 marks
Att 2
8 (b) (ii) $\ln \frac{11}{10}=\ln \left(1+\frac{1}{10}\right)=\frac{1}{10}-\frac{1}{200}+\frac{1}{3000}=\frac{300-15+1}{3000}=\frac{286}{3000}=\frac{143}{1500}$.

## Blunders (-3)

B1 Error in simplification other than slip.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 $\frac{11}{10}=1+\frac{1}{10}$.
A2 Correct value for $x$.

8 (b)(iii) Write down the general term of the series $f(x)$ and hence show that the series converges for $-1<x<1$.

General term/converges
5 marks
Att 2
(b) (iii) General term $=u_{n}=\frac{(-1)^{n+1} x^{n}}{n} . \quad \therefore u_{n+1}=\frac{(-1)^{n+2} x^{n+1}}{n+1}$
$\therefore \underset{n \rightarrow \infty}{\operatorname{Limit}}\left|\frac{u_{n+1}}{u_{n}}\right|=\underset{n \rightarrow \infty}{\operatorname{Limit}}\left|\frac{(-1)^{n+2} x^{n+1}}{n+1} \times \frac{n}{(-1)^{n+1} x^{n}}\right|=\underset{n \rightarrow \infty}{\operatorname{Limit}}\left|\frac{(-1) x n}{n+1}\right|=\underset{n \rightarrow \infty}{\operatorname{Limit}}\left|\frac{x}{1+\frac{1}{n}}\right|=|x|$.
Series converges when $|x|<1 \Rightarrow-1<x<1$.

## Blunders (-3)

B1 Incorrect power in general term.
B2 ( -1 ) omitted from general term.
B3 Error in $u_{n+1}$.
B4 Error in evaluating limit other than slip.
B5 Evaluates limit as $|x|$ and stops.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2marks)
A1 Power of $x$ correct.
A2 Denominator correct.
A3 $u_{n+1}$ correct, given that $u_{n}$ is not worthless.
A4 Correct substitution into ratio test and fails to finish.

8 (c) A cone has radius $r \mathrm{~cm}$, vertical height $h \mathrm{~cm}$ and slant height $10 \sqrt{3} \mathrm{~cm}$.

Find the value of $h$ for which the volume is a maximum.


Volume in terms of $\boldsymbol{h}$ or $r$
5 marks
Att 2
Correct differentiation
5 marks
Att 2
Value of $h$
5 marks
Att 2
8 (c)
$h^{2}+r^{2}=300 \Rightarrow r^{2}=300-h^{2}$.
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi h\left(300-h^{2}\right)$
$\therefore V=\frac{1}{3} \pi\left(300 h-h^{3}\right)$.
$\frac{d V}{d h}=\frac{1}{3} \pi\left(300-3 h^{2}\right)=0$ for maximum volume.

$\therefore 300-3 h^{2}=0 \Rightarrow h=10$, (since $h>0$ ).
$\frac{d^{2} V}{d x^{2}}=-2 \pi h<0$ for $h=10$.
$\therefore h=10 \mathrm{~cm}$ gives maximum volume.

* $\frac{d^{2} V}{d h^{2}}<0$, for $h=10 \mathrm{~cm}$ not required.


## Blunders (-3)

B1 Incorrect application of Pythagoras.
B2 Error in differentiation.
B3 Error in solving for $h$ or $r$, other than slip.
Slips (-1)
S1 Arithmetic error.
S2 Correct value for $r$, but value of $h$ not given.
Attempts (2, 2, 2 marks)
A1 $\quad h^{2}+r^{2}=300$.
A2 Some part of differentiation correct.
A3 $\frac{d V}{d h}=0$, given that candidate's work is not worthless.

| Part (a) | $\mathbf{1 0}$ marks | Att 3 |
| :--- | :---: | ---: |
| Part (b) | $20(10,5,5)$ marks | Att $(3,2,2)$ |
| Part (c) | $20(10,5,5)$ marks | Att $(3,2,2)$ |

## Part (a)

10 marks
Att 3
9 (a) $z$ is a random variable with standard normal distribution. Find $P(1<z<2)$.

9 (a) $P(1<z<2)=0.9772-0.8413=0.1359$.

Blunders ( -3 )
B1 $\quad P(\mathrm{z} \leq 1)$ or $P(\mathrm{z}<2)$ incorrect.
Slips (-1)
S1 Arithmetic error.
Attempts ( 3 marks)
A1 $P(\mathrm{z} \leq 1)$ or $P(\mathrm{z}<2)$ correct.

Part (b)
$20(10,5,5)$ marks
Att (3, 2, 2)
Part (b) (i)
10 marks
Att 3
9 (b) (i) During a match John takes a number of penalty shots. The shots are independent of each other and his probability of scoring with each shot is $\frac{4}{5}$.
(i) Find the probability that John misses each of his first four penalty shots.

Probability
10 marks
Att 3
9 (b) (i) Probability $=\left(\frac{1}{5}\right)^{4}=\frac{1}{625} \quad$ or $\quad{ }^{4} C_{4}\left(\frac{4}{5}\right)^{0}\left(\frac{1}{5}\right)^{4}=\frac{1}{625}$.
Blunders (-3)
B1 Error in binomial.
B2 Incorrect $q$.
Slips (-1)
S1 Arithmetic error.
Attempts ( 3 marks)
A1 Correct $q$.

9 (b) (ii) Find the probability that John scores exactly three of his first four penalty shots.

Probability
5 marks
Att 2
9(b) (ii) Probability $={ }^{4} C_{3}\left(\frac{4}{5}\right)^{3}\left(\frac{1}{5}\right)=\frac{256}{625}$.

Blunders (-3)
B1 Error in binomial.
B2 Incorrect $q$.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 $\left(\frac{4}{5}\right)^{3} \cdot\left(\frac{1}{5}\right)$.

Part (b) (iii)
5 marks
Att 2
9 (b) (iii) If John takes ten penalty shots during the match, find the probability that he scores at least eight of them.

Probability
5 marks
Att 2
9 (b) (iii) $\mathrm{P}($ scores at least eight $)=\mathrm{P}($ scores eight $)+\mathrm{P}($ scores nine $)+\mathrm{P}($ scores ten $)$.

$$
\begin{aligned}
& ={ }^{10} C_{8}\left(\frac{4}{5}\right)^{8}\left(\frac{1}{5}\right)^{2}+{ }^{10} C_{9}\left(\frac{4}{5}\right)^{9}\left(\frac{1}{5}\right)^{1}+{ }^{10} C_{10}\left(\frac{4}{5}\right)^{10}\left(\frac{1}{5}\right)^{0} \\
& =\frac{2949120+2621440+1048576}{9765625}=\frac{6619136}{9765625} \quad(\approx 0.678) .
\end{aligned}
$$

## Blunders (-3)

B1 Error in binomial.
B2 Omits one essential probability.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 2 marks)

A1 Finds one correct probability.
A2 Probability $=\mathrm{P}($ scoring eight $)+\mathrm{P}($ scoring nine $)+\mathrm{P}($ scoring ten $)$.

9 (c) A survey was carried out to find the weekly rental costs of holiday apartments in certain country. A random sample of 400 apartments was taken. The mean of the sample was $€ 320$ and the standard deviation was $€ 50$.

Form a $95 \%$ confidence interval for the mean weekly rental costs of holiday apartments in that country.

## Correct standard error

10 marks
Correct confidence interval 5 marks
Final solution
9 (c) $\bar{x}=320 . \quad \sigma=50 . \quad n=400$.

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{50}{20}=2.5 .
$$

The $95 \%$ confidence interval is

$$
\begin{aligned}
& {\left[\bar{x}-1.96\left(\sigma_{\bar{x}}\right), \bar{x}+1.96\left(\sigma_{\bar{x}}\right)\right] } \\
&= {[320-1.96(2.5), 320+1.96(2.5)]=[€ 315.10, € 324.90] } \\
& \hline
\end{aligned}
$$

Blunders (-3)
B1 Error in standard error of mean.
B2 Error in confidence interval.
B3 Answer not simplified.
Slips (-1)
S1 Arithmetic error.
Attempts ( 3, 2, 2 marks)
A1 Standard error of mean with some substitution.
A2 Correct confidence with substitution.

| Part (a) | $15(10,5)$ marks | Att $(3,2)$ |
| :--- | :---: | ---: |
| Part (b) | $20(10,10)$ marks | Att $(3,3)$ |
| Part (c) | $15(5,5,5)$ marks | Att $(2,2,2)$ |

Part (a)
$15(10,5)$ marks
Att (3, 2)
10 (a)
Show that $\{0,2,4\}$ forms a group under addition modulo 6. You may assume associativity.

## Show closure <br> 10 marks <br> Att 3

Identity and inverses
5 marks
Att 2
10 (a) (i)

| $+\bmod 6$ | 0 | 2 | 4 |
| ---: | :--- | :--- | :--- |
| 0 | 0 | 2 | 4 |
| 2 | 2 | 4 | 0 |
| 4 | 4 | 0 | 2 |

Closed: No new element.
Identity $=0$.
Inverses: $0^{-1}=0,2^{-1}=4,4^{-1}=2$.
$\therefore$ Group.

## Blunders (-3)

B1 Identity not given.
B2 Inverses not stated.
Slips (-1)
S1 Arithmetic error.
S2 each inverse not given.
Attempts ( 3, 2 marks)
A1 Incomplete Cayley table or error in Cayley table.
A2 Identity given.
A3 One inverse given.
$R_{90^{\circ}}$ and $S_{M}$ are elements of $D_{4}$, the dihedral group of a square.
(i) List the other elements of the group.


## List elements

10 marks
Att 3
10 (b) (i)

$$
R_{0^{\circ}}, R_{180^{\circ}}, R_{270^{\circ}}, S_{N}, S_{L}, S_{K}
$$



## Blunders (-3)

B1 Each incorrect element.
B2 Each missing element.
Slips (-1)
S1 Arithmetic error.
Attempts ( 3 marks)
A1 One correct element.
Part (b) (ii) 10 marks
10 (b) (ii)
Find $C\left(S_{M}\right)$, the centralizer of $S_{M}$.
Find centralizer
10 marks
Att 3
10 (b) (ii)

$$
C\left(S_{M}\right)=R_{0^{0}}, S_{M}, S_{N}, R_{180^{0}} .
$$

## Blunders (-3)

B1 Each incorrect element.
B2 Each missing element.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 3 marks)

A1 One correct element.

10 (c) A regular tetrahedron has twelve rotational symmetries. These form a group under composition.
The symmetries can be represented as permutations of the vertices $a, b, c$ and $d$.
$X=\left\{\left(\begin{array}{llll}a & b & c & d \\ a & b & c & d\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ b & a & d & c\end{array}\right)\right\}, \circ$ is a subgroup of this tetrahedral group.
(i) Write down one other subgroup of order 2 .


## Subgroup of order two

5 marks
Att 2
10 (c) (i) $\left\{\left(\begin{array}{llll}a & b & c & d \\ a & b & c & d\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ d & c & b & a\end{array}\right)\right\}$ or $\left\{\left(\begin{array}{llll}a & b & c & d \\ a & b & c & d\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ c & d & a & b\end{array}\right)\right\}$.

* If subgroup is not of order 2 then 0 marks.


## Blunders (-3)

B1 Incorrect element.
Slips (-1)
S1 Arithmetic error.

## Attempts ( 2 marks)

A1 One correct element.
Part (c) (ii)
5 marks
Att 2
10 (c) (ii) Write down a subgroup of order 3.
Subgroup of order three
5 marks
Att 2
10 (c) (ii) $\left\{\left(\begin{array}{llll}a & b & c & d \\ a & b & c & d\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ a & c & d & b\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ a & d & b & c\end{array}\right)\right\}$.
or
10 (c) (ii) $\left\{\left(\begin{array}{llll}a & b & c & d \\ a & b & c & d\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ c & b & d & a\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ d & b & a & c\end{array}\right)\right\}$.
or
10 (c) (ii) $\left\{\left(\begin{array}{llll}a & b & c & d \\ a & b & c & d\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ b & d & c & a\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ d & a & c & b\end{array}\right)\right\}$.
or
10 (c) (ii) $\left\{\left(\begin{array}{llll}a & b & c & d \\ a & b & c & d\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ b & c & a & d\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ c & a & b & d\end{array}\right)\right\}$.

[^0]Blunders (-3)
B1 Each incorrect element.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 One correct element.

Part (c) (iii)
5 marks
Att 2
10 (c) (iii) Write down the only subgroup of order four.

## Subgroup of order four

5 marks
Att 2
10 (c) (iii) $\left\{\left(\begin{array}{llll}a & b & c & d \\ a & b & c & d\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ b & a & d & c\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ d & c & b & a\end{array}\right),\left(\begin{array}{llll}a & b & c & d \\ c & d & a & b\end{array}\right)\right\}$.

* If subgroup is not of order 4 then 0 marks.

Blunders (-3)
B1 Each incorrect element.

Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 One correct element.

| Part (a) | $10(5,5)$ marks | Att $(2,2)$ |
| :--- | :---: | ---: |
| Part (b) | $20(5,5,5,5)$ marks | Att $(2,2,2,2)$ |
| Part (c) | $20(5,5,5,5)$ marks | Att $(2,2,2,2)$ |

Part (a)
$10(5,5)$ marks
Att (2,2)
11(a) Find the equation of an ellipse with centre $(0,0)$, eccentricity $\frac{5}{6}$ and one focus at $(10,0)$.
Value of a

## 5 marks

Att 2
Finish
5 marks
11 (a) Focus $=(10,0)=(a e, 0) \Rightarrow a e=10 . \therefore \frac{5}{6} a=10 \Rightarrow a=12$.

$$
\begin{aligned}
& b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow b^{2}=144\left(1-\frac{25}{36}\right)=144\left(\frac{11}{36}\right) \Rightarrow b^{2}=44 . \\
& \therefore \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{x^{2}}{144}+\frac{y^{2}}{44}=1 .
\end{aligned}
$$

Blunders (-3)
B1 Values for $a$ and $b$ found but final equation not given.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2, 2 marks)
A1 $a e=10$.
A2 $\quad b^{2}=a^{2}\left(1-e^{2}\right)$.
A3 Correct value for $b^{2}$ and stops.

11 (b) $\quad f$ is a similarity transformation having magnification ratio $k$. A triangle $a b c$ is mapped onto a triangle $a^{\prime} b^{\prime} c^{\prime}$ under $f$.
Prove that $|\angle a b c|=\left|\angle a^{\prime} b^{\prime} c^{\prime}\right|$.

## $\operatorname{Cos} \angle a b c$

$\operatorname{Cos} \angle a^{\prime} b^{\prime} c^{\prime}$
$\left|p^{\prime} q^{\prime}\right|=k|p q|$
Finish

5 marks
Att 2
5 marks
Att 2
5 marks
Att 2
Att 2

11 (b)

$\cos \angle a b c=\frac{|a b|^{2}+|b c|^{2}-|a c|^{2}}{2|a b| \cdot|b c|}$.
$\cos \angle a^{\prime} b^{\prime} c^{\prime}=\frac{\left|a^{\prime} b^{\prime}\right|^{2}+\left|b^{\prime} c^{\prime}\right|^{2}-\left|a^{\prime} c^{\prime}\right|^{2}}{2\left|a^{\prime} b^{\prime}\right| \cdot b^{\prime} c^{\prime} \mid}$.
But $\left|a^{\prime} c^{\prime}\right|=k|a c|, \quad\left|a^{\prime} b^{\prime}\right|=k|a b|$ and $\left|b^{\prime} c^{\prime}\right|=k|b c|$ as $f$ is a similarity transformation.
$\therefore \cos \angle a^{\prime} b^{\prime} c^{\prime}=\frac{k^{2}|a b|^{2}+k^{2}|b c|^{2}-k^{2}|a c|^{2}}{2 k^{2}|a b| .|b c|}=\frac{|a b|^{2}+|b c|^{2}-|a c|^{2}}{2|a b| \cdot|b c|}=\cos \angle a b c$.
$\cos \angle a b c=\cos \angle a^{\prime} b^{\prime} c^{\prime} \Rightarrow|\angle a b c|=\left|\angle a^{\prime} b^{\prime} c^{\prime}\right|$, as $0^{\circ} \leq|\angle a b c| \leq 180^{\circ}$.

## Blunders (-3)

B1 Error in cosine formula.
B2 Error in definition of similarity transformation.
B3 Fails to square $k$.
B4 Reason why $|\angle a b c|=\left|\angle a^{\prime} b^{\prime} c^{\prime}\right|$ not given.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2, 2, 2, 2 marks)
A1 Use of cosine rule.
A2 $\operatorname{Cos} \angle a^{\prime} b^{\prime} c^{\prime}$ expressed in terms of sides of triangle $a b c$.

Part (c) (i)
5 marks
Att 2
11 (c) (i) $g$ is the transformation $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ where $x^{\prime}=a x$ and $y^{\prime}=b y$ and $a>b>0$.
(i) $\quad C$ is the circle $x^{2}+y^{2}=1$. Show that $g(C)$ is an ellipse.

Show that $g(C)$ is an ellipse
5 marks
Att 2
11 (c) (i) $C: x^{2}+y^{2}=1 . \quad x^{\prime}=a x$ and $y^{\prime}=b y \Rightarrow x=\frac{x^{\prime}}{a}$ and $y=\frac{y^{\prime}}{b}$.
$\therefore g(C)=\frac{x^{\prime 2}}{a^{2}}+\frac{y^{\prime 2}}{b^{2}}=1 . \therefore g(C)$ is an ellipse.

## Blunders (-3)

B1 Error in substitution.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2 marks)
A1 $x$ in terms of $x^{\prime}$ or $y$ in terms of $y^{\prime}$.

11 (c) (ii) $L$ and $K$ are tangents at the end points of a diameter of the ellipse $g(C)$.
Prove that $L$ and $K$ are parallel.
$g^{-1}$ mapping of $g(C), D, L$ and $K$
Showing $g^{-1}(L)$ or $g^{-1}(K) \perp g^{-1}(D)$
Prove $L$ and $K$ are parallel

5 marks
Att 2
5 marks
Att 2
5 marks Att 2

11 (c) (ii)



By $g^{-1}, L, K$ and $D$ map onto $g^{-1}(L), g^{-1}(K)$ and $g^{-1}(D)$ respectively.
But $g^{-1}(L)$ is perpendicular to $g^{-1}(D)$ and $g^{-1}(K)$ is perpendicular to $g^{-1}(D)$, as tangent to circle is perpendicular to diameter at point of contact.
$\therefore g^{-1}(L)$ is parallel to $g^{-1}(K)$.
$\therefore L$ is parallel to $K$, as parallelism is invariant.

## Blunders (-3)

B1 Error in mapping or mapping circle to ellipse..
B2 Reason why $g^{-1}(L)$ or $g^{-1}(K) \perp g^{-1}(D)$ not given.
B3 Reason why $L$ is parallel to $K$ not given.
Slips (-1)
S1 Arithmetic error.
Attempts ( 2, 2, 2 marks)
A1 One correct mapping.
A2 States $g^{-1}(L)$ or $g^{-1}(K) \perp g^{-1}(D)$ without reason given.
A3 $g^{-1}(L)$ parallel to $g^{-1}(K)$.

## BONUS MARKS FOR ANSWERING THROUGH IRISH

Bonus marks are applied separately to each paper as follows:
If the mark achieved is less than 226, the bonus is $5 \%$ of the mark obtained, rounding down. (e.g. 198 marks $\times 5 \%=9.9 \Rightarrow$ bonus $=9$ marks.)

If the mark awarded is 226 or above, the following table applies:

| Marks obtained | Bonus |
| :---: | :---: |
| $226-231$ | 11 |
| $232-238$ | 10 |
| $239-245$ | 9 |
| $246-251$ | 8 |
| $252-258$ | 7 |
| $259-265$ | 6 |
| $266-271$ | 5 |
| $272-278$ | 4 |
| $279-285$ | 3 |
| $286-291$ | 2 |
| $299-300$ | 1 |


[^0]:    * If subgroup is not of order 3 then 0 marks.

