

Coimisiún na Scrúduithe Stáit **State Examinations Commission**

LEAVING CERTIFICATE EXAMINATION, 2010

ENGINEERING – MATERIALS AND TECHNOLOGY

(Higher level – 300 marks)

THURSDAY, 10 JUNE MORNING 9:30 – 12:30

INSTRUCTIONS

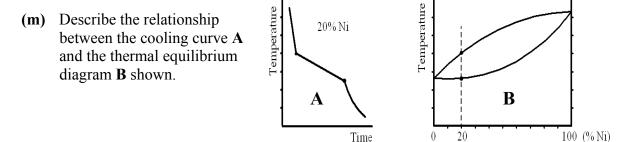
- 1. Answer Sections A and B of Question 1 and FOUR other questions.
- 2. All answers must be written in ink on the answer book supplied.
- **3.** Diagrams should be drawn in pencil.
- 4. Squared paper is supplied for diagrams and graphs as required.
- 5. Please label and number carefully each question attempted.

Question 1.

(100 marks)

Section A – 50 Marks

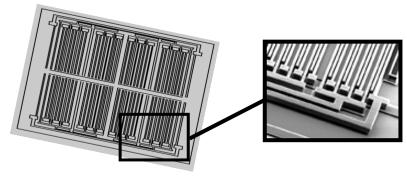
Give brief answers to any ten of the following:


(a) State the purpose of any two of the safety signs shown.

- (b) Describe flotation separation as a method of ore dressing.
- (c) Outline two reasons for the use of models or prototypes in the design and manufacture of cars.
- (d) Identify **any two** finishing treatments that may be applied to mild steel to protect against corrosion.
- (e) Describe the type of fracture in the tensile test specimen shown.

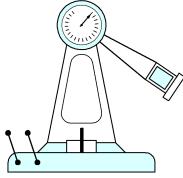
- (f) State any three common applications of pneumatic control.
- (g) Select any two of the abbreviations shown and explain their meaning:
 (i) LED (ii) IC (iii) http (iv) DVD.
- (h) Outline the safety precautions to prevent *rancidity* when using cutting fluids.
- (i) What contribution did any one of the following make to technology?(i) Steve Jobs (ii) John Logie Baird (iii) John P. Holland.
- (j) Outline two methods of securing nuts in order to prevent loosening due to vibration.
- (k) Why are *factors of safety* critically important in the design and manufacture of a helicopter?
- (I) Identify three crystal point defects.

Section B – 50 Marks


Answer all of the following:

- (n) Outline the benefits for using accelerometer technology in each of the following applications:
 - (i) mobile phone;
 - (ii) car safety.

- (o) Explain, with the aid of suitable diagrams, **any three** of the following types of movement used in an accelerometer:
 - (i) Acceleration;
 - (ii) Vibration;
 - (iii) Shock;
 - (iv) Tilt;
 - (v) Rotation.
- (p) A micro electro-mechanical systems (MEMS) accelerometer is illustrated in the diagram below. Describe the principle of operation of this type of accelerometer.

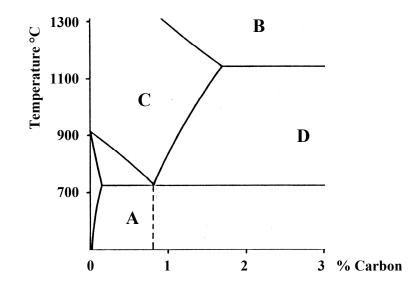


- (q) Explain any two of the following:
 - (i) The factors to be considered when selecting an accelerometer for use in protecting a laptop computer;
 - (ii) Piezoelectric accelerometer;
 - (iii) How the distribution of hot gas may be used as a sensing element in an accelerometer.
- (r) The accelerometer will measure both static and dynamic forces on items such as the computer game controller shown. Distinguish clearly between *static* and *dynamic* forces.

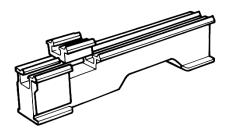
Question 2.

- (a) (i) Outline two reasons for the mechanical testing of metals to the point of destruction.
 - (ii) Describe the main features of the mechanical test represented in the diagram, with reference to the following:
 - Purpose of the test
 - Principle of operation.

(b) The following results were obtained from a tensile test on a cold-worked brass specimen. The test specimen was 16 mm in diameter with a gauge length of 80 mm.

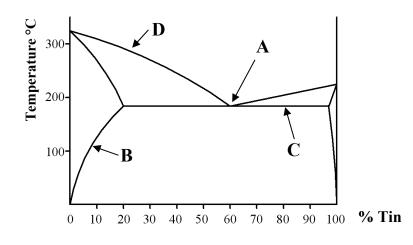

Load (kN)	23	46	69	82	89	94	102	110	123	131	136	139	132	118
Extension(mm)	0.1	0.2	0.3	0.4	0.5	0.6	0.8	1.0	1.5	2.0	2.5	3.0	4.0	4.3

Using the graph paper supplied, plot the load-extension diagram and determine:


- (i) The ultimate tensile strength (UTS);
- (ii) The 0.1% proof stress.
- (c) Describe, with the aid of suitable diagrams, **each** of the following non-destructive tests (NDT):
 - (i) Eddy current testing;
 - (ii) Radiography (x-ray) testing.

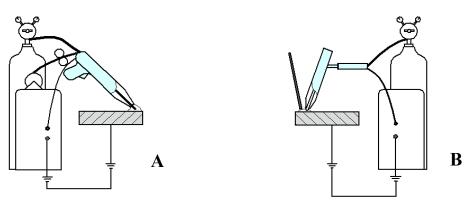
Question 3.

- (a) Select any two of the following:
 - (i) Compare the impact of soaking with the impact of water cooling in heat treatment;
 - (ii) Distinguish between the optical pyrometer and the thermo-electric pyrometer;
 - (iii) Describe the normalising process.
- (b) A simplified section of the iron-carbon equilibrium diagram is shown:



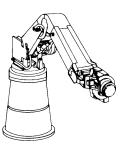
- (i) Identify the regions labelled A, B, C and D.
- (ii) Describe, with the aid of a diagram, the crystal structure of martensite.
- (c) The machined guideways of the lathe bed shown will be subjected to wear.
 - (i) Identify a suitable heat treatment process to prevent wear on the guideways.
 - (ii) Describe, with the aid of suitable diagrams, this heat treatment process.

Question 4.

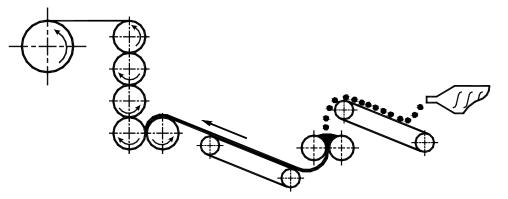

- (a) Explain any two of the following:
 - (i) Dislocation defect;
 - (ii) Age hardening;
 - (iii) Intermetallic compound;
 - (iv) Eutectoid point.
- (b) The lead-tin equilibrium diagram is shown below.

- (i) Identify the point A and the lines B, C and D.
- (ii) Describe the main features of the diagram.
- (iii) Determine, from the diagram, the composition of the phases at 250°C for the alloy at 30% tin.
- (c) Describe any two of the following:
 - (i) Solid solution alloy;
 - (ii) Eutectic alloy;
 - (iii) Partial solubility alloy.

Question 5.

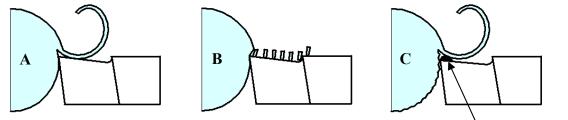

(a) Two industrial welding processes are illustrated at A and B below.

- (i) Name the two welding processes;
- (ii) Identify one application for each process;
- (iii) Describe the principles of operation for **any one** of these welding processes.
- (b) Answer any three of the following:
 - (i) Describe **three** important safety features integrated into the equipment used for oxyacetylene welding;
 - (ii) State two functions of the slag produced in manual metal arc welding;
 - (iii) Identify one use for submerged arc welding (SAW);
 - (iv) Describe the principle of resistance welding.
- (c) Describe, with the aid of suitable diagrams, the main features of **one** of the following:
 - (i) Electro-slag welding;
 - (ii) Oxyacetylene welding.


OR

- (c) Outline the advantages of using robotic control for **each** of the following engineering applications:
 - (i) Spray painting vehicle body parts;
 - (ii) Testing gas pipes;
 - (iii) Placement of electronic components on circuit boards.

Question 6.


(a) A polymer manufacturing process is shown below.

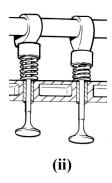
- (i) Name the process and describe the principle of operation;
- (ii) Identify one component produced by this process.
- (b) Differentiate between thermoplastics and thermosetting plastics, making reference to:
 - (i) Chemical bonding;
 - (ii) Internal structure;
 - (iii) Properties.
- (c) Explain any three of the following in relation to polymers:
 - (i) Stabiliser;
 - (ii) Glass transition temperature;
 - (iii) Condensation polymerisation;
 - (iv) Elastomer;
 - (v) Elastic memory in acrylic sheet.

Question 7.

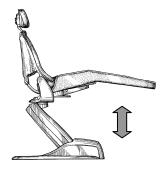
- (a) Answer any three of the following:
 - (i) Identify two cutting tool materials used on a centre lathe;
 - (ii) Describe the process of up-cut milling;
 - (iii) Explain the differences between forming and generating;
 - (iv) Outline two reasons for wheel dressing a grinding wheel;
 - (v) Distinguish between a clearance fit and an interference fit.
- (b) The main types of material chip formed in metal cutting are illustrated below.

Built-up edge

- (i) Identify the type of chip formed at **A** and the type of chip formed at **B**.
- (ii) Describe the type of material that results in the chip formed at A and the type of material that results in the chip formed at B.
- (iii) Suggest three safety precautions that would minimise the formation of a built-up edge as shown in **C**.
- (c) Describe, with the aid of suitable diagrams, the essential features of **one** of the following:
 - (i) Magnetic chuck;
 - (ii) Four-jaw chuck.


OR

- (c) (i) Explain the term CNC.
 - (ii) Describe the use of CNC technologies with reference to each of the following:
 - Efficiency
 - Accuracy
 - Cost.


Question 8.

(a) Name and describe the operation of any one of the mechanisms shown:



- (b) Explain any three of the following:
 - (i) The use of bevel gears;
 - (ii) Double-acting cylinder;
 - (iii) Clutch;
 - (iv) The function of an idler gear;
 - (v) Capacitor.
- (c) Describe, with the aid of suitable diagrams, a mechanism to control the vertical movement of the dental chair shown.

OR

- (c) The circuit shown is used to automatically turn on car parking lights:
 - (i) Identify the electronic components A, B, C and D.
 - (ii) Describe two functions of component **D** in this circuit.

Blank Page