AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 1999

ENGINEERING - MATERIALS AND TECHNOLOGY (Higher Level - 300 marks)

5996

FRIDAY, 25 JUNE, AFTERNOON 2.00 to 5.00

Answer Question 1, Sections A and B, and Four other questions

SECTION A - 50 marks

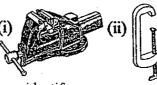
1.

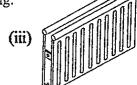
(100 marks)

DDC1101111 OV IIIII

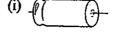
Give <u>brief answers</u> to <u>any ten</u> of the following:

(a) Describe how <u>any one</u> electrical hazard may be prevented.


- (b) Name one physical property of metals which can be used to facilitate ore dressing.
- (c) Explain why slippage occurs more easily in FCC structures.



(d) A metallic bond is shown, outline briefly its main properties.

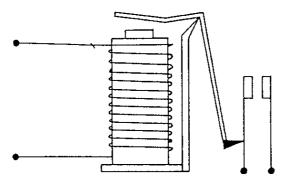


- (e) State <u>two</u> ways of ensuring good quality joints when using adhesives.
- (f) Select <u>any three</u> of the abbreviations shown and explain their meaning:
 - (i) IC; (ii) PTFE; (iii) RAM; (iv) LCD; (v) VDU.
- (g) State the main process used to manufacture <u>any two</u> of the following:

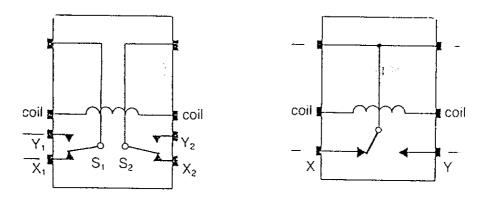
(h) Two electronic devices are shown, identify only one and describe its purpose.

- (i) Outline three main ways of preventing corrosion in metals.
- (j) Suggest any two applications of the dial gauge shown.

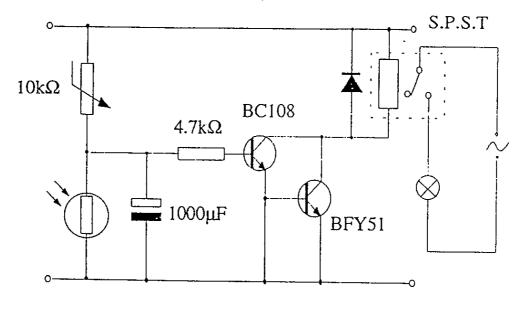
- (k) How does hardening occur in the aluminium Y-alloy?
- (1) Outline the purpose of the gauge shown opposite.


- (m) Describe a contribution to technology by <u>any one</u> of the following:
 - (i) Joseph Henry; (ii)

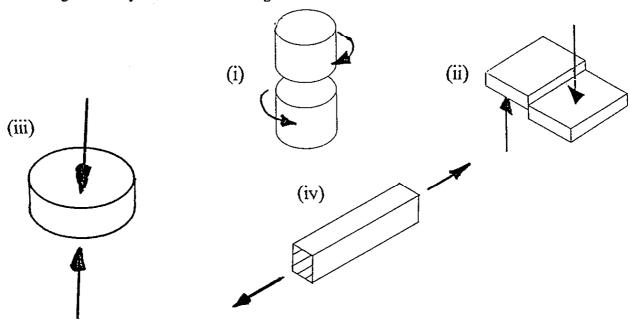
(iii) Ivan Sikorsky.


SECTION B - 50 marks

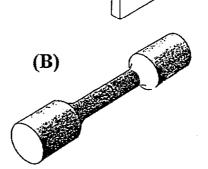
Answer all of the following:


- (n) Describe the energy conversion that takes place in an electromagnet.
- (o) Using the electromagnetic relay shown, identify;
 - (i) the armature; (ii) the solenoid; (iii) the contactors.

- (p) Distinguish between a normally open (NO) and a normally closed (NC) type of relay.
- (q) Using the diagrams given below, distinguish between a double pole double throw (DPDT) and a single pole double throw (SPDT) relay.

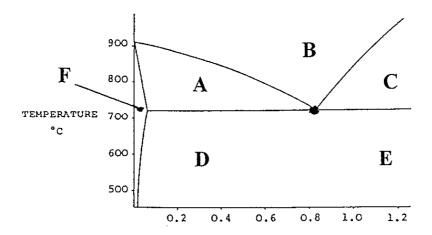


(r) The circuit diagram shows a relay controlled mains lamp. Outline the operation of the circuit and describe the purpose of the diode positioned near the relay.

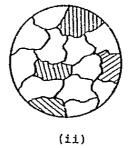


Page 2 of 8

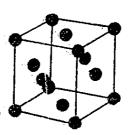
(a) Distinguish clearly between the following forces:

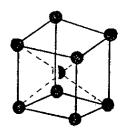

- (b) Two common test specimens are shown at A and B. Select <u>one</u> specimen and describe fully the test associated with it using the following guidelines:
 - (i) Test name and purpose;
 - (ii) Test procedure;
 - (iii) Results.

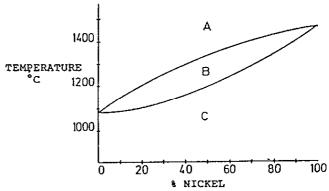
- (c) Describe the principles of <u>any two</u> of the following non-destructive tests:
 - (i) Ultrasonic;
 - (ii) Magnetic;
 - (iii) Radiographic.


In each case selected, state its suitability for the detection of internal or external faults.

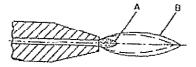
(a) (i) The diagram shows a simplified iron-carbon equilibrium diagram. Redraw the diagram into you answerbook and insert the names of the microstructures at A, B, C, D, E and F.


- (ii) Identify and explain the meaning of the Eutectic point.
- (b) The diagrams represent the microstructures of medium carbon steel (0.5%) when quenched rapidly from 870°C and slowly cooled from 870°C. Describe both structures and explain their differences.




(c) Describe how high temperatures are measured in heat treatment furnaces.

- (a) Answer <u>any three</u> of the following:
 - (i) Name the three unit cells represented.
 - (ii) Which structure is most associated with brittleness in metals?
 - (iii) Explain the term allotropic.
 - (iv) Name a metal based on each structure, under normal conditions.
 - (v) Distinguish between *crystalline* and *amorphous* structures.

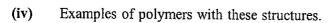


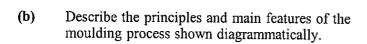
- (b) A thermal equilibrium diagram for a copper / nickel alloy system is shown.
 - (i) Name the upper and lower curves and explain what the areas at A, B and C represent;
 - (ii) With reference to the alloy containing 40% nickel, determine from the diagram the compositions of the phases at 1200°C.

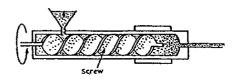
(c) Distinguish between a substitutional solid solution and an interstitial solid solution.

- (a) Answer <u>one</u> of the following:
 - (i) Describe the two stage combustion in the neutral oxy-acetylene flame shown at A and B;

- (ii) Differentiate between a carburising and an oxidising flame.
- (b) Metal Inert Gas (MIG) welding is a common welding process. Describe the process using the following guidelines:
 - (i) Name and applications;
 - (ii) Main features and operation.
- (c) Describe <u>any two</u> different ways of protecting welds from atmospheric contamination.

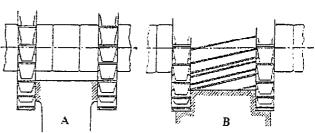

<u>OR</u>


(c) In relation to robotic control of welding, describe how robots are driven.

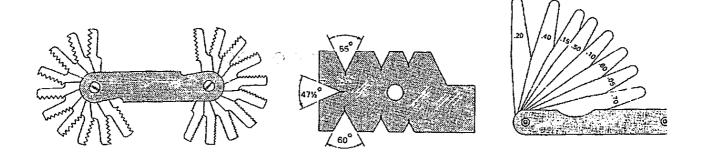

6. (50 marks)

- (a) Three polymer chain structures are shown.

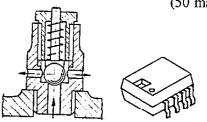
 Describe these structures using the following guidelines:
 - (i) Name and characteristics;
 - (ii) Properties and bond type;
 - (iii) Polymerisation type;

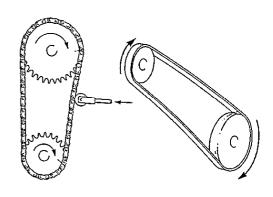


- (c) State the purpose of <u>any two</u> of the following in the production of polymers:
 - (i) Catalysts;
 - (ii) Promoters;
 - (iii) Inhibitors;
 - (iv) Fillers.


- (a) Describe the positive effects of using cutting fluids on metal cutting operations.
- (b) Answer <u>any two</u> of the following:
 - (i) Distinguish between the two milling operations shown at A and B;

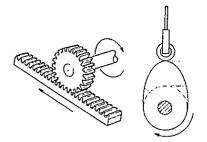
(ii) Outline a use for the lathe accessory shown.


- (iii) Explain the terms loading and glazing of a grinding wheel.
- (c) Select <u>any two</u> gauges shown and describe their use.

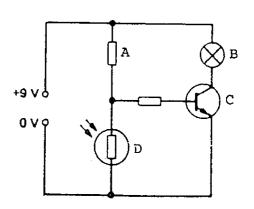

<u>OR</u>

- (c) With reference to a CNC lathe, explain any three of the following terms:
 - (i) Canned cycle;
 - (ii) Stepper motor;
 - (iii) X-axis;
 - (iv) Z-axis;
 - (v) G codes.

(a) Explain the function and suggest an application of any <u>one</u> item shown opposite.

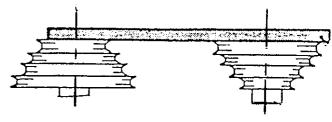


- (b) Answer <u>any two</u> of the following:
 - (i) Compare the two drive mechanisms shown, identifying the advantages and disadvantages of both systems.


(ii) The two mechanical devices may cause a similar change of motion to occur, state the type of motion that occurs.

Suggest an application for each device.

- (iii) State the energy conversion that occurs in both an electric motor and a car battery.
- (c) Identify the electronic components marked at A, B, C and D.


 Outline an application of the circuit.

<u>OR</u>

Page 8 of 8

(c) Describe how drilling speeds can be varied on a V-belt drive. Describe how maximum and minimum speed is achieved.

