Junior Certificate Examination, 2010

Technical Graphics Higher Level Section B
(280 marks)

Monday, 21 June
Morning 9:30-12:30

Instructions

(a) Answer any four questions.
(b) All questions in this section carry equal marks.
(c) The number of the question must be distinctly marked by the side of each answer.
(d) Work on one side of the answer paper only.
(e) Write your examination number on each sheet of paper used.

SECTION B. Answer any four questions. All questions carry equal marks.

1 A pictorial view of a model of a castle is shown.
(a) Draw an elevation in the direction of arrow \mathbf{A}.
(b) Project a plan from the elevation.
(c) Project an end view in the direction of arrow \mathbf{B}.
(d) Determine the true shape of surface \mathbf{S}.

2 The figure shows the elevation and end view of a flap for a waste paper bin.
The flap is transparent and shows a recycling logo. A 3D graphic of the bin is also shown. The flap is rotated about point \mathbf{O}, as shown by the broken line in the end view.
(a) Draw the given elevation and end view.
(b) Project an elevation of the flap in the direction of arrow \mathbf{A} to show the flap and logo in the rotated position.

Section B - Page 2 of 4

3 The axonometric axes required for the isometric projection of a rainwater storage tank are shown.

The plan and end elevation of the storage tank are shown in their required positions.

A 3D graphic of the storage tank is also shown.
(a)
(i) Draw the axonometric axes as shown.
(ii) Draw the plan orientated at 45° as shown.
(iii) Draw the end elevation orientated at 15° as shown.
(iv) Draw the completed axonometric projection of the storage tank.

OR

(b) Draw the completed isometric projection of the storage tank using the isometric scale method.

4 The figure shows the elevation and end view of a design for a covered stand for a sports stadium. A 3D graphic of the stand is also shown.
(a) Draw the given elevation and end view of the stand.
(b) Project a plan from the elevation.
(c) Draw the development of the curved surface \mathbf{A}.
(d) Draw the development of the sloping surface \mathbf{B}.

5 The figure shows the logo for a butterfly farm.
The figure is subject to transformations in the following order:

- Axial Symmetry
- Translation
- Central Symmetry
- Rotation anti-clockwise through 120°.

P1, P2, P3 and P4 show the positions of point \mathbf{P} under each of these transformations.
(a) Draw the given figure.
(b) Determine the image of the figure under each of these transformations.

6 The figure shows the design of a logo for a sailing club.
The curve $\mathbf{A B}$ is a parabola with the vertex at \mathbf{A}.
The curve CDG is a semi-ellipse with focal points at \mathbf{F}_{1} and \mathbf{F}_{2}.
Determine the major and minor axes and draw the semi-ellipse CDG.

The line $\mathbf{E H}$ is a tangent to the semi-ellipse CDG at \mathbf{E}.

The curve $\mathbf{L M}$ is an identical portion of the semi-ellipse CDG.

Complete the given design showing clearly how to locate the point \mathbf{M}.

Section B - Page 4 of 4

