Coimisiún na Scrúduithe Stáit

State Examinations Commission

TECHNOLOGY

Junior Certificate Examination, 2005
HIGHER LEVEL
200 Marks
Wednesday, 22nd June, Afternoon, 2:00 to 4:00
SECTION A

MARKING SCHEME

INSTRUCTIONS

1. Answer Section A (short answer questions).

100 marks
2. Answer either (a) or (b) from each question in Section B. 50 marks
3. Answer one question from Section C.
4. Hand up this paper at the end of the examination along with answer sheets for Section B and C.

Centre

Number

Examination
Number

For Examiner	
Total Mark	
Question	Mark
Section A	
Section B Q1 (a)	
(b)	
Q2 (a)	
(b)	
Section C Q3	
Q4	
Q5	
Q6	
Total	
Grade	

MAKE SURE TO WRITE YOUR EXAMINATION NUMBER IN THE BOX PROVIDED ON THIS PAGE

Section A Answer 25 questions from this section - all questions carry equal marks.

1. Explain the function of both of these computer drawing programme icons.
(ii)

(i): Line(1) style(1) (type of line)
(ii): Arrow head(s) on line

1st correct: 3 marks
2nd correct: 1 mark
2. Complete the development of the chocolate bar wrapper shown.

\square
3 rectangles: 2 marks
2 triangles: 2 marks
(-1 for each item missing,/ missing dotted line, incorrect prop.)
3. State two advantages of using CAD to produce drawings?

CAD Drawing
(i): Any two valid ans.:
(ii): 1 st correct: 3 marks

2nd correct: 1 mark
Drawing easily changed or autodimension or can be saved/recalled or easily changed, or neat/accurate, etc
4. In relation to computers state the meaning of the following abbreviations:
(i) ROM
(ii) CPU

ROM: Read Only Memory CPU:Central Processing Unit:

1st correct: 3 marks 2nd correct: 1 mark
5. State two reasons why some manufacturers no longer supply floppy disk drives with new computers?
(i): Any two valid ans.:
(ii): 1st correct: 3 marks 2nd correct: 1 mark

Storage too small or unreliable or larger storage available
(CD/ZIP/memory sticks)
6. Indicate if the timbers listed are a softwood or a hardwood.

Beech: Hardwood: 1 mark
Teak: Hardwood: 1 mark
Pine: Softwood: 1 mark
Oak: Hardwood: 1 mark
7. Solder is an alloy.

Explain the underlined word.
Name one other alloy.

Alloy: Mixture of a metal and another element

Name: Any one valid example Brass/Bronze/Steel, etc.

1st correct: 3 marks
2nd correct: 1 mark
8. Name the tool shown
and

name a material which
can be shaped using
this tool.

Tool: Snips

Material: Metal

Plastic/Wood/Paper : 0 mks
1st correct: 3 marks
2nd correct: 1 mark
9. Name the forces at X and at Y in the beam shown.

Force X: Compression
Force Y: Tension
1st correct: 3 marks
2nd correct: 1 mark
10. State two advantages of plastic containers over glass containers for soft drinks.

(i): Any two valid ans.:
(ii): 1 st correct: 3 marks 2nd correct: 1 mark

Lighter (than glass) or Safer / Thin walls or Complex shapes, or Cost, etc
11. Which statement concerning the current flow in the transistor shown is correct?

Statement A: Ic = Ia - Ib
Statement B: $\mathbf{I c}=\mathbf{I a}+\mathbf{I b}$
Statement C: $\mathrm{Ic}=\mathrm{Ia} \div \mathrm{Ib}$
Statement D: Ic $=\mathrm{Ia} \times \mathrm{Ib}$

Answer: B: 4 marks
12. Name and sketch the symbol for the logic gate which will produce the truth table shown.

Input1	Input 2	Output
1	1	1
1	0	1
0	1	1
0	0	0

Gate: OR
Symbol: shown

1st correct: 3 marks 2nd correct: 1 mark
13. In relation to a switch state the meaning of the following abbreviations:
(i)

COM
(ii) NC

COM: Common
NC: Normally Closed
1st correct: 3 marks
2nd correct: 1 mark
14. Sketch the circuit symbols for the components shown.
(i) Buzzer

(ii) Motor

(i):

1st correct: 3 marks, 2 nd correct: 1 mark
15. Indicate clearly on the circuit shown the correct location of:
an ammeter

In series as shown
and
a voltameter,

In parallel as shown
to measure the resistance of the bulb when lighting.

1st correct: 3 marks, 2 nd correct: 1 mark
16. Name the mechanism shown and
state one advantage in using this mechanism to lift a load.

Name: Worm (gear)
Advantage: Any 1 valid ans.:
Large torque
or will not slip
or speed reduction,
or direction change, etc.
1st correct: 3 marks, 2nd correct: 1 mark
$($ Screw $=0$, Slot head $=1)$
and
state which diameter drill bit A, B or C, should be used to make a pilot hole for the screw.

1st correct: 3 marks, 2nd correct: 1 mark
18. Identify two mechanisms on a bicycle where friction is essential to the cyclist.

(i): Any two valid ans.:
(ii): 1st correct: 3 marks

2nd correct: 1 mark
Brakes
Gears, etc
19. Calculate the effort required to lift the load.

Why is the measured effort greater than the calculated effort?

10N

Effort: 5(N)
Reason: Friction
1st correct: 3 marks
2nd correct: 1 mark

Output speed: 60(RPM): 4 marks
Alt: $\quad 40 \times 30=20 \times$ ' X^{\prime}
or
Formula: 2 marks

Driven
Output speed
21. Indicate clearly the locations of pin 1
and
pin 8 on the chip shown.

— Pin 8: 2 marks

1st correct: 3 marks, 2nd correct: 1 mark
22. Identify the thermosetting plastic in the following list:
Polythene, PVC, Bakelite
and
state one use for a thermosetting plastic.

Thermoset: Bakelite
Use: One valid use
Light switch, pot handle, etc

1st correct: 3 marks
2nd correct: 1 mark
23. State two safety precautions
which must be observed when using an electric hand drill.

(i): Any two valid ans.:
(ii): 1st correct: 3 marks

2nd correct: 1 mark
No loose hair
or remove chuck key
or support workpiece,
or goggles, etc
24. Explain the term 'computer virus'.

Computer virus:
valid answer: 4 marks
A programme/doc. which can cause a named difficulty with a PC

1st correct: 3 marks
2nd correct: 1 mark
25. State two reasons for making a model as part of the design process.

(i): Any two valid ans.:
(ii): 1 st correct: 3 marks

2nd correct: 1 mark
Test design, or check sizes, etc.
or check safety issues, etc.
26. In the vacuum forming mould shown, explain why
(i) the sides of the mould are sloped and
(ii) holes are drilled in the base.

(i):Sloped : Ease of removal of workpiece
(ii): Holes: allow air flow through mould

1st correct: 3 marks
2nd correct: 1 mark
27. Name two audio recording
technologies which have replaced cassette tapes.

Cassette tape
(i): Any two valid ans.:
(ii): 1 st correct: 3 marks 2nd correct: 1 mark

CD / DAT / DVD / Mini Disk / HD / Memory chip/stick, etc.
28. State two reasons why a plastic bag levy was introduced by the government.

(i): Any two valid ans.:
(ii): 1st correct: 3 marks 2nd correct: 1 mark

Reduce waste or Pollution or Encourage recycling , etc.
29. When soldering a component to copper stripboard, name two procedures which will ensure a good joint.

(i): Any two valid ans.:
(ii): 1 st correct: 3 marks

2nd correct: 1 mark
Use (flux) to clean ... or Clean iron on sponge or do not move component until solder sets /use heat sink, or iron to reach correct temp. etc.
30. State two items of information communicated by the sketch.

(i): Any two valid ans.:
(ii): 1 st correct: 3 marks

2nd correct: 1 mark
2 different materials used
or Nut \& Bolt used
or One material bent
or Dome head bolt used, etc.
31. Complete the isometric sketch of the component shown.

Isometric view

Orthographic view
Any 4 faces shown in correct proportions sketched: 4×1 mark
32. Locate the second vanishing point (VP2) and complete the perspective view of box 2 .

Locate VP2 (constr. lines not reqd.): 2 marks
Any three of four lines shown sketched: 2 marks

Coimisiún na Scrúduithe Stáit
 State Examinations Commission

TECHNOLOGY

Junior Certificate Examination, 2005
HIGHER LEVEL
200 Marks
Wednesday, 22nd June, Afternoon, 2:00 to 4:00

SECTION B and SECTION C MARKING SCHEME

SECTION B - 50 Marks
 SECTION C - 50 Marks

INSTRUCTIONS

1. Answer either (a) or (b) from each question in Section B.
2. Answer one question from Section C.
3. Make sure to hand up Section A with your answer sheets to this paper.

1 (a) The sketch shows a design for a motorised vehicle.
The vehicle will be manufactured from acrylic (cab) and wood (body).
All dimensions are in millimeters
(i) Using a suitable scale sketch:

1. An elevation looking in the direction of arrow ' X ', indicate the approximate positions of the wheels.
2. A plan view looking in the direction of arrow ' Y '. Include all dimension lines in your sketch.

10 marks

(ii) Identify two areas of the design which present a safety concern and sketch an alternative design.
$\left[\begin{array}{ll}\text { 1st area identified }: 1 \mathrm{mark} & \text { Alt. design sketched }: 2 \text { marks } \\ \text { 2nd area identified }: 1 \text { mark, } & \text { Alt. design sketched }: 1 \text { marks }\end{array}\right.$
(iii) 1. Sketch a design for a means to open and close the acrylic cab to allow access to the motors and batteries.

Suitable design : 2 marks,
Quality of sketch : 3 marks ($1,2,3$)
2. Sketch and label a suitable mechanism which will allow a 'driver' to bob up and down as the vehicle moves.

1 (b) The sketch shows a design for an acrylic undercarriage for a model plane. The wings, tail plane, rudder and electric motor are omitted.

All dimensions are in millimeters
(i) Using a suitable scale, draw a development of the undercarriage.

Indicate the approximate positions of the drill holes.
Indicate clearly all bend lines and show the overall dimensions.

(ii) 1. Indicate clearly the correct steps required to drill the acrylic, for the wheels and engine mount, at the points indicated.

2. Indicate clearly the steps you would take to manufacture and finish the undercarriage from a sheet of acrylic.
Name all equipment required.
10 marks
3 steps: 3×1 mark,(cut, bend, finish) 2 tools: 2×1 mark (saw, heater,file)
(iii) Sketch a suitable design modification which will reduce the weight of this undercarriage without reducing the strength.

2 (a) A circuit is required for a child's electronic storybook, as shown, which will:

- show a red glow in the fire icon when the child's hand warms the word 'FIRE' in the story OR
- light up the moon icon when the child covers the word 'MOON' in the story.

2k2: RED: 1 mark, RED: 1 mark, RED: 1 mark.

2. Sketch the symbol for the LED and indicate clearly how to identify the negative leg on the LED.

10 marks

```
|---------------------------------------------------\
```

(ii) 1. Using the appropriate component symbols, sketch the circuit diagram for potential divider A.
2. Using the appropriate component symbols, sketch the circuit diagram for potential divider B.
P.D. A : Component symbol: Thermistor: 1 mark, (Var). Resistor: 1 mark.
Correct Locations (as shown): Thermistor: 1 mark, (Var.) Resistor: 1 mark.
P.D. B : Component symbol: LDR: 1 mark, (Var). Resistor: 1 mark.
Correct Locations (as shown): LDR: 1 mark, (Var.) Resistor: 1 mark.
3. State one advantage of constructing this circuit on printed circuit board
in place of copper strip board. 10 marks

(iii) The maximum current for the red LED used is 20 mA . If a 9 V power supply was used in place of the 6 V supply, show how you would calculate the value of the required protective resistor.

$$
5 \text { marks }
$$

Formula: V/I = R: $2 \mathrm{mks}, \quad 9 / 0.02: 2 \mathrm{mks},[9 / 20=1 \mathrm{mk}], 450(\mathrm{R} / \Omega): 5 \mathrm{mk}$.

2 (b) The sketch shows the components required to control the movement of a sliding door. A DPDT relay and limit switches are also required.

2.

Explain why a DPDT relay is used in this situation.

3.

Explain why limit switches are required.
10 marks

(ii) 1. Arrange the gears shown to produce the maximum possible speed reduction when connected to the motor.

2. If the motor turns at 16 RPM, calculate the output speed of this gear arrangement.

10 marks
$16 \mathrm{RPM} \times 10 \mathrm{~T}=40 \mathrm{~T} \times[4 \mathrm{RPM}$]: 3 marks
4 RPMx 20T $=40 \mathrm{~T} x$ [2 RPM]: 2 marks
Formula only: 2 mks
(iii) Sketch and name two alternative mechanisms which will allow the motor and gear system to move the sliding door.

1st valid named mechanism: 2 marks, Correct sketch: 1 mark
2nd valid named mechanism: 1 marks, Correct sketch: 1 mark (ex: Rack \& pinion, Gear \& chain, Pulley \& belt)

Section C - 50 Marks

Answer one question from this section - all questions carry equal marks.
This section relates to Technology \& Society, Control Systems and Design \& Manufacture.

3. Technology and Society

Microelectronics are now widely used in society.
20 marks
(a) (i) Using appropriate examples, name two areas where microelectronics are found in the home and outline their use.
1st ex. microelectronics identified: 3 marks, Use outlined: 2 marks $(1,2)$
2nd ex. microelectronics identified: 3 marks, Use outlined: 2 marks $(1,2)$
(Ex: In CD/DVD/Remote control/Microwave control, etc. Use: satisfactory outline)
(ii) Explain, giving two reasons, why many devices containing microelectronics are regarded as disposable.

Alternative energy sources, such as solar, wind and tide, are commonly used to supplement traditional energy sources in providing energy for the national electricity grid.

20 marks
(b) (i) Outline two concerns regarding traditional energy sources.

(ii) State one impact which the construction of each of these alternative energy sources will have on the environment.
1 impact Solar/Wind/Tide: 6 marks
(Ex; Positive impact related to less pollution, negative impact: visual, etc.)
(iii) Outline one disadvantage associated with the operation of each of these alternative energy sources.
Solar Disadv: $2 \mathrm{mks}(1,2)$ Wind Disadv.: $2 \mathrm{mks}(1,2)$ Tide Disadv.: $2 \mathrm{mks}(1,2)$
(Ex; Visual (wind farms), Tidal/Water sources alter water use, Output limited, etc)

Digital technologies are commonly found in consumer goods from digital images to digital music.
(c) Using appropriate examples, outline two advantages of digital technology over older technologies.

10 marks

[^0]
4. Control Systems \& Technology and Society

Robotic devices are commonly preferred in space exploration as shown. 35 marks
(i) Explain, giving two reasons, why robots are preferred in this situation.

1st Reason: 5 marks
2nd Reason: 5 mark (Ex: Environment too dangerous for people, can operate for long hours, disposable, etc.)
(ii) Explain the function of a computer programme, a computer interface and sensor feedback in the operation of the Mars Rover.
Explain function: Computer programme: 5 marks $(1,4,5)$
(Ex: control operation of Rover, Allow Rover to operate without human intervention, etc)
Explain function: Computer interface: 5 marks $(1,4,5)$
(Ex: Allow computer operate Rover hardware(motors/sensors, etc))
Explain function: Sensor feedback: 5 marks $(1,4,5)$
(Ex: Provide data from sensors(tilt/temp./light(solar),etc) to computer programme, etc)
(iii) Explain why an on-board computer and an earth based computer are required to control the Mars Rover missions.

```
Explain why on-board computer: 5 marks(1,4,5)
| (Ex: control local Rover functions/operations, provide local control, etc.)
| Explain why earth based computer: 5 marks(1,4,5)
(Ex: monitor data from Rover, Update/upload instructions to on-board computer, etc.)
```

Manufacturing industry commonly use robotic arms on production lines.
(iv) Explain why robotic arms are designed with up to 'six degrees of freedom'.

```
Six degrees of freedom: 5 marks(1,4,5)
(Ex: Arm can access all parts of production part,
Arm can move fwd/back, up/down, left/right, etc.)
```

(v) Explain why robotic arms are an essential part of a 'flexible manufacturing system'.

```
Flex. Manuf. System: 5 marks(1,4,5)
(Ex: Arms can be reprogrammed to manufacture different products, etc.)
```

(vi) Explain why robotic arms will never completely replace a human workforce.

[^1]A model of a retractable bridge is required to span the stream between the paths A and B shown. One person must be capable of extending and retracting the lightweight bridge.

(a) 20 marks
(i) Name two materials from which the bridge could be manufactured. State one advantage and one disadvantage to each material.
1st suitable material: 2 marks \quad 2nd suitable material: 2 marks
1st material : valid advantage: 2 marks, valid disadvantage: 2 marks
2nd material : valid advantage: 2 marks, valid disadvantage: 2 marks
(ii) Outline one manufacturing and one finishing process required for each material named.
1st material : outline manuf. process: 2 marks, outline finishing process: 2 marks
2nd material : outline manuf. process: 2 marks, outline finishing process: 2 marks
(b) 30 marks
(i) Sketch a suitable lightweight structure for the bridge.

Quality of sketch: 10 marks $(5,7,10)$
(ii) Indicate two different structural features which will prevent distortion of the bridge.

1st valid structural feature identified/indicated/sketched: 5 marks
2nd valid structural feature identified/indicated/sketched: 5 marks
(iii) Sketch a suitable mechanism which will allow one person to easily extend and retract the bridge.

Quality of sketched mechanism: 5 marks
Valid mechanism to extend \& retract: 5 marks
6. Control Systems

A block diagram for a system to control the water levels in a tank is shown.
The system will turn on a water pump if low water levels are detected at sensor S1 or an override switch S2 is activated. The pump will not operate if high levels are detected at sensor S3.
Sensor S1 produces a logic state of 0 at low water levels. Sensor $S 3$ produces a logic state of 1 at high water levels. A latched alarm is required at E.

(a) 30 marks
(i) Identify the logic gates required at A, B, C and D.

(ii) Copy and complete the partial truth table for this gate arrangement.

```
fTruth table:4\times3 marks---\
```

$\mathbf{S 1}$	$\mathbf{S 2}$	$\mathbf{S 3}$	\mathbf{X}	\mathbf{Y}
0	0	1	1	0
1	0	1	0	0

(iii) Explain the term 'Latch'.
Latch explained: 3 marks (1,2,3) (Ex: When I/P goes 'high (1), O / P goes
'high' (1) \& remains high even if I/P goes low / O/P remains high (1) unless reset)
(iv) Outline the gate arrangement required to produce the latch.

Outline how to set up gate: 3 marks
(Ex: O/P linked back to I/P(2), OR(1))

NAND gates can be combined to produce other logic gates
20 marks (a NAND gate is an AND gate followed by a NOT gate).
(b) Use truth tables to determine which logic gate is equivalent to the NAND gate arrangements shown below?

Page 17 of 17

[^0]: 1st example: 3 marks, 1st ex. Advantage digital technology: 2 marks
 2nd example: 3 marks, 2nd ex, Advantage digital technology: 2 marks
 (Ex: CD/DVD/TV, etc. Adv: Better quality, Size, easy to manipulate, etc.)

[^1]: Robotic Arm/Human workforce: 5 marks $(1,4,5)$
 (Ex: Human workforce more 'flexible'/can react to unexpected sit./, etc.)

