Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2012

Marking Scheme

Mathematics (Project Maths - Phase 1)

Foundation Level
Contents
Page
Paper 1
General Guidelines for Examiners - Paper 1 2
Question 1 3
Question 2 13
Question 3 18
Question 4 23
Question 5 27
Question 6 31
Question 7 34
Paper 2
Model Solutions 39
Structure of the marking scheme 54
Summary of mark allocations and scales to be applied 55
Detailed marking notes 56
Marcanna breise as ucht freagairt trí Ghaeilge 65

GENERAL GUIDELINES FOR EXAMINERS - PAPER 1

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions
- Slips - numerical errors
- Misreadings (provided task is not oversimplified)

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3) note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her advising examiner.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5.50$ may be written as $€ 5,50$.

Each Part	$\mathbf{1 0}$ marks	Att 4
Part (i)	$\mathbf{1 0}$ marks	Att $\mathbf{4}$
Find $(0.62)^{3}$, correct to two decimal places.		

(i)

10 marks
Att 4
$(0.62)^{3}=0.238328=0.24$
Accept correct answer with no work shown
Blunders (-3)
B1 0.38 given as answer with or without work
B2 Power higher than cube indicated and correctly worked e.g. $(0.62)^{4}=0.1477=0.15$
Slips (-1)
S1 Incorrect or omitted rounding off
S2 Decimal error
Misreadings (-1)
M1 $\sqrt[3]{0.26}=0.0175=0.02$
Attempts (4 marks)
A1 $\sqrt[3]{0.62}=0.8527$
A2 $0.62 \div 3=0.206$
A3 $0.62 \times 3=1.86$
A4 An incorrect figure correctly rounded off to two decimal places
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

Find the exact value of $(5 \cdot 9)^{2}-\sqrt{67 \cdot 24}$.
(ii)

10 marks
Att 4

$$
(5.9)^{2}-\sqrt{67.24}=34.81-8.2=26.61
$$

* Accept correct answer with no work shown
* Accept $26 \frac{61}{100}$ or $\frac{2661}{100}$ for full marks

Blunders (-3)

B1 Incorrect operator indicated and used
B2 Square not found and continues
B3 Square root not found and continues
B4 No subtraction
Misreadings (-1)
M1 A clear and obvious numerical misreading e.g. $(9.5)^{2}-\sqrt{67.24}=90.25-8.2=82.05$
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error

Attempts (4 marks)

A1 Work at estimating the answer
A2 $5.9-67.24=-61.34$
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

Orla spent $\frac{1}{4}$ of her money.
She then had $€ 11.25$ left.
How much money did she start with?
(iii)
$\frac{11.25}{3} \times 4=15$

* Accept correct answer with no work shown

Blunders (-3)
B1 $\frac{3}{11.25} \times 4=1.06$
B2 $\quad \frac{11.25}{4} \times 3=8.43$
B3 Errors in establishing $\frac{11.25}{3} \times 4$ (all 3 elements must be present, otherwise attempt marks only)

Misreadings (-1)
M1 $\quad \frac{11.25}{3} \times 4=15.36$
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error

Attempts (4 marks)

A1 Writes down $\frac{11.25}{3}$ and / or 3.75 and stops
A2 Writes down 11.25×4 and / or 45 and stops
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

Find the exact value of $\frac{2 \frac{1}{2}+5 \times 3 \frac{1}{2}}{4}$.
(iv)

10 marks
Att 4
$\frac{2 \frac{1}{2}+5 \times 3 \frac{1}{2}}{4}=\frac{2 \frac{1}{2}+17 \frac{1}{2}}{4}=\frac{20}{4}=5$
Accept correct answer with no work shown

Blunders (-3)

B1 Error in precedence e.g. $2 \frac{1}{2}+5=7 \frac{1}{2} \times 3 \frac{1}{2}=26 \frac{1}{4} \div 4=6.56$
B2 A step omitted [may also occur in B1]
B3 The use of the wrong operator or operators is indicated (once only)
B4 A different order of the numbers indicated and worked out correctly
Misreadings (-1)
M1 A clear and obvious misreading
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error

Attempts (4 marks)

A1 Work at estimating the answer e.g. $\frac{2+5 \times 3}{4}$
A2 Some correct step e.g. $5 \times 3 \frac{1}{2}=17 \frac{1}{2}$
A3 Some use of given data
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

In a sale, the price of clothes is reduced by 30%.
A dress sells for $€ 84$ in the sale.
What was the price before the sale?
(v)

10 marks
Att 4
$70 \%=€ 84$
$1 \%=€ 1.20$
$100 \%=€ 120$.

* Accept correct answer with no work shown
* Award attempt mark for some relevant work

Award marks as follows:
10 marks: Fully correct answer
4 marks: Answer of some merit
0 marks: Otherwise

Find the exact value of $\frac{120}{40 \cdot 25-(4 \cdot 5)^{2}}$.
(vi)

10 marks
Att 4
$\frac{120}{40.25-(4.5)^{2}}=\frac{120}{40.25-20.25}=\frac{120}{20}=6$.
Accept correct answer with no work shown
Blunders (-3)
B1 $\frac{120}{(40.25-4.5)^{2}}=\frac{120}{(35.75)^{2}}=\frac{120}{1278.06}=0.093$
B2 Each omitted or incorrect step if steps not clear
B3 Inverts final fraction giving $\frac{1}{6}$ as the answer
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error

Attempts (4 marks)

A1 Some relevant work e.g. $(4.5)^{2}=20.25$
A2 Some work towards estimation
A3 $(4.5)^{2}=4.5 \times 4.5$ and stops
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

A bus journey of 175 km began at 10:30 and finished at 14:00.
Find the average speed for the journey.
(vii)

10 marks
Att 4
$10: 30$ to $14: 00=3.5$ hours
Average speed $=\frac{175}{3.5}=50 \mathrm{~km} / \mathrm{h}$
Accept correct answer with no work shown
Blunders (-3)
B1 Error in evaluation of journey time e.g. $\frac{175}{3.3}=53.03$ or $\frac{175}{3.7}=47.29$
B2 $\quad 175 \times 3.5=612.5$
B3 $\quad 175 \div 3.5$ and stops
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error
Attempts (4 marks)
A1 3.5 and stops
A2 Some use of given data
A3 $S=\frac{D}{T}$ or $D=S \times T$ written down and no more

Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

Alice is 12 years old and Liam is 9 years old.
Divide 35 sweets between Alice and Liam in the ratio of their ages.
(viii)

10 marks

Att 4
$12+9=21$.
Alice: $\frac{12}{21} \times 35=20 \quad$ Liam: $\frac{35}{21} \times 9=15 \quad$ or $\quad 35-20=15$
Accept correct answer with no work shown
Blunders (-3)
B1 Each omitted or incorrect step if steps not clear
B2 $\frac{12}{21} \times 35=20$ or $\frac{35}{21} \times 9=15$ and stops
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error
Attempts (4 marks)
A1 $12+9$ and/or 21 and stops
A2 Some relevant work e.g. $\frac{12}{21}$
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

Find $\frac{\left(6 \cdot 1 \times 10^{5}\right)-\left(7 \cdot 2 \times 10^{3}\right)}{2 \cdot 3 \times 10^{4}}$, correct to three decimal places.
(ix)

10 marks
Att 4
$\frac{\left(6.1 \times 10^{5}\right)-\left(7.2 \times 10^{3}\right)}{2.3 \times 10^{4}}=\frac{610000-7200}{23000}=\frac{602800}{23000}=26.20869=26.209$

* Accept correct answer with no work shown
* Award attempt mark for some relevant work

Award marks as follows:
10 marks: Fully correct answer
4 marks: Answer of some merit
0 marks: Otherwise

Find $\frac{(5 \cdot 6+12 \cdot 4) \times 20 \cdot 75}{16 \cdot 8-9 \cdot 3}$, correct to the nearest integer.

10 marks
Att 4
(x)

$$
\frac{(5.6+12.4) \times 20.75}{16.8-9.3}=\frac{18 \times 20.75}{7.5}=\frac{373.5}{7.5}=49.8=50 .
$$

Accept correct answer with no work shown
Blunders (-3)
B1 Error in precedence (once only) e.g. $\frac{5.6+12.4 \times 20.75}{16.8-9.3}=35$
B2 Each omitted or incorrect step if steps not clear
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Answer not correct to nearest integer
S3 Decimal error

Attempts (4 marks)

A1 Some work towards estimation
A2 An incorrect number correctly rounded to the nearest integer
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme
Part (a)

Part (b)
$20(5,5,10)$ marks
$20(5,5,10)$ marks
Att (2, 2, 4)
Part (c)
Part (a)
10 marks
Att 4
A glass rod 15 cm long falls and breaks into two pieces.
One piece is 63 mm long.
Find the length, in cm , of the other piece.
(a)

10 marks
Att 4
$150 \mathrm{~mm}-63 \mathrm{~mm}=87 \mathrm{~mm}=8.7 \mathrm{~cm}$
or

* $\quad 15 \mathrm{~cm}-6.3 \mathrm{~cm}=8.7 \mathrm{~cm}$
* Accept answers given without units

Blunders (-3)
B1 Incorrect conversion factor (once only)
B2 $\quad 15+6 \cdot 3=21 \cdot 3$
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Answer given in incorrect units e.g. 87 mm

Attempts (4 marks)

A1 Any use of given data
A2 $63-15$ and/or 48
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

Shane works 7.5 hours a day on five days of the week.
He begins work at 08:30 and has a lunch break of one hour.
(i) At what time does he finish work?
(ii) He is paid $€ 11.80$ per hour.

Calculate his pay for the five days.
(iii) He has 32% of his pay deducted for taxes.

Find his take-home pay.

(b) (i)

5 marks
Att 2
$08: 30+7: 30+1: 00=17: 00$ or 5 o'clock

* Accept correct answer with no work shown

Blunders (-3)

B1 Time conversion error e.g. $8: 30+1+7: 50=17: 20$ or 5:20 or $8.3+1+7.5=16.8$
B2 Omits the one hour lunch break giving an answer of 16:00
Slips (-1)
S1 Decimal error
S2 Numerical slips to a maximum of 3
Attempts (2 marks)
A1 Some use of the given data

Worthless (0 marks)

W1 Incorrect answer with no work other than those in scheme

Blunders (-3)

B1 Each omitted or incorrect step
Slips (-1)
S1 Decimal error
S2 Numerical slips to a maximum of 3
Attempts (2 marks)
A1 Some use of the given data

Worthless (0 marks)

W1 Incorrect answer with no work other than those in scheme
(b) (iii)

10 marks
Att 4

$$
\frac{442.5 \times 68}{100}=€ 300.9
$$

or

$$
\frac{442.5 \times 32}{100}=€ 141.6 \quad € 442.5-€ 141.6=€ 300.9
$$

* Accept correct answer with no work shown
* Accept candidates answer from part (i)

Blunders (-3)

B1 Error in calculating \%
B2 Gets $€ 141 \cdot 6$ and fails to finish
B3 Errors in establishing $\frac{442.5668}{100}$ (all 3 elements must be present, otherwise attempt marks only)
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error
Attempts (4 marks)
A1 Some correct step
A2 68 and stops
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

A company employs 20 office workers and 325 production workers.
The company hires 6 more office workers and 39 more production workers.
(i) After the hiring, how many workers does the company employ?
(ii) Find the percentage increase in the number of workers the company employs. Give your answer correct to the nearest percentage.
(iii) The weekly wage for an office worker is $€ 427.50$ and for a production worker is $€ 463$. Find the total weekly wage bill for the company, after the hiring.
(c) (i)

5 marks
Att 2
$20+325+6+39=390$

* Accept correct answer with no work shown

Blunders (-3)

B1 Adds only three correct values
B2 Fails to add
Slips (-1)
S1 Numerical slips to a maximum of 3
Attempts (2 marks)
A1 $20+325$ and/or 345
A2 $20+6$ and/or 26
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

$$
\frac{45}{345} \times 100=13 \cdot 04=13 \%
$$

Accept correct answer with no work shown
Blunders (-3)
B1 Error in calculating \%
B2 Errors in establishing $\frac{45}{345} \times 100$ (all 3 elements must be present otherwise attempt marks only)
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error
S3 Incorrect or no rounding off

Attempts (2 marks)

A1 Some attempt at getting a \%
A2 45 and/or 345 or 100
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme
(c) (iii)

10 marks
Att 4
$26 \times 427.50+364 \times 463=11115+168532=€ 179647$

* Accept correct answer with no work shown
* Accept candidates answer from part (i) if relevant

Blunders (-3)

B1 Fails to add
B2 Error in worker totals e.g. $20+39=59 ; 325+6=331$ and continues correctly
Misreadings (-1)
M1 $26 \times 463+364 \times 427.5=167648$
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error
Attempts (4 marks)
A1 26 and/or 364 and stops
A2 Some correct step
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

QUESTION 3

Part (a)
$10(5,5)$ marks
Part (b)
20 marks
Att 8
Part (c)
$20(5,10,5)$ marks

Gemma estimates that that there are 300 jelly beans in a jar.
There are actually 273 jelly beans in the jar.
(i) Find the error in the estimate.
(ii) Calculate the percentage error, correct to one decimal place.
(a) (i)

5 marks
Att 2
Error $=300-273=27$

* Accept correct answer with no work shown

Blunders (-3)
B1 300-273 and stops
Slips (-1)
S1 Numerical slips to a maximum of 3

Attempts (2 marks)

A1 Some use of given data
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme
(a) (ii)

5 marks
Att 2

$$
\text { Percentage error }=\frac{27}{273} \times 100=9.89 \%=9.9 \%
$$

* Accept correct answer with no work shown
* Accept candidates answer from part (i)

Blunders (-3)

B1 Errors in establishing $\frac{27}{273} \times 100$ (all three elements must be present otherwise attempt mark only)
B2 Stops at $\frac{27}{273} \times 100$
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error
S3 Incorrect or no rounding off
Attempts (2 marks)
A1 Some use of given data
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme
$€ 6300$ is invested for four years at 3% per annum compound interest.
Find the total value of the investment at the end of four years.
Give your answer correct to the nearest euro.
(b)

20 marks
Att 8
$A=6300(1+0.03)^{4}$
$A=6300(1.03)^{4}$
$A=6300(1.12550881)$
$A=7090.7055$
$=€ 7091$

* Accept correct answer with no work shown

Blunders (-3)

B1 Error in formula as written by student or incorrect formula e.g. depreciation
B2 Error in substituting into formula, once only e.g. $n=3$ and/or $r=4$
B3 Each step missing
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error
S3 Incorrect or no rounding off

Attempts (8 marks)

A1 Some use of given data
A2 $\frac{3}{100}$
A3 $\mathrm{P}=6300$
A4 Effort at simple interest
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

OR

Principal year 1	6300	$\Leftarrow \frac{6300 \times 3}{100}$
Interest year 1	189	
Amount at end year 1	6489	$\Leftarrow \frac{6489 \times 3}{100}$
Interest year 2	194.67	
Amount at end year 2	6683.67	
Interest year 3	6884.18	
Amount at end year 3	206.51	
	7090.70	$=\frac{6683.67 \times 3}{100}$
Interest year 4	$€ 7091$	
Amount at end year 4		

Accept correct answer with no work shown

Blunders (-3)

B1 Error in establishing the interest
B2 Subtracts the interest to find the amount
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error
S3 Incorrect or no rounding off
Attempts (8 marks)
A1 Some use of 100 in an attempt to find $\%$
A2 Some correct step
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

A car travels an average of 100 km on 5.5 litres of diesel.
The car driver buys 60 litres of diesel at $€ 1.629$ per litre.
(i) Find the cost of the diesel.
(ii) How far, to the nearest kilometre, will the car travel on the 60 litres of diesel assuming the average consumption of diesel?
(iii) Find the cost per kilometre, correct to the nearest cent.
(c) (i)

5 marks
Att 2
$60 \times 1.629=€ 97.74$

* Accept correct answer with no work shown

Blunders (-3)

B1 Incorrect operator
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error
Attempts (2 marks)
A1 Some use of given data

Worthless (0 marks)

W1 Incorrect answer with no work other than those in scheme
$\frac{60}{5.5} \times 100=1090.9=1091 \mathrm{~km}$

* Accept correct answer with no work shown

Blunders (-3)

B1 Errors in establishing $\frac{60}{5.5} \times 100$ (all 3 elements must be present otherwise attempt mark)
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error
S3 Incorrect or no rounding off
Attempts (4 marks)
A1 Some use of given data e.g. 60×100
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme
(c) (iii)

5 marks
Att 2

$$
\frac{97.74}{1091}=0.0895=€ 0.09 \text { or } 9 \mathrm{cent}
$$

* Accept correct answer with no work shown
* Accept candidates answers from parts (i) and (ii)

Blunders (-3)
B1 Wrong operator
B2 $\frac{1091}{97.74}$ and or 11.16
Slips (-1)
S1 Numerical slips to a maximum of 3
S2 Decimal error
S3 Incorrect or no rounding off
Attempts (2 marks)
A1 Writes down 97.74 and/or 1091 and stops
A2 Some correct step
Worthless (0 marks)
W1 Incorrect answer with no work other than those in scheme

Part (a)	$\mathbf{1 0}$ marks	Att 4
Part (b)	$\mathbf{2 0}(\mathbf{1 5 , 5) \text { marks }}$	
Part (c)	$\mathbf{2 0}(\mathbf{1 0 , 5 , 5) \text { marks }}$	Att $(\mathbf{6}, \mathbf{2})$ Att $(\mathbf{4 , 2 , 2)}$
Part (a)	$\mathbf{1 0}$ marks	Att 4
Solve for x	$2 x+9=5 x-3$	

(a)
10 marks
Att 4
$2 x+9=5 x-3 \Rightarrow 12=3 x \Rightarrow x=4$
Award full marks for correct answer by trial and error with verification
Blunders (-3)
B1 Blunders in grouping terms e.g. $2 x+9=11 x$ [each time]
B2 Transposition errors [once only]
B3 $3 x=12 \Rightarrow x \neq 4$
B4 Each step omitted e.g. $3 x=12$ and stops
B5 $x=4$ without work
Slips (-1)
S1 Numerical slips to a maximum of 3

Attempts (4 marks)

A1 Some correct work
A2 Effort at trial and error by substitution
Worthless (0 marks)
W1 Incorrect answer without work

Solve the simultaneous equations

$$
\begin{aligned}
2 x-3 y & =7 \\
x+4 y & =9 .
\end{aligned}
$$

(b) First Variable Found 15 marks Att 6

Second Variable 5 marks

$$
\begin{aligned}
2 x-3 y & =7 \\
x+4 y & =9
\end{aligned} \quad \times-2 \quad \begin{aligned}
& 2 x-3 y=7 \\
& \frac{-2 x-8 y}{}=-18 \\
&-11 y=-11
\end{aligned} \Rightarrow \quad y=1 .
$$

$x+4 y=9 \Rightarrow x+4(1)=9 \Rightarrow x=9-4 \Rightarrow x=5$

* \quad Random x picked, y calculated (or vice versa) - Award 5 marks (second variable found)
* Substitution of correct values in both equations shown - Award $15+5$ marks

Blunders (-3)

B1 Error(s) in establishing the first equation in terms of x only $(x=5)$ or the first equation in terms of y only $(y=1)$
B2 $-11 y=-11 \Rightarrow y \neq 1$
B3 Blunder in substitution e.g. y value for x
B4 Transposition error in finding second variable (once only)

Attempts - First variable (6 marks)

A1 Effort at equalising coefficients of x 's or y 's
A2 Effort at cancelling one variable
A3 Effort at writing x in terms of y (or vice versa)
Attempts - Second variable (2 marks)
A4 Effort at substituting first variable
A5 Effort at cancelling second variable
Attempts (6+2)
A6 Correct answer with no work shown
Worthless (0 marks)
W1 Incorrect answer without work

An orange costs 5 cent more than an apple.
Let x cent be the cost of an orange.
(i) Write an expression in x for the cost of an apple.

The total cost of 14 oranges and 12 apples is $€ 7.98$.
(ii) Write this information as an equation in x.
(iii) Solve this equation to find the cost of an orange.
(c) (i) 10 marks

Att 4

Blunders (-3)
B1 $x+5$ or $5-x$
B2 $5 x$
Attempts (4 marks)
A1 Some use of the data given $\frac{x}{5}$ or $\frac{5}{x}$
Worthless (0 marks)
W1 No use of the x or the 5
W2 $x=5$ and stops
(c) (ii)

5 marks
Att 2
$14 x+12(x-5)=798$

* Accept candidates answer from part (i)

Blunders (-3)

B1 Each price omitted
B2 $26 x-60$ only
B3 $14 x+12(x-5)=7.98$

Midreading (-1)

M1 $12(x)+14(x-5)=798$
Attempts (2 marks)
A1 A spurious equation in x involving 7.98 or 798
A2 $14 x$ or $12(x-5)$ or $12 x$
Worthless (0 marks)
W1 No use of x
$14 x+12(x-5)=798 \Rightarrow 14 x+12 x-60=798 \Rightarrow 26 x=798+60=858 \Rightarrow x=33$ cent

* Accept candidates answers from parts (i) and (ii)
* $\quad 14 x+12 x-60=798$ as starting work can earn marks for parts (i) and (ii)

Blunders (-3)
B1 Incorrectly formed equation
B2 Blunders in grouping terms e.g. $26 x-60=-34 x$ (each time)
B3 Transposition error(s) (once only)
B4 $26 x=858 \Rightarrow x \neq 33$
B5 Each step omitted
B6 Correct answer without work
B7 Distribution error
Slips (-1)
S1 Numerical slips to a maximum of 3
Attempts (2 marks)
A1 Some correct work
A2 Effort at trial and error by substitution
Worthless (0 marks)
W1 Incorrect answer without work

QUESTION 5

Part (a)	$10(5,5)$ marks	Att (2, 2)
Part (b)	$20(10,10)$ marks	Att (4, 4)
Part (c)	$20(10,5,5)$ marks	Att (4,2,2)

(i) Write down the first five multiples of 3 and the first five multiples of 5.
(ii) Hence, or otherwise, write down the lowest common multiple of 3 and 5.

(a) (i)	$\mathbf{5}$ marks	Att 2
(a) (ii)	$\mathbf{5}$ marks	Att 2

(i) $3,6,9,12,15$ and $5,10,15,20,25$
(ii) $\mathrm{LCM}=15$.

Slips (-1)
S1 Each omitted or incorrect entry provided at least one is correct [to a maximum of 3]
Attempts (2 marks)
A1 At least one correct entry, each part

Part (b)
$20(10,10)$ marks
(i) Solve the quadratic equation $x^{2}-2 x-15=0$.
(ii) Solve the quadratic equation $4 x^{2}-3 x-2=0$, correct to two decimal places.
(b) (i)

10 marks
Att 4
$x^{2}-2 x-15=0 \Rightarrow(x-5)(x+3)=0 \Rightarrow x=5$ or $x=-3$.

Blunders (-3)

B1 Last step(s) omitted
B2 Sign error in factors (once only)
B3 Sign errors in solution (once only)
B4 Incorrect relevant factors and continues
B5 Errors in using formula as in (ii)

Attempts (4 marks)

A1 Effort at finding factors
A2 Attempt at trial and error
Worthless (0 marks)
W1 Quadratic reduced to linear

$$
\begin{aligned}
& 4 x^{2}-3 x-2=0 \\
& \Rightarrow x=\frac{3 \pm \sqrt{(-3)^{2}-4(4)(-2)}}{2 \times 4} \\
&=\frac{3 \pm \sqrt{9+32}}{8} \\
&=\frac{3 \pm \sqrt{41}}{8} * \\
&=\frac{3 \pm 6.403}{8} \\
& \Rightarrow x=\frac{9.403}{8} \text { or } x=\frac{-3.403}{8} \\
& \Rightarrow x=1.175 \text { or } x=-0.425 \\
& \Rightarrow \boldsymbol{x}=\mathbf{1 . 1 8} \text { or } \boldsymbol{x}=-\mathbf{0 . 4 3}
\end{aligned}
$$

* Maximum deductions beyond point * is 3 marks
* $\frac{3 \pm \sqrt{\text { negative number }}}{2 \times 4}$ cannot earn final 3 marks

Blunders (-3)

B1 Blunders in application of formula e.g. $(-3)^{2}=6$
Slips (-1)
S1 Slip in substitution into formula to a maximum of 3
S2 Incorrect or omitted rounding off, each time
S3 Decimal error
Attempts (4 marks)
A1 Effort at substitution into formula
A2 Incorrect formula with substitution and stops
A3 Attempt at finding factors e.g. $\left(\begin{array}{ll}x &)(x)\end{array}\right)$
A4 Appearance of the variable in the answer
A5 Identifies A or B or C
Worthless (0 marks)
W1 Quadratic reduced to linear
(i) Solve $4 x-7 \leq 9, \quad x \in \mathbb{Z}$.
(ii) Solve $3-2 x<7, \quad x \in \mathbb{Z}$.
(iii) Write down all the values of x which satisfy both of the above inequalities.
(c) (i)

10 marks
Att 4
$4 x-7 \leq 9 \quad \Rightarrow 4 x \leq 16 \quad \Rightarrow x \leq 4$

Blunders (-3)

B1 Blunder in grouping terms e.g. $4 x-7=-3 x$ (each time)
B2 Transposition errors (once only)
B3 Each step omitted e.g. $4 x \leq 16$ and stops
B4 $x \leq 4$ without work
B5 Replaces inequality with equality sign
Misreadings (-1)
M1 Uses < instead of \leq
Slips (-1)
S1 Numerical slips to a maximum of 3

Attempts (4 marks)

A1 Some correct work
A2 Effort at trial and error by substitution

Worthless (0 marks)

W1 Incorrect answer without work
(c) (ii)

Blunders (-3)

B1 Blunder in grouping terms e.g. $6-4 x=2 x$ (each time)
B2 Transposition errors (once only)
B3 Each step omitted e.g. $-2 x<4$ and stops
B4 Error in inequality sign e.g. $-2 x<4 \Rightarrow x<-2$
B5 $x>-2$ without work
B6 Replaces inequality with equality sign
Misreadings (-1)
M1 Uses \leq instead of $<$
Slips (-1)
S1 Numerical slips to a maximum of 3

Attempts (2 marks)

A1 Some correct work
A2 Effort at trial and error by substitution
Worthless (0 marks)
W1 Incorrect answer without work

* Accept candidates answers from parts (i) and (ii)
* If equality used in (i) or (ii), then attempt at most here

Slips (-1)
S1 Each entry omitted or incorrect provided at least one is correct [to a maximum of 3]

Attempts (2 marks)

A1 Partial listing of answers to (i) or (ii) or both

QUESTION 6

Part (i)
Part (ii)
Part (iii)
Part (iv)
Part (v)

10 marks
10 marks
10 marks
10 marks
10 marks

Att 4
Att 4
Att 4
Att 4
Att 4

The graph below shows the number of houses sold by an estate agent each year from 2004 to 2010. For example in 2006 the estate agent sold 24 houses.

(i)

10 marks
Att 4
How many houses were sold in 2007?
(i)

10 marks
Att 4
44 houses.
Accept correct answer without work shown
Worthless (0 marks)
W1 Incorrect answer without work

In which two years were the same number of houses sold?
(ii)

10 marks
Att 4
2005 and 2009.

* Accept correct answer without work shown

Blunders (-3)

B1 Only one of the correct years given
Attempts (4 marks)
A1 16 given as answer
Worthless (0 marks)
W1 Incorrect answer without work

What was the difference in the number of houses sold in 2008 and 2009?
(iii)

10 marks
Att 4

$2008 \ldots . .48$	
$2009 \ldots . .16$	$48-16=32$

* Accept correct answer without work shown

Blunder (-3)
B1 $48+16=64$
Misreading (-1)
M1 Wrong year taken and indicated
Attempts (4 marks)
A1 48 and or 16 without work
Worthless (0 marks)
W1 Incorrect answer without work, other than those in scheme

(iv)

10 marks
Att 4
Find the average number of houses sold per year from 2004 to 2010.
(iv) 10 marks Att 4
$\frac{8+16+24+44+48+16+12}{7}=\frac{168}{7}=24$.
Att 4

* Accept correct answer without work shown
* Accept candidates answer from previous work if used

Blunder (-3)

B1 Stops at $\frac{168}{7}$
B2 16 given as the average
Slips (-1)
S1 Each omitted number or incorrect number, provided at least one is correct
S2 Uses a divisor other that 7
S3 Numerical slips to a maximum of 3
Attempts (4 marks)
A1 Stops at 168 or candidates answer

Worthless (0 marks)

W1 Incorrect answer without work, other than those in scheme
$23 \times 8=184$
$184-168=16$

* Accept correct answer without work shown
* Accept candidates work from part (iv)

Blunder (-3)

B1 Divides instead of multiplies e.g. $23 \div 8=2.876$
B2 Writes 184-168 and stops
B3 Writes $184+168=352$
Slips (-1)
S1 Numerical slips to a maximum of 3

Attempts (4 marks)

A1 Some correct work
A2 Some use of 168
A3 23×8 and stops
Worthless (0 marks)
W1 Incorrect answer without work, other than those in scheme

QUESTION 7

Graph Values	$\begin{gathered} 30(20,10) \text { marks } \\ 20(5,5,5,5) \text { marks } \\ \hline \end{gathered}$	$\begin{array}{r} \operatorname{Att}(8,4) \\ \operatorname{Att}(2,2,2,2) \end{array}$
Evaluation Graph	$\begin{aligned} & 20 \text { marks } \\ & 10 \text { marks } \end{aligned}$	$\begin{aligned} & \text { Att } 8 \\ & \text { Att } 4 \\ & \hline \end{aligned}$
Draw the graph of the function		

Table method

x	-2	-1	0	1	2	Att 8
$3 x^{2}$	12	3	0	3	12	27
$-5 x$	10	5	0	-5	-10	-15
-1	-1	-1	-1	-1	-1	-1
$f(x)$	21	7	-1	-3	1	11

Accept correct $f(x)$ values without work
Blunders (-3)
B1 x values added on when calculating $f(x)$ values
B2 Consistent errors across full line otherwise slips apply
B3 $f(x)$ not evaluated for an x value in domain or some x value omitted
Slips (-1)
S1 Each incorrect or omitted value in the body of the table
S2 Each incorrect or omitted $y / f(x)$ value from candidates work
Misreadings (-1)
M1 -1 treated as 1 across the line
Attempts (8 marks)
A1 Any four values in the table
A2 Function treated as linear e.g. $x^{2}=2 x$ or x or $3 x^{2}=6 x$ or x
$f(x)=3 x^{2}-5 x-1$
$f(-2)=3(-2)^{2}-5(-2)-1=21$
$f(-1)=3(-1)^{2}-5(-1)-1=7$
$f(0)=3(0)^{2}-5(0)-1=-1$
$f(1)=3(1)^{2}-5(1)-1=-3$
$f(2)=3(2)^{2}-5(2)-1=1$
$f(3)=3(3)^{2}-5(3)-1=11$

Blunders (-3)

B1 Consistent errors in the evaluation of $3 x^{2}$
B2 -1 omitted from the evaluation
B3 Each incorrect $f(x)$ value when no work is shown to a maximum of 3 provided that at least one $f(x)$ value is correct
All $f(x)$ values incorrect without work $\rightarrow 0$ marks. Otherwise slips applied when work is shown

Slips (-1)
S1 Each incorrect or omitted value from the evaluation after substitution
S2 Each incorrect or omitted $f(x)$ value, calculated from candidates work
Misreadings (-1)
M1 -1 consistently treated as 1 in the evaluation.

* Accept values from candidates work
* Fully correct graph drawn with no work shown: award 30 marks

Blunders (-3)

B1 Blunders in scales on axis or axes (once only)
Slips (-1)
S1 Each point from table plotted incorrectly
S2 Each pair of successive points not joined to a maximum of 3
S3 Not a smooth curve
S4 The graph of the function is not in the conventional position or orientation.

Attempts (4 marks)

A1 At least two of the candidates points plotted
A2 Any U shaped graph
A3 Axes drawn

Use your graph to estimate
(i) the value of $f(-1 \cdot 5)$
(ii) the minimum value of $f(x)$
(iii) the values of x for which $f(x)=5$
(iv) the range of values of x for which $f(x)$ is less than 0 .
(i)
(ii)
(iii) 5 marks

Att 2
5 marks
Att 2
(iv)

5 marks
Att 2
(iv)

5 marks
Att 2
(i) $\quad f(-1.5)=13.3$
(ii) -3.1
(iii) $x=-0.8, x=2.5$
(iv) $-0.2<x<1.9$

* Accept candidates values from graph
* Allow tolerance of ± 0.3 units on x-axis, ± 0.5 on y-axis

Blunders (-3)
B1 Extra value applies in parts (i) and (ii)
B2 $f(x)=5$ treated as $f(5)$
B3 Value omitted, applies in part (iii)
Slips (-1)
S1 Answers indicated correctly on axis but not specified
S2 Part of graph where $f(x)$ is less than zero, indicated but no x value written down
Misreadings (-1)
M1 Gives the value of x corresponding to the minimum of $f(x)$ in part (ii)

Attempts (2 marks)

A1 Effort at reading value(s) from graph
A2 Correctly solving equation algebraically; part (iii) and (iv)

Coimisiún na Scrúduithe Stáit

State Examinations Commission

Leaving Certificate Examination, 2012

Mathematics (Project Maths - Phase 1)

Paper 2
Foundation Level
Monday 11 June Morning 9:30-12:00

300 marks

Model Solutions - Paper 2

Note: the model solutions for each question are not intended to be exhaustive - there may be other correct solutions. Any examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her advising examiner.

Instructions

There are three sections in this examination paper:

Section A	Concepts and Skills	100 marks	4 questions
Section B	Contexts and Applications	100 marks	2 questions
Section C	Area and Volume (old syllabus)	100 marks	2 questions

Answer all eight questions, as follows:
In Section A, answer
Questions 1 to 3 and
either Question 4A or Question 4B.
In Section B, answer Questions 5 and 6.
In Section C, answer Questions 7 and 8.

Write your answers in the spaces provided in this booklet. You will lose marks if you do not do so. There is space for extra work at the back of the booklet. You may also ask the superintendent for more paper. Label any extra work clearly with the question number and part.

The superintendent will give you a copy of the Formulae and Tables booklet. You must return it at the end of the examination. You are not allowed to bring your own copy into the examination.
A sheet of formulae will also be given to you by the superintendent.

Marks will be lost if all necessary work is not clearly shown.

Answers should include the appropriate units of measurement, where relevant.

Answers should be given in simplest form, where relevant.

Write the make and model of your calculator(s) here: \square

Answer all four questions from this section.

Question 1

(a) Which of the following best describes how likely it is that each of the following events occurs? Write the letter corresponding to the correct answer in each box in the table.
A. Impossible or almost impossible
B. Not very likely
C. About 50\% likely
D. Very likely
E. Certain or almost certain.

Event	How likely
A baby will be born in Ireland tomorrow.	E
If you pick one card from an ordinary pack of cards you will pick the queen of hearts.	B
There will be 400 days in the year 2013.	A
If a coin is tossed you will get a head.	C
It will not rain in Ireland during the month of November.	B
If two ordinary dice are thrown, the sum of the numbers will be 1.	A

(b) A small business employs 1 manager, 4 technicians, 2 technical assistants and 2 secretaries. The manager is paid $€ 1020$ a week, the technicians are each paid $€ 800$ a week, the technical assistants are each paid $€ 500$ a week and the secretaries are each paid $€ 450$ a week.
Find the difference between the mean weekly wage and the median weekly wage.

Mean $=\frac{1020 \times 1+800 \times 4+500 \times 2+450 \times 2}{1+4+2+2}=\frac{6120}{9}=€ 680$
Median $=€ 800$
Difference $€ 800-€ 680=€ 120$

Question 2
John has two bags. In one bag there are two balls numbered 1 and 2. In the other bag there are three balls numbered 5, 6 and 7 .
John picks one ball at random from each bag and records the two numbers drawn.
(a) How many different possible outcomes are there?

$$
2 \times 3=6
$$

(b) What is the probability that the outcome will be the balls numbered 1 and 5 ?

$$
\frac{1}{6}
$$

(c) What is the probability that both numbers drawn will be odd?

$$
\frac{2}{6}=\frac{1}{3}
$$

(d) What is the probability that at least one of the numbers will be odd?
$\frac{5}{6}$

The diagram shows the points A, B and C.
(a) Write down the co-ordinates of

$A(-1,6)$
$B(-3,-2)$
$C(4,5)$

(b) Find the co-ordinates of the midpoint of $[B C]$.

Midpoint $[B C]=\left(\frac{-3+4}{2}, \frac{-2+5}{2}\right)=\left(\frac{1}{2}, \frac{3}{2}\right)$
(c) Find the slope of $A B$.

Slope $A B=\frac{-2-6}{-3+1}=\frac{-8}{-2}=4$
(d) The point X has co-ordinates $(7,17)$.

Is the line $A B$ parallel to the line $C X$? Give a reason for your answer.

Slope $C X=\frac{17-5}{7-4}=\frac{12}{3}=4$

Slope of $A B=$ slope of $C X \quad \Rightarrow \quad$ line $A B$ is parallel to line $C X$.

Question 4
Answer either 4A or 4B.

Question 4A

(a) Construct a parallelogram $P Q R S$ in which $|P Q|=7 \mathrm{~cm},|Q R|=5 \mathrm{~cm}$ and $|\angle P Q R|=120^{\circ}$. Show all the construction lines clearly.

(b) Use your protractor to measure the angle $R S P$.

$$
|\angle R S P|=120^{\circ}
$$

(c) Explain how you could use the measurement in part (b) to check the accuracy of your construction.

Opposite angles in a parallelogram are equal in measure.
If $|\angle R S P|=120^{\circ}=|\angle P Q R|$, then the construction is accurate.

OR

Question 4B

$A B C D$ is a parallelogram.
A circle of centre O passes through the four vertices of the parallelogram.
The diagonals of the parallelogram intersect at O.
$|A B|=12, \quad|B C|=9$ and $|\angle C D B|=37^{\circ}$.
(a) Write down $|\angle B C D|$.

$$
|\angle B C D|=90^{\circ}
$$

(b) Calculate $|D B|$.

$$
\begin{aligned}
& |D B|^{2}=|B C|^{2}+|C D|^{2}=9^{2}+12^{2}=225 \\
& \Rightarrow \quad|D B|=\sqrt{225}=15
\end{aligned}
$$

(c) Name two isosceles triangles in the diagram.
$\triangle O A B, \triangle O B C, \triangle O C D, \triangle O D A$
(d) Find $|\angle B O C|$.

$$
|\angle B O C|=|\angle O C D|+|\angle C D O|=37^{\circ}+37^{\circ}=74^{\circ}
$$

or

$$
\begin{aligned}
& |\angle D O C|=180^{\circ}-\left(37^{\circ}+37^{\circ}\right)=106^{\circ} \\
& |\angle B O C|=180^{\circ}-|\angle D O C|=180^{\circ}-106^{\circ}=74^{\circ}
\end{aligned}
$$

(e) Find the area of the triangle $A B D$.

Area $\triangle A B D=\frac{1}{2}|A D| \times|A B|=\frac{1}{2}(9)(12)=54$ square units

Answer Question 5 and Question 6 from this section.

Question 5

(50 marks)
A researcher is investigating the number of hours that Leaving Certificate students in Ireland spend studying each week. The researcher asks the Principal in her old school to pick some students to be surveyed. Each student was asked how many hours they spent studying, on average, each week. The results are as follows:

9	14	13	17	8
6	8	19	12	9
7	18	13	14	21
6	22	11	6	16
9	7	13	11	22

(a) Complete the following table:

Hours spent studying	$5-10$	$10-15$	$15-20$	$20-25$
Number of students	10	8	4	3

Note: " $5-10$ " means at least 5 but less than 10 , etc.
(b) How many students took part in the research?

Answer: 25 students
(c) Represent the data using a suitable chart.

(d) A student is picked at random from the group. What is the probability that this student spends less than 10 hours a week studying.

$$
\frac{10}{25}=\frac{2}{5}
$$

(e) A sample should always be chosen in a way that represents the population fairly. Otherwise, the sample may be biased. Give one reason why the sample in this case might be biased.

Students picked by an individual, rather than random selection.
Students picked from one school only.
(f) State one thing the researcher could have done to avoid bias in the sample.

Select students at random.
Select students from a variety of schools which are geographically spread.

Question 6

(a) John hangs two pictures from a horizontal rail.

The smaller picture frame is a rectangle measuring 42 cm by 28 cm . The larger picture frame is an enlargement of the smaller picture frame. The scale factor of the enlargement is 2 .

(ii) Find the measurements of the larger picture.

$$
\begin{aligned}
& 42 \times 2=84 \mathrm{~cm} \\
& 28 \times 2=56 \mathrm{~cm}
\end{aligned}
$$

(iii) The centre of enlargement is 70 cm from the nearest corner of the smaller picture. Find x, the distance between the two pictures.

$$
70+42+x=140 \Rightarrow x=140-(70+42)=28 \mathrm{~cm}
$$

(b) John decides that the pictures might look better if he moves the larger one across and up. To arrange them, he drew the triangle shown and noted the measurements, in centimetres.

(i) Use Pythagoras' theorem to find the length d, correct to the nearest cm .

14

$$
\begin{aligned}
& 75^{2}=14^{2}+d^{2} \\
& \Rightarrow \quad d^{2}=75^{2}-14^{2}=5625-196=5429 \\
& \Rightarrow \quad d=73 \cdot 68=74 \mathrm{~cm}
\end{aligned}
$$

(ii) Find the angle α, correct to the nearest degree.

$\sin \alpha=\frac{14}{75}=0 \cdot 1866 \ldots$
$\Rightarrow \quad \alpha=10.75 \approx 11^{\circ}$

Answer Question 7 and Question 8 from this section.

Question 7

(50 marks)
(a) A disc has a diameter of 16 cm .

Find the area of the disc, correct to the nearest cm^{2}.

$$
\pi r^{2}=\pi(8)^{2}=64 \pi=201 \cdot 06=201 \mathrm{~cm}^{2}
$$

(b) The diagram shows a cone with a base radius of 15 mm and a height of 36 mm .
(i) Find the volume of the cone, correct to the nearest mm^{3}.

$$
\begin{aligned}
\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(15)^{2}(36) & =2700 \pi \\
& =8482 \cdot 3=8482 \mathrm{~mm}^{3}
\end{aligned}
$$

(ii) Find l, the slant height of the cone.

$$
\begin{aligned}
& l^{2}=36^{2}+15^{2}=1296+225=1521 \\
& \Rightarrow \quad l=\sqrt{1521}=39 \mathrm{~mm}
\end{aligned}
$$

(c) A solid wax sphere has a diameter of 12 cm .
(i) Find the volume of the sphere in terms of π.

$$
\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(6)^{3}=288 \pi \mathrm{~cm}^{3}
$$

(ii) A solid wax cylinder has a height of 8 cm . The volume of wax in four of these cylinders is the same as the volume of wax in the sphere. Find the radius of the cylinder.

$$
\begin{aligned}
& 4\left(\pi r^{2} h\right)=288 \pi \\
& \Rightarrow \quad 4 \pi\left(r^{2}\right)(8)=288 \pi \\
& \Rightarrow \quad 32 r^{2}=288 \\
& \Rightarrow \quad r^{2}=9 \\
& \Rightarrow \quad r=3 \mathrm{~cm}
\end{aligned}
$$

(a) The perimeter of a rectangular playing field is 440 m . The length of the shorter side is 85 m .
(i) Find the length of the longer side.

$$
2(l+85)=440 \Rightarrow l+85=220 \Rightarrow l=135 \mathrm{~m}
$$

(ii) Find the area of the playing field.

$$
A=135 \times 85=11475 \mathrm{~m}^{2}
$$

(b) A school yard is shown in the diagram.

Offsets of lengths $20 \mathrm{~m}, 15 \mathrm{~m}, 16 \mathrm{~m}, 17 \mathrm{~m}, 14 \mathrm{~m}$, and 8 m are measured at intervals of 9 m , as shown.
(i) Use Simpson's rule to estimate the area of the school yard.

$$
\begin{aligned}
A & =\frac{h}{3}(F+L+T O F E) \\
& =\frac{9}{3}(20+0+2(16+14)+4(15+17+8)) \\
& =3(20+60+160) \\
& =720 \mathrm{~m}^{2}
\end{aligned}
$$

(ii) The yard is resurfaced at a cost of $€ 185$ for every 10 square metres. Find the cost of resurfacing the yard.

Cost $=\frac{720}{10} \times 185=€ 13320$

Marking Scheme - Paper 2, Section A, Section B and Section C Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	A	B	C	D
No of categories	2	3	4	5
5 mark scales		$0,3,5$	$0,3,4,5$	
10 mark scales		$0,5,10$	$0,5,7,10$	
15 mark scales				$0,6,9,12,15$
20 mark scales			$0,15,17,20$	$0,8,12,16,20$

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (middle partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving incorrect rounding or omission of units, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk. Thus, for example, scale $10 C^{*}$ indicates that 9 marks may be awarded.

Summary of mark allocations and scales to be applied

Section A

Question 1
(a) 20 D
(b) 5 C

Question 2
(a) 10 C
(b) 5 C
(c) 5 C
(d) 5 C

Question 3
(a) 10 C
(b) 5 C
(c) 5 C
(d) 5 C

Question 4A
(a) 15 D
(b) 5 B
(c) 5 B

Question 4B
(a) 5 B
(b) 5 C
(c) 5 C
(d) 5 C
(e) 5 C

Section C

Section B

Question 5
(a) 15 D
(b) 10B
(c) 10 C
(d) 5 C
(e) 5 B
(f) 5 B

Question 6
(a) (i) 5 B
(a) (ii) $20 \mathrm{C}^{*}$
(a) (iii) $10 \mathrm{C}^{*}$
(b) (i) $10 \mathrm{C}^{*}$
(b) (ii) $5 \mathrm{C}^{*}$

Question7
(a) $10 \mathrm{C}^{*}$
(b) (i) $15 \mathrm{D}^{*}$
(b) (ii) $5 \mathrm{C}^{*}$
(c) (i) $15 \mathrm{D}^{*}$
(c) (ii) $5 \mathrm{C}^{*}$

Question 8
(a) (i) $10 \mathrm{C}^{*}$
(a) (ii) $5 \mathrm{C}^{*}$
(b) (i) $\begin{aligned} & 20 \mathrm{C} \\ & 10 \mathrm{C}^{*}\end{aligned}$
(b) (ii) 5 C

Detailed marking notes

Section A

Question 1

(a) Scale 20D ($0,8,12,16,20$)

Low partial credit:

- One correct
- Any work of merit

Middle partial credit:

- Two or three correct answers

High partial credit:

- Four or five correct answers
(b) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Any work of merit

High partial credit:

- Mean or median correct

Question 2

(a) Scale 10C (0, 5, 7, 10)

Low partial credit:

- Any work of merit

High partial credit:

- 2×3 without evaluating
- Answer of 5 given
(b) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Any work of merit

High partial credit:

- Correct numerator or correct denominator
- Inverted fraction
(c) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Any work of merit

High partial credit:

- Correct numerator or correct denominator
- Inverted fraction
(d) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Any work of merit

High partial credit:

- Correct numerator or correct denominator
- Inverted fraction

Question 3

(a) Scale 10C (0, 5, 7, 10)

Low partial credit:

- One correct co-ordinate of a point

High partial credit:

- Any two points correct
- x and y co-ordinates obviously interchanged
(b) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Shows midpoint on diagram
- Identifies the correct formula

High partial credit:

- Substitutes incorrectly into formula and finishes
(c) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Identifies the correct formula

High partial credit:

- Substitutes incorrectly into formula and finishes
(d) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Any meaningful attempt at a correct reason

High partial credit:

- Plots $(7,17)$ correctly

Question 4A

(a) Scale 15D (0, 6, 9, 12, 15)

Low partial credit:

- One side constructed
- Sketch diagram

Middle partial credit:

- Two sides constructed

High partial credit:

- Two sides and angle constructed
(b) Scale 5B (0, 3, 5)

Partial credit:

- Measures angle incorrectly
(c) Scale 5B $(0,3,5)$

Partial credit:

- Relevant geometrical statement

Question 4B

(a) Scale 5B $(0,3,5)$

Partial credit:

- Measures angle incorrectly
(b) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Any use of 9 or 12

High partial credit:

- Pythagoras substituted correctly
(c) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Identifies a triangle

High partial credit:

- One correct triangle
(d) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Any work of merit

High partial credit:

- Finds $\angle D C O$ and $\angle D O C$
(e) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Correct formula

High partial credit:

- Correctly substituted formula

Section B

Question 5

(a) Scale 15D $(0,6,9,12,15)$

Low partial credit:

- 1 correct entry

Middle partial credit:

- 2 correct entries

High partial credit:

- 3 correct entries
(b) Scale 10B $(0,5,10)$

Partial credit:

- Any work of merit
(c) Scale 10C (0, 5, 7, 10)

Low partial credit:

- Any work of merit

High partial credit:

- Diagram mainly correct but with some error(s)
(d) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Any work of merit

High partial credit:

- Correct numerator or correct denominator or inverted fraction
(e) Scale 5B $(0,3,5)$

Partial credit:

- Any meaningful attempt at a correct reason
(f) Scale 5B (0, 3, 5)

Partial credit:

- Any meaningful attempt at a correct reason

Question 6

(a)(i) Scale 5B $(0,3,5)$

Partial credit:

- Any work towards finding the centre of enlargement.
(a)(ii) Scale 20C* $(0,15,17,20)$

Low partial credit:

- Any use of scale factor

High partial credit:

- One correct dimension
(a)(iii) Scale 10C* (0, 5, 7, 10)

Low partial credit:

- Use of 70 and 42 or 84

High partial credit:

- Equation formulated correctly
(b)(i) Scale 10C* (0, 5, 7, 10)

Low partial credit:

- Any work of merit

High partial credit:

- Pythagoras substituted correctly
(b)(ii) Scale 5C* (0, 3, 4, 5)

Low partial credit:

- Any work of merit

High partial credit:

- $\alpha=\sin ^{-1}\left(\frac{14}{75}\right)$ or similar

Section C

Question 7

(a) Scale 10C* $(0,5,7,10)$

Low partial credit:

- Any work of merit e.g. formula written

High partial credit:

- Fully correct substitution but error(s) in calculation
(b)(i) Scale 15D* (0, 6, 9, 12, 15)

Low partial credit:

- Any work of merit e.g. formula written

Middle partial credit:

- Some correct substitution

High partial credit:

- Fully correct substitution but error(s) in calculation
(b)(ii) Scale 5C* $(0,3,4,5)$

Low partial credit:

- Any work of merit e.g. formula written

High partial credit:

- Correct substitution but error(s) in calculation
(c)(i) Scale 15D* (0, 6, 9, 12, 15)

Low partial credit:

- Any work of merit e.g. formula written

Middle partial credit:

- Some correct substitution

High partial credit:

- Fully correct substitution but error(s) in calculation
(c)(ii) Scale 5C* (0, 3, 4, 5)

Low partial credit:

- Any work of merit e.g. formula written

High partial credit:

- Correct substitution but error(s) in calculation

Question 8

(a)(i) Scale 10C* (0, 5, 7, 10)

Low partial credit:

- Any work of merit e.g. formula written

High partial credit:

- Fully correct substitution but error(s) in calculation
(a)(ii) Scale 5C* (0, 3, 4, 5)

Low partial credit:

- Any work of merit e.g. formula written

High partial credit:

- Fully correct substitution but error(s) in calculation
(b)(i) Substitution Scale 20C (0, 15, 17, 20)

Low partial credit:

- Correct formula and no other meaningful work

High partial credit

- Correct formula with some correct substitution

Calculation Scale 10C* (0, 5, 7, 10)
Low partial credit:

- Part of calculations completed

High partial credit:

- Calculations mainly correct but with some error
(b)(ii) Scale 5C (0, 3, 4, 5)

Low partial credit:

- Any work of merit

High partial credit:

- Fully correct substitution but error(s) made in calculation

MARCANNA BREISE AS UCHT FREAGAIRT TRÍ GHAEILGE

(Bonus marks for answering through Irish)

Ba chóirmarcanna de réiranghnáthráta a bhronnadhariarrthóirínachngnóthaíonnníosmóná 75\% d'iomlánnamarcanna don pháipéar. Ba chóirfreisinan marc bónais sin a shlánúsíos.

Déantarancinneadhagus an ríomhaireachtfaoin marc bónais i gcásgachpáipéirarleithligh.
Is é 5% angnáthrátaagus is é 300 iomlánnamarcanna don pháipéar. Mar sin, bainúsáid as an ngnáthráta 5% i gcásiarrthóirí a ghnóthaíonn 225 marc nóníoslú, e.g. 198 marc $\times 5 \%=9.9$ \Rightarrow bónas $=9$ marc.

Mághnóthaíonn an t-iarrthóirníosmóná 225 marc, ríomhtar an bónas de réirnafoirmle [300 - bunmharc] $\times 15 \%$, agusan marc bónais sin a shlánúsíos. In ionadanríomhaireacht sin a dhéanamh, is féidirúsáid a bhaint as an táblathíos.

Bunmharc	Marc Bónais
226	11
$227-233$	10
$234-240$	9
$241-246$	8
$247-253$	7
$254-260$	6
$261-266$	5
$267-273$	4
$274-280$	3
$281-286$	2
$287-293$	1
$294-300$	0

