

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate Applied 2013

Marking Scheme

Mathematical Applications

Common Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.
Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates’ work and to ensure consistency in the standard of the assessment from year to year.
Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

MARKING SCHEME LEAVING CERTIFICATE APPLIED, 2013

MATHEMATICAL APPLICATIONS

GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to candidates' work as follows:
... Blunders - mathematical errors/omissions (-3)
... Slips - numerical errors (-1)
... Misreadings (provided task is not oversimplified) (-1).
Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled as B1, B2, B3,......, S1, S2, S3,...., M1, M2, etc. Note that these lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), it is essential to note that
... any correct relevant step in a part of a question merits at least the attempt mark for that part
... if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
... a mark between zero and the attempt mark is never awarded.
3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,....etc.
4. The same error in the same section of a question is penalised once only.
5. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
6. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks only.
7. The phrase "and stops" means that no more work is shown by the candidate.

QUESTION 1

Part (a)	5 marks	Att 2
Part (b)	5 marks	Att 2
Part (c)	5 marks	Att 2
Part (d)	5 marks	Att 2
Part (e)	5 marks	Att 2
Part (f)	5 marks	Att 2
Part (g)	5 marks	Att 2
Part (h)	5 marks	Att 2
Part (i)	5 marks	Att 2
Part (j)	5 marks	Att 2

Part (a)
5 marks
Att 2
Calculate $\sqrt{215}$, correct to two decimal places.
(a)

5marks
Att 2
(a)
$\sqrt{215}=14.6628783$
$=14.66$

* Accept correct answer with no work.

Blunders(-3)
B1: Answer $=(215)^{2}=46225$
B2: Answer $=215 \div 2=107.5$
B3: Misplaced decimal.
Slips (-1)
S1: Each numerical error to a max. of -3 .
S2: Failure to round or incorrect rounding.
Attempts(2)
A1: $215 \times 2=430$

Part (b)

5 marks
Att 2
A house originally priced at $€ 225000$ is reduced by 5%. What is the new selling price of the house?

(b)

5 marks

Att 2
(b) $€ 225000 \times 5 \%=€ 11250$.

New selling price $=€ 225000-€ 11250$
$=€ 213750$

* Accept correct answer with no work.

Blunders(-3)
B1:Misplaced decimal.
B2: Inverts 225000
B3: Inverts 5\%
Slips(-1)
S1: Each numerical error to a max. of -3 .
S2: Failure to round or incorrect rounding.
S3: Answer $=€ 11250$ (+ S4)
S4: Calculates 105\% (236250)
Attempts(2)
A1: Multiplies the $€ 225000 \times 5=€ 1125000$ and stops
A2: Answer $=225000 \pm 5(225005 / 224995)$
A3: $€ 225000$ decreased by any number not mentioned above.
A4: Answer $=95 \%$
A5: Answer $=225000 \div 5=45000$ or $225000-45000=180000$

An injection uses $15 \mathrm{~cm}^{3}$ of medicine. How many such injections can be got from $1 \cdot 8$ litres of medicine?

(c)	5marks
(c) Number of injections $=1800 \div 15$ $=120$	

* Accept correct answer with no work.

Blunders(-3)

B1: $1800 \times 15=27000$ or $1.8 \times 15=27.00$
B2: Failure to covert litres to cm^{3}
B3: Misplaced decimal
Slips(-1)
S1: Each numerical error to a max. of -3 .
Attempts(2)
A1: Answer $=1 \cdot 8 \pm 15$ (16.8/-13.2)
A2: Answer $=15 \div 1.8=8.33333$
A3: Answer $=15^{3}=3775 \div 1.8=1875$ or $3375 \times 1.8=6075$

Part (d)
5 marks
Att 2
What measurement is the arrow pointing to?
(d)

5marks
Att 2
(d) Answer $=4 \cdot 3$

* Accept correct answer with no work.

Blunders(-3)
B1: Answer $=0 \cdot 3$
B2: Answer $=4 \cdot 2$ or 4.4
B3: Misplaced decimal

Part (e)
5 marks
Att 2
Given an exchange rate of $€ 1=£ 0.79$ sterling, convert $€ 150$ to sterling
(e)

5 marks
Att 2
$€ 150 \times £ 0 \cdot 79=£ 118 \cdot 50$

* Accept correct answer with no work

Blunders(-3)

B1: Answer $=€ 150 \div £ 0 \cdot 79=£ 189 \cdot 87$
B2: Inverts $€ 150$. (.005266660)
B3: Misplaced decimal
Slips(-1)
S1: Failure to round or incorrect rounding
S2: Incorrect or omitted units.
S3: Each numerical error to a max of -3
Attempts(2)
A1: Answer $=€ 150 \pm 0.79(150.79 / 149.21)$
Worthless (0)
W1: Answer $=€ 150$ or 0.79
Part(f)

	Calculate $1 \frac{3}{4} \cdot 2 \frac{1}{3}$	Att 2
(f)	marks	
(f) $\quad 1 \frac{3}{4} \cdot 2 \frac{1}{3}=\frac{7}{4} \cdot \frac{7}{3} @ \frac{21}{12} \cdot \frac{28}{12} @ \frac{49}{12} @ 4 \frac{1}{12}$ or $1 \cdot 75+2 \cdot 33333333=4 \cdot 08333333$		

* Accept correct answer with no work
* Accept answer $=\frac{49}{12}$ or any equivalent of $\frac{49}{12}$

Blunders(3)
B1: Misplaced decimal
B2: Incorrect common denominator
Slips(-1)
S1: Each numerical error to a max. of -3 .
S2: Truncates decimal answer.
Attempts(2)
A1: Answer $=\frac{7}{4}$ or $\frac{7}{3}$
A2: Answer $=(1+2)=34 / 7$
A3: Answer $=13 / 4+21 / 3=41 / 4$
Worthless (0)
W1: Answer $=\frac{7}{7}$

Part $(\mathbf{g}) \quad \mathbf{5}$ marks
A regular hexagon has a side of length 7.25 cm. Find the perimeter of the hexagon
$\mathbf{(g)}$ Att 2
$(\mathrm{~g}) \quad 7 \cdot 25 \mathrm{~cm} \times 6=43 \cdot 5 \mathrm{~cm}$
* Accept correct answer with no work
Blunders(3)
B1: Misplaced decimal
B2: Inverts 7.25 and continues
B3: Calculates $7.25 \times 7.25=52.5625$
B4: Omits one side to a max of 4
B5: Divides by $6(1.200833333)$
B6: Answer $=7.25+7.25+7.25+7.25+7.25+7.25$ and stops or 7.25×6 and stops
B7: Answer $=7.25+6=13.25$
Attempts(2)
A1: Any use of 6 or 7.25
A2: Indicates lengths on sides on diagram
Slips (-1)
S1: Each numerical error to a max of -3.
S2: Incorrect or omitted units
Worthless(0)
W1:Answer $=7.25 \mathrm{~cm}$
W2: Answer $=7.25 \div 2=3.625$

Part (h)
5 marks
Att 2
I lodged three cheques for $€ 34 \cdot 32$, $€ 23.67$ and $€ 12.76$ in the bank. How much in total
did I lodge?
(h)

5marks
Att 2
(h) $€ 34.32+€ 23.67+€ 12.76=€ 70.75$

* Accept correct answer with no work.

Blunders(-3)
B1: Subtracts instead of adds ($€-2.11$).
B2: Misplaced decimal
Slips(-1)
S1: List evident....one amount omitted.
S2: Each numerical error to a max of - 3 .
Attempts(2)
A1: Answer $=€ 34 \cdot 32+€ 23 \cdot 67+€ 12 \cdot 76$ and stops.
A1: Multiplies the cheques (10365.64)
A3: Answer $=€ 70.75 \div 3=€ 23.58$
Worthless(0)
W1: Answer = One of the cheques only

What is the difference between the largest and the smallest of the following numbers: $0.034, \quad 0.403, \quad 0.304, \quad 0.430, \quad 0.043$
(i)

5marks
Att 2
(i)
$0.034,0.043,0.304,0.403,0.430$
$\Rightarrow \quad$ Difference $=0.430-0.034=0.396$

* Accept correct answer with no work.

Blunders(-3)
B1: Incorrect smallest number unless S3
B2: Incorrect largest number unless S3
B3: Misplaced decimal.
B4: Adds instead of subtracts ($0 \cdot 464$)
Slips(-1)
S1: Each numerical error to a max. of -3 .
S2: Truncates or rounds decimal answer
S3: Either smallest or largest correct and the opposite incorrect
Attempts(2)
A1: Answer = incorrect smallest number - incorrect largest number
A2: List put into correct order and stops.
A3: Any attempt to convert any one number to fractions
A4: Answer $=0.034$ or 0.430
Worthless(0)
W1: Answer = any one number from the given list.

A letter is chosen at random from the word ALGEBRA. What is the probability the letter chosen is an A ?
(j)

(j)	
(j)	$\frac{2}{7}$

* Accept answer written as 2:7, 2 in 7, 2 out of 7, or $0 \cdot 2857142857$ Blunders(-3)
B1: No fraction or ratio set up.
B2: Answer $=2+$ B1.
B3: Answer $=7+B 1$.
B4: Answer $=\frac{7}{2}$
B5: Answer $=\frac{1}{7}$.
Slips(-1)
S1: Truncates decimal answer
S2: Answer $=2-7$ or 2 to 7
Attempts(2)
A1: Any proper fraction other than $\frac{2}{7}, \frac{1}{7}, \frac{7}{2}$.

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	5 marks	Att 2
Part (c)	10 marks	Att 2,2
Part (d)	5 marks	Att 2
Part (e)	10 marks	Att 2,2
Part (f)	10 marks	Att 3

Part (a)
10 marks
Att 3
Estimate the costs involved, to the nearest euro
(a)

10 marks
Att 3
(a)

Quantity	Item	Cost (to the nearest $\boldsymbol{\epsilon}$)
10	Packets of crisps at 72 cent each	7
5	Bags of sweets at $€ 1 \cdot 85$ each	9
20	Cupcakes at 52 cent each	10
12	Sausage Rolls at 37 cent each	4

* Accept correct answers with no work

Blunders(-3)
B1: Incorrect or lack of rounding, apply once only.
B2: Each cost omitted
B3: Misplaced decimal
B4: answer $=€ 30$
B5: Fails to multiply by quantity.

Slips(-1)

S1: Each numerical error to a max of -3 .
Attempts(3)
A1: One cost estimated, correct or incorrect
Part (b)
5 marks
Att 2
John gave an estimate of $€ 30$. Mary said it would be nearer $€ 40$. Which of them gave the best estimate?
(b) 5 marks Att 2
(b) Estimated costs $=€ 7+€ 9+€ 10+€ 4=€ 30$ John gave best estimate.

* Accept correct answer without work
* Accept candidate's answer from part (a)

Attempts(2)
A1: Answer = Mary, with no work.

The attendance at a football match, when given to the nearest thousand, was 37000.
(i) What is the maximum number that could have been in attendance?
(ii) What is the minimum number that could have been in attendance?
(c) (i)

5 marks
Att 2
(i) What is the maximum number that could have been in attendance?
(c) (i) 5 marks

Att 2
(c) (i) 37499

* Accept correct answer with no work.

Blunders(-3)
B1: Maximum given > 37500 to 40000 unless S1.
B2: Answer $=37000$
Slips(-1)
S1: Answer for part (i) given for part (ii) and visa versa once only
S2: Answer = number between 37001 and 37500
Attempts(3)
A1: Number greater ≥ 37500 and ≤ 40000
Worthless(0)
W1: Answer $=30000<$ number <37000
(c) (ii)

5 marks
Att 2
(ii) What is the minimum number that could have been in attendance?
(c) (ii) 5 marks Att 2
(c) (ii) 36500

* Accept correct answer with no work.

Blunders(-3)
B1: Minimum given from $30000<36500$ unless S1.
B2: Answer $=37000$
Slips(-1)
S1: Answer for part (i) given for part (ii) and visa versa once only
S2: Answer = number between 36501 and 37000
Attempts(2)
A1: Number ≥ 30000 and ≤ 36500
Worthless(0)
W1: Answer = number > 38000

Part (d)	5 marks	Att 2
Round the following to the nearest whole number: (i) $143 \cdot 2$ (ii) 0.58 (iii) 14.728		
(d)	5 marks	Att 2
(d) (i) (ii) (iii)	$\begin{aligned} & 143 \\ & 1 \\ & 15 \end{aligned}$	

* Accept correct answer without work

All three correct 5 marks
Two correct 4 marks
One correct 3 marks
Attempts(2)
A1: Only one part attempted incorrect
(i) Write $96 \cdot 41$ to the nearest 10
(ii) Use your answer to estimate $\sqrt{96 \sigma 41}$.
(e) (i) 5 marks

Att 2
(i) Write $96 \cdot 41$ to the nearest 10
(e) (i)

5 marks
Att 2

$$
\text { (e) (i) } 100
$$

* Accept correct answers with no work.

Blunders(-3)
B1: Incorrect rounding (answer must be a whole number between 90 and 99 or 96.4/100.4/100.41)

Worthless(0)
W1: Answer $=96.41$
(e) (ii) 5 marks

Att 2
(ii) Use your answer to estimate $\sqrt{96}$ © 11 .
(e) (ii)

5 marks
Att 2
(e) (ii) \quad Estimated answer $=\sqrt{100}=10$

* Accept correct answers with no work.
* Accept candidate's answer from part (e) (i)

Blunders(-3)
B1: Answer $=\sqrt{100}$ and stops.
B2: Answer $=9$
Slips(-1)
S1: Answer $=9 \cdot 818859404$ and stops
S2: Truncates or rounds decimal answer

Round the numbers as indicated in the following:

Lottery Jackpot of €5 $\mathbf{1 1 6} 813$ last weekend
The Lottery Jackpot last weekend was over \qquad (rounded to nearest million euro).

387216 people now registered as unemployed
Nearly \qquad (rounded to nearest 100000) people now unemployed.

Inflation in Europe now running at $\mathbf{0 . 0 2 7 5}$
European inflation is now at nearly \qquad (rounded to two places of decimals).

Lottery Jackpot of €5 $\mathbf{1 1 6} 813$ last weekend

The Lottery Jackpot last weekend was over (i) $€ \mathbf{5}$ million (rounded to nearest million euro).

387216 people now registered as unemployed
Nearly (ii) 400000 (rounded to nearest 100000) people now unemployed.
Inflation in Europe now running at $\mathbf{0 . 0 2 7 5}$
European inflation is now at nearly (iii) $\mathbf{0 . 0 3}$ (rounded to two places of decimals).

* Accept correct answer with no work
*Accept 5 or 4
Marking Scheme
All three correct. 10 marks
Two correct......................... 7 marks
One correct........................... 4 marks

Attempts(3)
A1: Only one part attempted incorrect

QUESTION 3

Part (a)	20 marks	Att 7
Part (b)	10 marks	Att 3
Part (c)	5 marks	Att 2
Part (d)	15 marks	Att 2,2,2

Part (a)
20 marks
Att 7
(a) The average monthly temperature for Malta is recorded on the following table:

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temp $\left({ }^{\circ} \mathrm{C}\right)$	13	13	15	17	21	25	28	28	26	18	18	15

Draw a trend graph to represent this information

Months
Blunders(-3)
B1: Omits a month to a max of -9 .
B2: Divisions on Month axis not all of equal length
B3: Incorrect scaling of the 'freq.' axis/
B4: Omits names of months.
B5: Dots not joined or incorrectly joined.
B6: Serious mishandling of scale, numbers or months not in correct order + B3
B7: Omits labels on axis once only
Attempts(7)
A1: Labels one or two axes only.
A2: Draws trend graph with no axes
Misreading(-1)
M1: Constructs correct bar chart or pie chart.

Calculate the average temperature for June, July and August
(b)

10 marks
Att 3
(b)

$$
\frac{25.28 .28}{3}=\frac{81}{3}=27^{\circ} \mathrm{C}
$$

* Accept correct answer with no work.

Blunders(-3)

B1: Multiplies the total by $3($ Answer $=243)$
B2: Total only + B1
B3: Inverts 81
B4: Misplaced decimal
B5: Each incorrect temperature unless M1
B6: Adds all 12 months and finds average (19.75)
Slips(-1)
S1: Each numerical error to a max of -3 .
S2: Incorrect or omitted units
S3: List evident, one temperature omitted
Attempts(3)
A1: Any indication of addition
A2: Multiplies one of the temperatures by 3
Misread(-1)
M1: Uses any other 3 consecutive months
Worthless(0)
W1: Multiplies temperatures only
W2: Answer = 3, with no work
W3: Answer $=28$

Part (c)	Att 2
(c) Convert the temp	
(c)	Att 2
$\text { (c) } \begin{aligned} \mathrm{F} & =28 \times \frac{9}{5} \cdot 32 \\ \mathrm{~F} & =\frac{252}{5} .32 \\ \mathrm{~F} & =50 \cdot 4+32 \\ \mathrm{~F} & =82 \cdot 4^{\circ} \mathrm{F} \end{aligned}$	

* Accept correct answer with no work
*Accept answer $=82 \frac{2}{5}{ }^{\circ} \mathrm{F}$ or $\frac{412}{5}{ }^{\circ} \mathrm{F}$

Blunders(-3)

B 1 : Ignores order of operations
B2: Mishandles or ignores $\frac{9}{5}$
B3: Misplaced decimal
B4: Correct substitution and stops + B1 + possible B2
Slips(-1)
S1: Each numerical error to a max of -3
S2: Truncates or rounds decimal
Attempts(2)
A1: Substitution for C correct or incorrect and stops

Part (d) \quad 15($5,5,5$) marks

rt (d)	15(5,5,5) marks		Att 2,2,2
ROUTE	41a	41b	41c
Dublin(Busáras) dep.	1305	1400	1450
Dublin Airport dep.	$1320 \mathbf{P}$	$1415 \mathbf{P}$	1505P
Newry(Buscentre) arr.	1430 D	$1525 \mathbf{D}$	$1615 \mathbf{D}$
Banbridge(War Memorial) arr.	1450 D	1545D	1635D
Sprucefield(Shopping Centre) arr.	1510 D	$1605 \mathbf{D}$	1655D
Belfast(Glangall Street) arr.	1525	1620	1710

(i) At what time does the 41c bus arrive in Belfast?
(ii) How long does it take the 41a bus to reach Belfast from Dublin?
(iii) The distance from Dublin to Belfast is 170 km .

Calculate the average speed of the 41a bus, using S @ $\frac{D}{T}$
(d) (i)

5 marks
Att 2
(d) (i) 41 c bus arrives at 1710

* Accept use of the 12 hour clock but must indicate am or pm

Blunders(-3)
B1: Incorrect column
B2: Incorrect row
Slips(-1)
S1: Calculates the duration of the journey correctly
S2: Uses 12 hour clock but does not indicate am or pm
(d) (ii)

5 marks
Att 2
(d) (ii) Duration $=$ 15:25-13:05

$$
=2 \text { hours and } 20 \text { minutes } / 140 \text { minutes }
$$

* Accept correct with no work.
*Accept answer using any column
Blunders(-3)
B1: 1 hour $=100 \mathrm{mins}$
B2: Adds instead of subtracts
Slips(-1)
S1: Each numerical error to a max of -3
S2: Answer $=220$ with no units
Misreadings(-1)
M1: Uses incorrect row
Attempts (2)
A1: Answer = arrival time in Belfast only (1525)
A2: Answer $=$ any time greater than 2 hours
(d) (iii)
(d) (iii) $S=\frac{D}{T}$
$S=\frac{170}{2 \circlearrowleft 33333}$
$\mathrm{S}=72 \cdot 85715 \mathrm{~km}$ per hour
* Accept correct answer with no work.
*Accept candidate's answer from part (d)(ii)
Blunders(-3)
B1: Multiplies by 2.33333333333333 (39.666666)
B2: Correct substitution and stops
B3: Each incorrect substitution
B4: Inverts $\frac{170}{2 \circlearrowleft 33333} \quad(0.3333352871)$
B5: Misplaced decimal
B6: 1 hour $=100$ minutes $(170 \div 2.20=77.27)$
Slips(-1)
S1: Each numerical error to a max of -3
S2: Incorrect or omitted units
S3: Truncates answer
Attempts (2)
A1: One substitution only correct or incorrect
A2: $170 \pm 2 \cdot 3333333333333$ and stops

QUESTION 4

Part (a)	10 marks	Att 3
Part (b)	10 marks	Att 3
Part (c)	10 marks	Att 3
Part (d)	10 marks	Att 3
Part (e)	5 marks	Att 2
Part (f)	5 marks	Att 2

Part (a) 10 marks
Att 3
In the box below, construct a rectangle 8 cm long and 3 cm wide

* tolerance $\pm 0.1 \mathrm{~cm}$
* tolerance $\pm 3^{\circ}$
* Accept width $=8 \mathrm{~cm}$ and length $=3 \mathrm{~cm}$

Blunders(-3)

B1: Each side of rectangle omitted to a max of -6
B2: Side outside tolerance of 0.5 cm applied once to either side.
B3: Angle not between 80° and 100° once only.
Slips(-1)
S1:Incorrect units.
S2: Each side outside tolerance of $0 \cdot 1 \mathrm{~cm}$ unless B2 applied once to either side.
S3: Angle not between 87° and 93°, once only unless B3
Attempts(3)
A1: One side drawn only, within tolerance
A2: Rectangle not drawn with straight edge.
A3: Draws a triangle with no sides correct

The rectangle you have drawn in part (a) is a scaled diagram of a parking space. The scale is 1:200. Calculate the actual measurements of the car parking space.
(b)

10 marks
Att 3
(b) Length: $8 \mathrm{~cm} \times 200=1600 \mathrm{~cm}$ or 16 metres

Width : $3 \mathrm{~cm} \times 200=600 \mathrm{~cm}$ or 6 metres

* Accept correct answer with no work
* Accept answer in cm or m.

Blunders(-3)
B1: Correct answer for the length or width only
B2: Divides by 200
B3: Answer $=8 \times 1.2=9.6 / 3 \times 1.2=3.6$

Slips(-1)

S1:Each numerical error to a max. of -3 .
S2: Incorrect or omitted units once only
Attempts(3)
A1: Answer $=$ length $=1 \mathrm{~cm}$ and width $=200 \mathrm{~cm}$ and stops
A2: Answer $=$ length $=9 \mathrm{~cm}(8+1)$ and width $=203 \mathrm{~cm}(3+200)$
Worthless(0)
W1:Length $=8 \mathrm{~cm}$ and width $=3 \mathrm{~cm}$ and stops

What is the area of the car parking space? Give your answer in m^{2}
(c) 10 marks Att 3
(c) Area:- $16 \mathrm{~m} \times 6 \mathrm{~m}=96 \mathrm{~m}^{2}$

* Accept correct answer with no work
* Accept candidate's answer from part (b)

Blunders(-3)
B1: Misplaced decimal.
B2: Divides to get area
B3: Incorrect length unless B8
B4: Incorrect width unless B8
B5: Incorrect conversion.
B6: 16×6 and stops
B7: Calculates perimeter + B5 (Answer $=22 \mathrm{~cm}$)
B8: Area $=8 \mathrm{~cm} \times 3 \mathrm{~cm} 0.0024 \mathrm{~m}^{2}$
Slips(-1)
S1: Each numerical error to a max. of -3 .
S2: Incorrect or omitted units
Attempts(3)
A1: Answer $=16-6$ and stops
Worthless(0)
W1: Answer $=8$ or 3 or 200 not relevant to candidates answer from part (b)

Part (d)

10 marks
Att 3
Tarmacadam costs $€ 16 \cdot 50$ per square metre. Find the cost of tarmacadam for the parking space.

(d) 10 marks	Att 3
(d)	$96 \mathrm{~m}^{2} \times € 16 \cdot 50=€ 1584$.

* Accept correct answer with no work
* Accept candidates answer from part (c)

Blunders(-3)
B1: Divides by $€ 16 \cdot 50$.
B2: Inverts 96
B3: Misplaced decimal
Slips(-1)
S1:Each numerical error to a max. of -3 .
S2: Failure to round or incorrect rounding.
Attempts(3)
A1: Answer $=96 \pm 16 \cdot 50$ and stops
(e) $€ 364 \cdot 32$ VAT is added to the cost of the tarmacadam. Find the percentage rate of VAT that is being used.
(e)

5 marks
Att 2
(e) \quad VAT rate $=\frac{364 ळ 2}{1584} \times 100=0.23 \times 100=23 \%$

* Accept candidate's answer for part (d)
* Accept correct answer with no work

Blunders(-3)
B1: Inverts $\frac{364 ळ 2}{1584}$.(4.347826087)
B2: Subtracts $€ 364 \cdot 32$ from $€ 1584$ and continues
B3: Misplaced decimal
Slips(-1)
S1: Each numerical error to a max. of -3 .
Attempts(2)
A1: Answer $=€ 364 \cdot 32+€ 1584$ (1948.32)
A2: Answer $=€ 364.32 \times € 1584$ (577082.88)
A3: Some work with 100
(f) A sphere has diameter of length 5 cm . Calculate the volume of the sphere taking $\pi=3 \cdot 14$.
(f)

5 marks
Att 2

$$
\begin{aligned}
\text { Volume } & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3}, 3 \mathrm{a} 4, \ldots 2 \sigma^{-3} \\
& =\frac{4}{3} \times 3.14 \times 15.625 \\
& =\frac{4}{3} \times 49.0625 \\
& =65 \cdot 416666 \mathrm{~cm}^{3} \text { or } 65 \frac{5}{12} \mathrm{~cm}^{3}
\end{aligned}
$$

* Accept volume using $\pi=\frac{22}{7}$
* Accept answer $=65 \cdot 44984695$ (using π button on the calculator)
* Accept correct answer with no work

Blunders(-3)

B1: $r=$ diameter
B2: Mishandling of r^{3} (e.g $3 r$ for r^{3})
B3: Fails to substitute for π and continues (Answer $=20.83333333 \mathrm{~cm}^{3}$)
B4: Misplaced decimal.
B5: Correct substitution and stops + possible B2
B6: Mishandles or ignores fraction
Slips(-1)
S1: Each numerical error to a max. of -3.
S2: Truncates answer
S3: Incorrect or omitted units
Attempts(2)
A1: Only one substitution correct or incorrect and stops
A2: Adds the dimensions only.

QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	10marks	Att 3
Part (c)	5 marks	Att 2
Part (d)	10marks	Att 3
Part (e)	5 marks	Att 2
Part (f)	10 marks	Att 2,2
Part (a)	10 marks	Att 3
Write out the list of all possible two-digit numbers that can be made using the digits $2,3,4$.		

(a) 10 marks Att 3
(a) $22,23,24$,

32, 33, 34, $42,43,44$,

* Accept correct answer in any order

One or two (including 42) selections correct $=3$ marks
Three selections correct $=4$ marks
Four selections correct $=5$ marks
Five selections correct $=6$ marks
Six selections correct $=7$ marks
Seven selections correct $=8$ marks
Eight selections correct $=9$ marks
Nine selections correct $=10$ marks
Note no penalty for extra numbers
Attempt(3)
A1: Answer $=6$ and stops.
A2: Answer $=9$ and stops
Misreadings(-1)
M1: Lists all 3 digit numbers.

Part (b)
One ticket is chosen at random. What is the probability that the number on the ticket chosen is an odd number?
(b)
(b) $\frac{3}{9}$ or $\frac{1}{3}$

* Accept answer written as $3: 9,3$ in 9,3 out of 9 , or $0 \cdot 333333333333$
* Accept answer written as $1: 3,1$ in 3,1 out of 3 , or 0.333333333333
* Accept correct without work.
* Accept candidate's answer for part (a)

Blunders(-3)

B1: No fraction or ratio set up.
B2: Answer $=3+B 1$. or $1+$ B1
B3: Answer $=9+$ B1. or $3+$ B1
B4: Answer $=\frac{9}{3}$ or $\frac{3}{1}$
B5: Answer $=\frac{1}{9}$
Slips(-1)
S1: Truncates decimal answer.
S2: Answer $=3$ to 9 or 1 to 3
S3:Answer $=3$ to 9 or 1 to 3
Attempts(3)
A1: Any proper fraction other than $\frac{3}{9}, \frac{1}{9}, \frac{3}{1}$.

This ticket is replaced, and a ticket is again drawn at random. What is the probability that the number on the ticket chosen is less than 40 ?
(c) 5 marks Att 2
(c)

$$
\frac{6}{9} \text { or } \frac{2}{3}
$$

* Accept answer written as $2: 3,6: 9,6$ in 9,2 in 3,2 out of 3,6 out of 9 or 0.666666666
* Accept candidate's answer for part (a)

Blunders(-3)
B1: No fraction or ratio set up.
B2: Answer $=2+$ B1 or $6+$ B1
B3: Answer $=3+$ B1 or $9+$ B1
B4: Answer $=\frac{9}{6}$ or $\frac{3}{2}$
B5: Answer $=\frac{1}{9}$ or $\frac{1}{3}$

Slips(-1)
S1: Truncates decimal answer
S2: Answer $=6$ to 9 or 2 to 3
S3: Answer $=6$ to 9 or 2 to 3

Attempt(2)
A1: Any proper fraction other than $\frac{6}{9}, \frac{2}{3}, \frac{9}{6}, \frac{1}{9}, \frac{1}{3}$.

Part (d)

Michelle has a gross salary of $€ 28500$ per year.
(d) Tax is paid at 21%. Calculate Michelle's tax
(d)

10 marks
Att 3
(d) $€ 28500 \times 21 \%=€ 5985$

* Accept correct answer with no work

Blunders(-3)
B1: Inverts 21\%
B2: Inverts $€ 28500$
B3: Misplaced decimal.
Slips(-1)
S1: Each numerical error to a max. of -3.
S2: Calculates 121\%
S3: Answer = €22515
Attempts(3)
A1: Answer $=€ 28500 \pm 21$
Part (e) 5 marks
Att 2
Michelle has a tax credit of $€ 3340$ per year. How much tax does she pay?
(e) 5 marks Att 2
(e) $\operatorname{Tax}=€ 5985-€ 3340$

$$
=€ 2645
$$

* Accept correct answer with no work
*Accept candidate's answer from part (d)

Blunders(-3)

B1: Adds rather than subtracts tax credits (€9325)
B2: Calculates 21% of answer in part (d) and continues
B3: Misplaced decimal
Slips(-1)
S1: Each numerical error to a max. of -3 .
S2: Truncates answer
Attempts(2)
A1: $€ 28500 \pm € 3340$ and stops ($31840 / 25160$)

The Universal Social Charge (USC) is calculated using the following chart
Fill in the missing details to calculate Michelle's USC

Income	$\%$ USC	USC
$€ 0-€ 10036$	2%	$€ 200 \cdot 72$
$€ 10036-€ 16016$	4%	$€ 239 \cdot 20$
Earnings over $€ 16016$	7%	\square
Total USC payable		\square

(f)(i)

5 marks
f(i)
Earnings over $€ 16016$
7\% \square

(f)(i)	5 marks
(f)	$€ 28500-€ 16016=€ 12484 \times 7 \%=€ 873.88$

* Accept correct answer with no work

Blunders(-3)

B1: Inverts 7\% and continues
B2: Inverts $€ 16016$ and continues
B3: Uses 2% or 4%
B4: Fails to subtract 16016 from 28500 and continues (gets 7% of $16016=1121.12$)
B5: Misplaced decimal
Slips(-1)
S1: Each numerical error to a max. of -3.
S2: Truncates answer
Attempts(2)
A1: $€ 16016 \pm 7$.
A2: Finds 7\% of a relevant number

* Accept answer from part f(i)
*Accept correct with no work

Blunders(-3)

B1: Each amount omitted to a max of -3
B2: Subtracts rather than adds
B3: Misplaced decimal
Slips(-1)
S1: Each numerical error to a max. of -3 .
S2: Truncates answer
Attempts(2)
A1: Answer $=€ 200 \cdot 72$ or $€ 239 \cdot 20$ or answer from part f (i)

