Coimisiún na Scrúduithe Stáit State Examinations Commission

Junior Certificate 2013

Marking Scheme

Mathematics

Ordinary Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.
Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

Coimisiún na Scrúduithe Stáit State Examinations Commission

Junior Certificate Examination, 2013

Mathematics

Paper 1

Ordinary Level

Solutions

and

Marking Scheme

BONUS MARKS FOR ANSWERING THROUGH IRISH

Bonus marks are applied separately to each paper as follows:
If the mark achieved is 225 or less, the bonus is 5% of the mark obtained, rounded down. (e.g. 198 marks $\times 5 \%=9.9 \Rightarrow$ bonus $=9$ marks.)

If the mark awarded is above 225, the following table applies:

Bunmharc (Marks obtained)	Marc Bónais (Bonus Mark)	Bunmharc (Marks obtained)	Marc Bónais (Bonus Mark)
226	11	$261-266$	5
$227-233$	10	$267-273$	4
$234-240$	9	$274-280$	3
$241-246$	8	$281-286$	2
$247-253$	7	$287-293$	1
$254-260$	6	$294-300$	0

GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions (-3)
- Slips- numerical errors
- Misreadings (provided task is not oversimplified)

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5.50$ may be written as $€ 5,50$.

QUESTION 1

Part (a)	$10(5,5)$ marks	Att (2,2)
Part (b)	$20(5,5,5,5)$ marks	Att (2,2,2,2)
Part (c)	$20(10,5,5)$ marks	Att (3,2,2)

(a)

10(5,5) marks
Att (2,2)

1. (a) (i) Using the Venn diagram below, shade in the region that represents $A \cap B$.

(ii) Using the Venn diagram below, shade in the region that represents $B \backslash A$.

Part (a)(i)
5 marks
Att 2

Blunders (-3)

B1 Any incorrect indication other than the misreading below
Misreadings (-1)
M 1 . $\mathrm{A} \cup \mathrm{B}$ indicated.

Worthless

W1 No filling in of the Venn Diagram

Blunders (-3)

B1 Any incorrect indication other than the misreading below
Misreading
M1 A $\backslash \mathrm{B}$ indicated
Worthless
W1 No filling in of the Venn Diagram
(b)
$20(5,5,5,5)$
Att (2,2,2,2)
U is the universal set.
$P=\{2,4,6,8,10,12\}$ is the set of multiples of 2 less than 13 .
$Q=\{3,6,9,12\}$ is the set of multiples of 3
less than 13.
$R=\{4,8,12\}$ is the set of
multiples of 4 less than 13 .

(i) List the elements of $Q \cup R$.
(ii) List the elements of P^{\prime}, the complement of the set P.
(iii) Write down \#R.
(iv) What is the lowest common multiple of 2,3 and 4 ?

$$
Q \cup R=\{3,4,6,8,9,12\}
$$

Blunders (-3)
B1 Any incorrect set of the elements of Q and R other than the misreading as below.
Misreadings (-1)
M1 $Q \cap R$ giving $\{12\}$.

Slips (-1)
S1 Each correct element omitted and/or each incorrect element included. (Max -3)

Attempts (2 marks)
A1 Any one correct element appears in the answer
A2 $\{10,2\}$ appears or $(Q \cup R)^{\prime}$
(b) (ii)

5 marks
Att 2
$P^{\prime}=\{1,3,5,7,9,11\}$

Blunders (-3)
B1 Any incorrect set of the elements of P^{\prime} other than the misreading below.
Misreading (-1)
M1 $\quad P \backslash Q$ giving $\{2,4,8,10\}, P \backslash R$ giving $\{2,6,10\}, P \backslash(Q \cup R)=\{2,10\}$
M2 $\operatorname{Set} \mathrm{P}$
Slips (-1)
S1 Each correct element omitted and/or each incorrect element included. (Max -3)
(b) (iii)

5 marks
Att 2
$\# R=3$

Blunders (-3)
B1 Incorrect \#R ≤ 12. (See M2)
Misreadings (-1)
M1 \#R' $=9$.

Attempts (2 marks)
A1 Uses phrase "number of elements" or "cardinal number".
A2 \#R = 384 or 24
A3 Lists R or R^{\prime}

Worthless (0)
W1 Any number greater than 12 but see A2
L.C.M of 2, 3 and $4=12$

Blunders (-3)

B1 A common multiple that is not the lowest

Slips (-1)

S1 Answer written as 4×3

Attempts (2 marks)

A1 Any multiple of 2,3 or 4 written in this part
A2 $\mathrm{HCF}=1$

Worthless (0)

W1 Elements listed are not multiples of 2,3 or 4
W2 Incorrect answer without work
(c)
$\mathbf{2 0}(\mathbf{1 0 , 5 , 5})$ marks
Att (3,2,2)
(c) In a class survey, a group of students were asked if they liked tea (T) or coffee (C).

21 said they liked tea.
17 said they liked coffee.
12 said they liked tea and coffee.
3 said they liked neither tea nor coffee.

(i) Represent this information in the Venn diagram below.

(ii) How many students were in the group?
(iii) How many liked either tea or coffee only?

Blunders (-3)
B1 Each incorrect or omitted entry (unless consistent error) in Venn Diagram subject to S1 below
Slips (-1)
S1 Numerical errors where work is clearly shown
Misreading (-1)
M1 Interchanges Tea and Coffee
Attempt (3 marks)
A1 Any one correct or relevant entry
(c) (ii) 5 marks

Att 2
Number of Students $=9+12+5+3=29$

* A correct answer written in the space provided takes precedence over an incorrect Venn diagram.
* Accept candidates work from previous part c (i).

Blunders (-3)
B1 Any incorrect use of the given numbers or the numbers from the candidates incorrect Venn diagram. [Subject to S1].

Slips (-1)
S1 Numerical errors where work is clearly shown.
S2 Fails to add the correct relevant figures
Misreadings (-1)
M1 Answer not presented in designated box but presented elsewhere in c(i)

* A correct answer written in the space provided takes precedence over an incorrect Venn diagram.
* Accept candidates work from previous parts (c) (i), (c) (ii).

Blunders (-3)
B1 Any incorrect use of the given relevant numbers or numbers from the previous work. [Subject to Second *above].

Slips (-1)
S1 Numerical errors where work is clearly shown.
S2 Fails to add the correct relevant figures
Misreadings (-1)
M1 $T \backslash C$ or $C \backslash T$ or $T \cup C$
M2 Answer not presented in designated box but presented elsewhere in c(i)

QUESTION 2

* Candidates may offer other correct methods
* No penalty for the omission of $€$ or $£$ symbols.
* $\quad 33.00 \times 1.25$ and stops $\rightarrow 12$ marks
* $\quad 28 \times 1.25=35$ and stops $\rightarrow 9$ marks
* $5 \times 1.25=6.25$ and stops $\rightarrow 9$ marks
* $28+5=33$ and stops $\rightarrow 9$ marks

Blunders (-3)

B1 Correct answer without work.
B2 Incorrect multiplier or uses other operator
B3 Decimal error
B4 Fails to finish, leaves as 33×1.25 and stops
Slips (-1)
S1 Numerical errors to a max of 3 .
S2 Rounds off too early.
Attempts (5 marks)
A1 indicates ($\times 1.25$) and stops.
A2 Any correct step

Worthless (0)

W1 Adds or subtracts 1.25 and stops
W2 Incorrect answer without work.
(b) (i) The population of a town in the year 2000 was 4850 .

The population of the same town in 2010 was 5917.
What was the percentage increase in the population from 2000 to 2010 ?
(b)(i)

5 marks
Att 2
(b)

OR $\quad \frac{5917}{4850} \times 100=122 \%$

$$
122 \%-100 \%=22 \%
$$

$\%$ change $=\frac{1067}{4850} \times 100=22 \%$
Stops or continues after $1067 \rightarrow 4$ marks, if work shown, otherwise Att 2 marks
Slips (-1)
S1 Fails to multiply by 100
S2 Uses 5917 instead of 4850 to get 18.03%
S3 Decimal error.
S4 Inverts $\frac{1067}{4850} \times 100$ and gets 454.54%
S5 Fails to finish
S6 Numerical errors
Attempts (2 marks)
A1 Some use of 100 in attempt to find percentage and stops
A2 Some attempt at subtraction
A3 1067 only (no work shown)
Worthless (0)
W1 Incorrect answer without work
(b)(ii)

10 marks
Att 3
(ii) By rounding each of these numbers to the nearest whole number, estimate the value of $\frac{15 \cdot 765+5 \cdot 47}{6 \cdot 85}$

* $\frac{16+5}{7}$ and stops $\Rightarrow 4$ marks.
* $\frac{16+5}{7}=\frac{21}{7}$ and stops $\Rightarrow 7$ marks
* No penalty if the intermediate step between approximations and correct final answer is not shown i.e. $\frac{21}{7}$ not shown
* \quad Special Case: $\frac{15 \cdot 765+5 \cdot 47}{6 \cdot 85}=3.1$ in this part \Rightarrow Attempt 3 marks.

Blunders (-3)

B1 Error(s) in rounding off to the nearest whole number. (once only if consistent)
B2 Decimal error in calculation of approximate value.
B3 An arithmetical operation other than indicated.
B4 $\frac{16}{7}+5$ or similar and continues.
B5 Decimal error in calculation of final value
B6 Incorrect cancellation

Slips (-1)
S1 Numerical errors to a max of 3.

Attempts (3 marks)
A1 Only one or two approximation made to the given numbers and stops
A2 Ans. 3 with no preceding rounding off
Worthless (0)
W1 Incorrect answer without work but note Special Case * above
b(iii)`
5 marks
Att 2
(iii) Using a calculator, or otherwise, find the exact value of $\frac{15 \cdot 765+5 \cdot 47}{6 \cdot 85}$.
b(iii)
5 marks
Att 2

$$
\frac{15 \cdot 765+5 \cdot 47}{6 \cdot 85}=\frac{21 \cdot 235}{6 \cdot 85}=3.1
$$

Blunders (-3)

B1 Decimal error.
B2 Treats as: $\frac{15.765}{6.85}+5.47=2.301459854+5.47=7.771459854$, [B1 may occur]
B3 Treats as: $15.765+\frac{5.47}{6.85}=15.765+0.798540146=16.56354015$, [B1 may occur]
B4 Treats as: $\frac{15.765-5.47}{6.85}=1.502919708$, [B1 may occur]
B5 Treats as: $\frac{15.765 \times 5,47}{6.85}=12.5889854,[\mathrm{~B} 1$ may occur]
Slips (-1)
S1 Numerical errors to a max of 3.
Attempts (2 marks)
A1 Some correct calculation done.
Worthless (0)
W1 Incorrect answer without work but see B2 to B5
(c)
(c) (i)Using a calculator, or otherwise, find the exact value of $(8 \cdot 41)^{\frac{1}{2}}$.

$$
(8 \cdot 41)^{\frac{1}{2}}=
$$

c(i)
5 marks
Att 2

$$
(8 \cdot 41)^{\frac{1}{2}}=2 \cdot 9
$$

Blunders (-3)
B1 Mishandling $(8 \cdot 41)^{\frac{1}{2}}$ e.g. 70.7281
B2 Decimal Error
Misreadings(-1)
M1 $(8 \cdot 41)^{\frac{1}{2}}=\frac{1}{(8 \cdot 41)^{\frac{1}{2}}}$ and continues or $\sqrt[3]{ }$ etc
Attempts (2 marks)
A1 $\sqrt{ }$ is mentioned
A2 $8.41 \times \frac{1}{2}=4.205$
Worthless (0)
W1 Incorrect answer without work but see B1 .B2 or M1
W2 $8.41 \times 2=16.82$
(ii) Simplify $\frac{a^{6} \times a^{3}}{a^{5}}$. Give your answer in the form a^{n}, where $n \in \mathbb{N}$.

$\mathbf{c}(\mathbf{i i)}$	$\mathbf{5}$ marks	Att 2
	$\frac{a^{6} \times a^{3}}{a^{5}}=\frac{a^{9}}{a^{5}}=a^{4}$	
*	$\mathrm{a} \times a \times \mathrm{a} \times a$ and stops	2 marks
$*$	a^{6+3-5} and stops	4 marks
*	4 only written down	2 marks
$*$	$\frac{a^{9}}{a^{5}}$ and stops	2 marks
$*$	a^{9} and stops	2 marks
$*$	$\mathrm{a} \times \mathrm{a}^{3}$ and stops	2 marks

Blunders (-3)
B1 Correct answers without work.
B2 $a^{3}=a \times a \times a$ and stops
B2 each error in calculation involving indices e.g. $a^{6} \times a^{3}=a^{18}$
B3 Each incorrect number of a 's in the extended form
B4 Each incorrect elimination of a 's in the extended form

Slips (-1)
S1 Numerical errors to a max of 3
S2 $\frac{a^{9}}{a^{5}}=4$ or $\left(1\right.$ over $\left.a^{-4}\right)$ as answer
Attempts (2 marks)
A1 $a^{6} \times a^{3}=a^{6 \times 3}$ and stops
A2 Some correct manipulation of indices
A3 Writes a only
Worthless (0)
W1 Incorrect answer with no work shown
(iii) Two jars of the same brand of coffee are for sale in a shop.

The smaller jar contains 150 g and is priced at $€ 5 \cdot 28$.
The larger jar contains 250 g and is priced at $€ 8 \cdot 50$. Which is the better value?
Show work to explain your answer.

(c)(iii)

5 marks
Att 2
OR $€$ relative to grams
$\frac{150}{5.28}=28.41$ grams
$\frac{250}{8.5}=29.41$
$1 \mathrm{~g}=€ 8 \cdot 50 / 250=€ 0 \cdot 034 \quad$ or $\mathbf{5 0} \mathbf{g}=€ 8 \cdot 50 / 5=€ 1 \cdot 70$
Large jar is better value

Correct answers without relevant work $\rightarrow 2$ marks
Blunders (-3)
B1 Correct answers without work.
B2 Operation other than division when finding the unit cost (once only)
B3 Finds only one unit cost (B5 also applies)
B4 Decimal error
Slips(-1)
S1 Numerical errors to a max of 3.
S2 Correct work but with no or wrong conclusion
Attempts (2 marks)
A1 Any attempt at division
Worthless (0)
W1 Incorrect answer without work

QUESTION 3

Part (a)	10 marks	Att 3
Part (b)	$\mathbf{2 0}(\mathbf{1 0 , 1 0)}$ marks	Att $\mathbf{3 , 3)}$
Part (c)	$\mathbf{2 0}(\mathbf{1 5 , 5)}$ marks	Att (5, 2)
(a)	$\mathbf{1 0}$ marks	Att 3

(a) Place the following numbers in order, starting with the lowest:

$$
\frac{3}{4}, \quad 0 \cdot 7, \quad 72 \%
$$

(a)

10 marks
Att 3

$$
\begin{array}{llll}
\hline \frac{3}{4}=0.75 & 0.7, & 72 \% .=0.72 \\
& \underline{0.7} & \underline{72 \%(0.72)} & \underline{3 / 4(0.75)}
\end{array}
$$

* Accept: $\quad 0.7, \quad 0.72, \quad 0.75$ (merits $\underline{10}$ marks)
* Note: $\quad \frac{3}{4}=0,75$ and $72 \%=0.72$ merits $\underline{4}$ marks

Blunders (-3)
B1 Decimal error (once only if consistent)
B2 Inverts fraction and continues.
B3 Incorrect order, but note M1 and W1

Misreadings(-1)

M1 Orders from highest to lowest
Attempts (3 marks)
A1 $\quad 0.7=\frac{7}{10}$ and stops
A2 Any 2 of the given numbers in the correct order(if $3^{\text {rd }}$ number not shown)
A3 Any step in the right direction
Worthless (0)
W1 Nothing correct or rewrites original list
(b)
(b) (i) Lena's gross pay is $€ 25000$. Her tax credit is $€ 3200$.

She pays income tax at the rate of 20%.
Calculate Lena's take home pay.

Gross Pay	$€ 25000$
Tax @ 20%	
Tax Credit	$€ 3200$
Tax Due	
Take-home Pay	

(b)(i)

10 marks
Att 3

Gross Pay	$€ 25000$
Tax @ 20\%	$\mathbf{€ 5 0 0 0}$
Tax Credit	$€ 3200$
Tax Due	$\mathbf{€ 1 8 0 0}$
Take-home Pay	$\mathbf{£ 2 3 2 0 0}$

Blunders (-3)
B1 Correct answer without work. (Table is work)
B2 All blunders in calculating tax (once only)
B3 Misuse of Tax Credit
B4 Tax Due and Stops
B5 Fails to finish correctly but see S1
Slips (-1)
S1 Numerical errors to a max of 3
Attempt (3)
A1 Some effort at calculating Tax
(ii) Strong mortar can be used for exposed brickwork.

Sand and cement are mixed in a particular ratio to make strong mortar.
75 kg of strong mortar contains 60 kg of sand.
Find the ratio of sand to cement in the mixture.
Give your answer in its simplest form.

(b)(ii)

10 marks
Att 3

	Sand : Cement $(\mathrm{S}: \mathrm{C})$ $60 \mathrm{~kg}: 75-60 \mathrm{~kg}=60: 15=4: 1$	
		S:C
$*$	$60: 75=4: 5 \quad 7$ marks	but $60: 75$ (only) 6 marks
$*$	$75: 60=5: 4$ merits 6 marks	but $75: 60$ (only) $\quad 5$ marks
	$75-60=15$ (with work)	4 marks

Blunders (-3)
B1 Correct answers without work.
B2 Adds instead of subtracts
B3 Incorrect ratio
B4 Incorrect division
B5 Fails to finish

Slips (-1)
S1 Numerical errors to a max of 3
S2 Finds ratio as cement to sand (i.e. 1:4)
S3 Fails to simplify or simplifies incorrectly

Attempts (3 marks)

A1 Some indication of subtraction or ratio
A2 Some correct use of 75 or 60
A3 Answer 4 (no work shown)
A4 Some mention of 15

Worthless (0)
W1 Incorrect answer without work
W2 $60+75=135$ and stops
(c) $€ 10000$ is invested at $1 \cdot 5 \%$ per annum, compound interest.
(i) What is the amount of the investment at the end of one year?

(ii) The money is left invested for a second year.

How much interest is earned over the two years?
(c)(i)
$€ 10000 \times 1 \cdot 015=€ 10150$ amount at end of year 1

* Candidate may offer other correct methods
* $€ 150$ (without work) and stops $\Rightarrow 9$ marks
* No penalty for missing € symbol.
* $10000+1.5 \%=10150 \Rightarrow 15$ marks
* $10000 \times 1.5 \%=150$ and stops $\Rightarrow 12$ marks
* $10000+1.5 \%$ and stops $\Rightarrow 9$ marks.
* $\quad 10000 \times 1.5 \%$ and stops $\Rightarrow 9$ marks.

Blunders (-3)

B1 Correct answer without work
B2 Mishandles 1.5%. e.g. (10000 must be used).
B3 Decimal error (once only)
B4 Stops at interest i.e. fails to calculate amount.
B5 Subtracts to calculate amount.

Slips (-1)
S1 Numerical errors to a max of 3

Attempts (5 marks)

A1 Correct formula with some correct substitution and stops
A2 Some use of 100 in attempt to find percentage and stops

Worthless (0)

W1 Incorrect answer without work
W2 $10000+1.5$ and stops
Principal year $2=€ 10150$
Amount year $2=€ 10150 \times 1 \cdot 015=€ 10302 \cdot 25$
Interest earned over two (2) years $=€ 10302 \cdot 25-€ 10000=€ 302 \cdot 25$

Blunders (-3)
B1 Correct answer without work
B2 Mishandles 1.5% for second year
B3 Decimal error (once only)
B4 Stops at amount i.e. fails to calculate the interest over two years
B5 Error using indices if formula used (each time)
Slips (-1)
S1 Numerical errors to a max of 3
Attempts (2 marks)
A1 Correct formula with some correct substitution and stops
A2 Some use of 100 in attempt to find percentage and stops
A3 Some use of answer from c(i)
A4 Oversimplification
Worthless (0)
W1 Incorrect answer without work
W2 $10000+1.5$ and stops

QUESTION 4

Part (a) $15(10,5)$ marks	Att (3, 2)
Part (b) $15(5,5,5)$ marks	Att (2,2,2)
Part (c) $20(10,10)$ marks	Att (3, 3)
(a) $15(10,5)$ marks	Att (3,2)
4. (a) If $x=3$, find the value of:	
(i) $4 x+5$ (ii) $20-x^{2}$	
Part (a)(i) 10 marks	Att 3
$4 x+5=4(3)+5=12+5=17$	
* $12+5 \quad \rightarrow 9$ marks	
Blunders (-3)	
B1 Correct answer, without work	
B2 Leaves 4(3), in the answer	
B3 Breaks order $4(3+5)=32$	
B4 Treats 4(3) as 7 or 43	
Slips (-1)	
S1 Numerical errors to a max of 3	
S2 Treats as $4 x-5$	
Misreadings (-1)	
M1 x and 5 interchanged	
M2 Incorrect numerical substitution for x and continues	
Attempts (3 marks)	
A1 Any number substituted for x and stops	
A2 Any correct step.	
Worthless (0)	
W1 Incorrect answer with no work.	
Part (a)(ii) 5 marks	Att 2
$20-x^{2}=20-(3)^{2}=20-9=11$	
* 20-9 $\quad \rightarrow 4$ marks	
Blunders (-3)	
B1 Correct answer, without work	
B2 Leaves 3^{2}, in the answer	
B3 Breaks order	
B4 Treats 3^{2} as (3×2) and continues	
Slips (-1)	
S1 Numerical errors to a max of 3	
Misreadings (-1)	
M1 Treats as $20+x^{2}$	
M2 Incorrect substitution and continues	
Attempts (2 marks)	
A1 Any number substituted for x and stops	
A2 Any correct step.	
Worthless (0)	
W1 Incorrect answer with no work.	

(b) (i) Factorise $x^{2}-4$
\square
(ii) Factorise $3 x-3 y+\mathrm{c} x-\mathrm{c} y$.

(iii) Multiply $(2 x-3)$ by $(4 x-1)$. Write your answer in its simplest form.

(b) (i)

5 marks
Att 2
$x^{2}-4=x^{2}-(2)^{2}=(x-2)(x+2)$

Accept also (with or without brackets) for 5 marks any of the following
$(x-2)$ and $(x+2)$ [The word and is written down.]
$(x-2)$ or $(x+2)$ [The word or is written down.]
$(x-2),(x+2)$ [A comma is used]

* Quadratic equation formula method is subject to slips and blunders.
* $\quad(x-\sqrt{ } 4)(x+\sqrt{ } 4)$ merits 5 marks.

Blunders (-3)
B1 Incorrect two term linear factors of $x^{2}-4$ formed from correct (but inapplicable) factors of x^{2} and 4 e.g $(x-4)(x+1)$
B2 Incorrect factors of 4 or of x^{2}
B3 $\quad(2-x)(2+x)$ or $(x-4)(x+4)$
B4 Answer left as roots. $(x= \pm 2)$ from formula
B5 Correct cross method shown but factors not shown
Slips (-1)
S1 $(x-2) \pm(x+2)$
Attempts (2 marks)
A1 Correct factors of x^{2} only
A2 Correct factors of 4 only
A3 $\pm x$ or ± 2 appears.
A4 $\quad x^{2}-4=x \times x-2 \times 2$
A5 Mention of the difference of two squares e.g. $x^{2}-4^{2}$
A6 Correct quadratic equation formula with some correct relevant substitution
A7 $\sqrt{ } 4$
A8 States one correct factor
A9 Some correct attempt at factorization eg $(x \quad)(\quad)$ or the cross with at least one x in it Worthless (0 marks)
W1 Combines \boldsymbol{x} s to "numbers" and continues or stops
$3 x-3 y+c x-c y=3(x-y)+c(x-y) \quad$ or $\quad 3 x+c x-3 y-c y$
$=(3+c)(x-y) \quad=x(3+c)-y(3+c)$
$=(x-y)(3+c)$

* Accept also (with or without brackets) for 5 marks any of the following $(3+c)$ and $(x-y)$ [The word and is written down.]
$(3+c)$ or $(x-y)$ [The word or is written down.]
$(3+c),(x-y)$ [A comma is used]

Blunders (-3)

B1 Correct answer without work
B2 Stops after first line of correct factorisation. e.g. $3(x-y)+c(x-y)$) or equivalent.
B3 Error(s) in factorising any pair of terms
B4 Correct first line of factorisation but ends as $(3+c)(-x y)$ or equivalent.
Slips (-1)
S1 $(3+c) \pm(x-y)$
Attempts (2 marks)
A1 Pairing off, or indication of common factors and stops.
A2 Correctly factorises any pair and stops.
(b)(iii)

5 marks

Att 2
$(2 x-3)(4 x-1)=2 x(4 x-1)-3(4 x-1)=8 x^{2}-2 x-12 x+3=8 x^{2}-14 x+3$

* If $8 x^{2}-2 x-12 x+3$ is correct (minimum 4 MARKS)

Blunders (-3)
B1 Correct answer without work es
B2 Errors in distribution each time
B3 Errors in multiplication of powers
B4 Errors in grouping of terms
B5 Mathematical errors e.g. $-2 .-4 x=-8 x$
Slips (-1)
S1 Numerical errors to a max of 3
Attempts (3 marks)
A1 One correct multiplication
A2 One correct step

Worthless (0 marks)

W1 Combines unlike terms before attempt at multiplication and stops
W2 Incorrect answer with no work
(c) (i) Solve the equation $x^{2}+7 x-18=0$.
(c) (i)

10 marks
Att 3

$$
\begin{gathered}
x^{2}+7 x-18=0 \\
(x+9)(x-2)=0 \\
(x+9)=0 \quad \text { or } \quad(x-2)=0 \\
x=-9 \text { or } x=2
\end{gathered}
$$

* $\quad 2$ correct solutions by Trial and Error	$\mathbf{1 0}$ Marks
* $\quad 1$ correct solution by Trial and Error	$\mathbf{3}$ Marks (Attempt)

Blunders (-3)

Factor Method

B1 Correct answers without work
B2 Incorrect two term linear factors of $x^{2}+7 x-18$ formed from correct (but inapplicable) factors of x^{2} and/or ± 18,e.g. $(x+18)(x-1)$
B3 No roots given, or two incorrect roots (once only)
B4 Incorrect factors of x^{2} and/or ± 18
B5 Correct cross method but factors not shown and stops [Note: B3 applies also].
B6 $x(x+9)-2(x+9)$ or similar and stops [Note: B3 applies also].
B7 Error(s) in transposition
Slips (-1)
S1 Numerical errors to a max of 3
S2 One root only from factors

Attempts (3 marks)

A1 Some effort at factorization e.g. $(x \quad)(\quad)$ or the cross with at least one " x " written in, or the factors of 18
A2 States one correct root without work

Worthless (0 marks)
W1 $\mathrm{x}^{2}+7 \mathrm{x}=18$ or similar and stops
W2 Incorrect Trial and Error
W3 Oversimplification, resulting in a linear equation

Formula Method

Blunders (-3)
B1 Error in a, b, c substitution (apply once only)
B2 Sign error in substituted formula (apply once only)
B3 Error in square root or square root ignored
B4 Stops at $\frac{-7 \pm 11}{2}$
B5 Incorrect quadratic formula and continues
Slips (-1)
S1 Numerical errors to a max of 3
S2 Roots left in the form $\frac{p}{q}$
S3 One root only
Attempts (3 marks)
A1 Correct formula with some correct relevant substitution and stops
(ii) Solve for x and y :

$$
\begin{aligned}
& 3 x+y=13 \\
& 2 x-5 y=20
\end{aligned}
$$

\square

$3 x+y=13 \times 5$			$y=13-3 x$
$2 x-5 y=20 \quad$ OR		OR	
$15 x+5 y=65$	$6 x+2 y=26$		$2 x-5(13-3 x)=20$
$2 x-5 y=20$	$\underline{-6 x+15 y=-60}$		
* $17 x=85$	* $17 y=-34$		$2 x-65+15 x=20$
$x=85 / 17$	$y=-2$		
			$17 x=20+65$
$x=5$			* $17 x=85$ etc
$3 x+y=13$	$3 x-2=13$		
$3(5)+y=13$	$3 x=15$		
$15+y=13$	$x=5$		
$y=13-15$			
$y=-2$			

* Candidates may offer other solutions
* Apply only one blunder deduction (B2 or B3) to any error(s) in establishing the first equation in terms of x only, or the first equation in terms of y only (underlined at $*$ above)
*

Finding the second variable is subject to a maximum deduction of 3

Blunders (-3)

B1 Correct answers without work (stated or substituted)
B2 Error or errors in establishing the first equation in terms of x only $(17 x=85)$ or the first equation in terms of y only $(17 y=-34)$ through elimination by cancellation (but see S1)
B3 Error or errors in establishing the first equation in terms of x only $(17 x=34)$ or the first equation in terms of y only $(17 y=-34)$ through elimination by substitution (but see S1)
B4 Errors in transposition when finding the first variable
B5 Errors in transposition when finding the second variable
B6 Incorrect substitution when finding second variable
B7 Finds one variable only
Slips (-1)
S1 Numerical errors to a max of 3

Attempt (3 marks)

A1 Attempt at transposition and stops
A2 Multiplies either equation by some relevant number and stops
A3 Incorrect value of x or y substituted correctly to find his correct $2^{\text {nd }}$ variable
A4 One correct answer without work (stated and substituted)
Worthless (0 marks)
W1 Incorrect values for x or y substituted into the equations

QUESTION 5

(a)

15 marks
Att 5

$2(x+3)+5(2 x-1)=2 x+6+10 x-5=12 x+1$	
$*$	$2 x+6+10 x-5$ (stops or continues) $\quad \rightarrow \mathbf{1 2}$ marks

Blunders (-3)
B1 Correct answer without work \&
B2 Error in distributive law and continues (each time)
B3 Fails to finish
Slip (-1)
S1 Numerical errors to a max of 3
Attempts (5 marks)
A1 Any correct step.
A2 Combines " x 's" to numbers and continues with any correct step
Worthless (0 marks)
W1 Combines " x 's" to numbers and stops.
W2 Incorrect answer, with no work
(b)
(b)(i)

5 marks
Att 2
(b) (i) Find the values of x for which $4 x-1<11, x \in \mathbb{N}$.

(b)(i)

5 marks
Att 2

$$
\begin{align*}
& 4 x-1<11 \\
& 4 x<12 \\
& x<12 / 4 \\
& x<3 \\
& x \in \mathbb{N}
\end{align*}
$$

Do not penalize for inclusion of $\mathbf{0}$ in answer

* Stops or continues incorrectly at $x<3 \quad \rightarrow 4$ marks

Blunders (-3)

B1 Correct answer without work.
B2 Error in transposition
B3 Mishandles the direction of inequality e.g. $4 x \geq 12$
B4 Treats inequality as equality and continues.
Slips (-1)
S1 Numerical errors to a max of 3
S2 \leq taken instead of <
Misreadings (-1)
M1 $4 x+1<11$, and continues
Attempts (2 marks)
A1 Attempt at transposition and stops.
A2 1 or 2 substituted for x
A3 Combines " x 's" to "numbers". e.g. $3 x<11$ and continues.
Worthless (0)
W1 Incorrect answer with no work e.g. $\{1,2,3,4,5,6,7,8, \ldots .$.$\} .$
(ii) Write $\frac{4 x}{7}-\frac{x}{2}$ as a single fraction.

(iii) Verify your answer to part (ii) by letting $x=7$ in $\frac{4 x}{7}-\frac{x}{2}$
and in your answer to (ii)

(b) (ii)

$$
\frac{4 x}{7}-\frac{x}{2}=\frac{2(4 x)-7(x)}{14}=\frac{8 x-7 x}{14}=\frac{x}{14}
$$

* $\frac{4 x}{7}-\frac{x}{2}=\frac{4 x-x}{5}=\frac{3 x}{5} \quad$ Zero marks.
* Leaves answer as $\frac{8 x-7 x}{14}$ and stops or continues incorrectly $\rightarrow 4$ marks

Blunders (-3)

B1 Correct answer without work
B2 Errors) in distribution
B3 Mathematical error
B4 Incorrect common denominator and continues
B5 Incorrect numerator from candidate's denominator
B6 Omitting denominator
Slips (-1)
S1 Drops denominator.
S2 Numerical error to a max of 3
S3 Correct common denominator implied
S4 If student drops x and gives answer $\frac{1}{14}$
Attempts (2 marks)
A1 14 only or a multiple of 14 only appears.
A2 Any correct step.

$$
\begin{aligned}
x=7 & \frac{4 x}{7}-\frac{x}{2}=\frac{4(7)}{7}-\frac{7}{2}=\left[\frac{28}{7}-3 \cdot 5\right]=4-3 \cdot 5=0 \cdot 5 \text { (Given) } \\
& \text { or } \frac{56}{14}-\frac{49}{14}=\frac{7}{14}=0.5 \\
x=7 & \frac{x}{14}=\frac{7}{14}=0.5 \text { Answer (ii) }
\end{aligned}
$$

Blunders (-3)
B1 Correct answer without work \&
B2 Mathematical errors
B3 Verifies only one equation.
B4 Error in substitution to either equation
B5 Forces equality
Slips (-1)
S1 Numerical errors to a max of 3
S2 Incorrect or no conclusion from their work
Attempts (3 marks)
A1 Any correct step
A2 Writes the equations in this section.
A3 Substitutes into one equation and stops
Worthless (0)
W1 Invented answer verified
W2 Incorrect answer with no work
(c) The length of a rectangle is $(3 x+11)$ units and the width is $(5 x-23)$ units, as shown in the diagram.

(i) Find, in terms of x, the perimeter of the rectangle.

(ii) If the perimeter is 88 units, find x.

(c)(i)

10 marks
Att 3
Perimeter $=2(3 x+11)+2(5 x-23) \quad$ OR $(3 x+11)+(5 x-23)+(3 x+11)+(5 x-23) \quad$ OR
Perimeter $=2(3 x+11+5 x-23)$

* Special Case: $(3 x+11)(5 x-23) \quad$ Award 4 marks
* Each side omitted blunder (-3) each time

Blunders (-3)

B1 Correct answer without work
B2 Fails to indicate addition of sides

Attempts (3 marks)

A1 Any correct step
A2 indication on diagram of opposite sides equal
A3 Combines " x 's"to "numbers" and continues with any correct step (oversimplification)
(c) (ii)

Perimeter $2(3 x+11)+2(5 x-23)=6 x+22+10 x-46=16 x-24$
Or $\quad 2(3 x+11+5 x-23)=2(8 x-12)=16 x-24$

* $\quad \rightarrow \quad 16 x-24=88$
$16 x=88+24$
$16 x=112$
$x=112 / 16$
$x=7$
* Accept candidates' expression from previous work
* At most one blunder (-3)when getting $16 x-24$, to form equation
* If some attempt at simplification in c(i) merits the Attempt mark in c(ii) if answer box left empty

Blunders (-3)
B1 Correct answer without work ($x=7$ stated or substituted).
B2 Combines " x 's" to "numbers" e.g. $-8 x=88$ and continues
B3 Errors in transposition
B4 Stops at $16 x=112$
Slip (-1)
S1 Numerical errors to a max of 3
S2 Leaves as $\frac{112}{16}$ or similar
Attempts (2 marks)
A1 Answer from part c(i) put equal to 88 and stops
A2 Any correct step
A3 88 appears
Worthless (0 marks)
W1 Incorrect answer, with no work
W2 Combines " x 's" to "numbers" and stops

QUESTION 6

Part (a) (i)

10 marks

Att3
6(a)(i) $\quad f(7)=3(7)-5=21-5=16$

Blunders (-3)
B1 Correct answer without work
B2 Combines " x ' s " to "numbers" and continues e.g. $3 x-5=-2 x=-2(7)=-14$.
B3 Mathematical error e.g. 21-5 $=-16$
B4 Breaks order i.e. $3(7-5)=3(2)=6$.
B5 Leaves 3(7) in the answer
Slips (-1)
S1 Numerical errors to a max of 3
S2 Leaves x in the answer e.g.16x.

Misreadings (-1)

M1 Correct substitution of any number other than 7 and continues.

Attempts (3marks)

A1 Substitutes for x and stops i.e. 3(7)
A2 Treats as equation and continues or stops. i.e. $3 x-5=7$
Worthless (0)
W1 Combines " x ' s " to "numbers" and stops.
W2 Ignores x giving $3-5=-2$.
W3 $7[f(x)]=21 x-35$.
W4 Replaces coefficient i.e. $3 x \rightarrow 7 x$
W5 Incorrect answer without work.

6(a) (ii) $\quad f(-1)=3(-1)-5=-3-5=-8$
Blunders (-3)
B1 Correct answer without work
B2 Combines " x 's" to "numbers" and continues e.g. $3 x-5=-2 x=-2(-1)=2$.
B3 Mathematical error e.g. $-3-5=8$
B4 Breaks order i.e. $3(-1-5)=3(-6)=-18$.
B5 Leaves 2(-3) in the answer
Slips (-1)
S1 Numerical errors to a max of 3
S2 Leaves x in the answer e.g. $-8 x$.

Misreadings (-1)

M1 Correct substitution of any negative number other than -1 and continues.

Attempts (2marks)

A1 Substitutes for x and stops i.e. 3(-1)
A2 Treats as equation and continues or stops. i.e. $3 x-5=-1$
Worthless (0)
W1 Combines " x ' s " to "numbers" and stops.
W2 Ignores x giving $3-5=-2$
W3 $-1[f(x)]=-3 x+5$
W4 Replaces coefficient i.e. $3 x \rightarrow-1 x$
W5 Incorrect answer without work
(b)
(b) Draw the graph of the function

$$
g: x \rightarrow 2 x^{2}-2 x-5
$$

in the domain $-2 \leq x \leq 3$, where $x \in \mathbb{R}$.

$$
\begin{array}{ll}
g(x)=2 x^{2}-2 x-5 \\
g(-2)=2(-2)^{2}-2(-2)-5=2(4)+4-5=8+4-5=12-5=7 & (\mathbf{- 2 , 7}) \\
g(-1)=2(-1)^{2}-2(-1)-5=2(1)+2-5=2+2-5=4-5=-1 & (\mathbf{- 1 , - 1)} \\
g(0)=2(0)^{2}-2(0)-5=0+0-5=0+0-5=0-5=-5 & (\mathbf{0 , - 5}) \\
g(1)=2(1)^{2}-2(1)-5=2-2-5=0-5=-5 & (\mathbf{1 , - 5}) \\
g(2)=2(2)^{2}-2(2)-5=2(4)-4-5=8-4-5=8-9=-1 & (\mathbf{2 , - 1}) \\
g(3)=2(3)^{2}-2(3)-5=2(9)-6-5=18-6-5=18-11=7 & (\mathbf{3}, 7)
\end{array}
$$

* Candidates may offer other correct versions

A

$g(-2)$	$=$	$2(-2)^{2}$	$-2(-2)$	-5	$=$	$\mathbf{7}$
$g(-1)$	$=$	$2(-1)^{2}$	$-2(-1$	-5		$\mathbf{- 1}$
$g(0)$	$=$	$2(0)^{2}$	$-2(0)$	-5	$=\mathbf{- 5}$	
$g(1)$	$=$	$2(1)^{2}$	$-2(1)$	-5	$=\mathbf{- 5}$	
$g(2)$	$=$	$2(2)^{2}$	$-2(2)$	-5	$=$	$\mathbf{- 1}$
$g(3)$	$=$	$2(3)^{2}$	$-2(3)$	-5	$=$	$\mathbf{7}$

B | x | $\mathbf{- 2}$ | $\mathbf{- 1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 x^{2}$ | 8 | 2 | 0 | 2 | 8 | 18 |
| $-2 x$ | +4 | +2 | -0 | -2 | -4 | -6 |
| -5 | -5 | -5 | -5 | -5 | -5 | -5 |
| $g(x)$ | $\mathbf{7}$ | $\mathbf{- 1}$ | $\mathbf{- 5}$ | $\mathbf{- 5}$ | $\mathbf{- 1}$ | $\mathbf{7}$ |

* Error(s) in each row/column calculation attracts a maximum deduction of 3marks

Blunders (-3)

B1 Takes " $2 x^{2}$ " as " x^{2} " and places " x^{2} " in the table or function, (Applies if work shown)
B2 Errors in evaluating " $2 x^{2}$ ", e.g. $2(-1)^{2}=(-2)^{2}=4$, once only if consistent.
B3 " $-2 x$ " taken as " -2 " all the way [In the row headed " $-2 x$ " by candidate]
B4 " -5 " calculated as " $-5 x$ " all the way. [In the row headed " -5 " by candidate]
B5 Adds in top row when evaluating $g(x)$ in table method (B).
B6 Omits " 5 " row
B7 Omits " $2 x$ " row
B8 Omits a value in the domain (each time).
B9 Each incorrect image, without work, or, calculation through the function method (A)
Slips (-1)
S1 Numerical errors to a max of 3 in any row / column

Misreadings (-1)

M1 Misreads " $-2 x$ " as " $+2 x$ " and places " $+2 x$ " in the table or function.
M2 Misreads " -5 " as " +5 " and places " +5 " in the table or function

Attempts (5 marks)

A1 Omits " $2 x^{2}$ " row or treats " $2 x^{2}$ " as $\pm 2 x$ or $\pm x$, (i.e. evaluates a linear function)
A2 Any effort at calculating point(s).
A3 Only one point calculated and stops.
A4 Gives set of couples with correct domain

* Accept candidates values from previous work (6 co-ordinates needed) but see S2
* Only one correct point graphed correctly \Rightarrow Att $\underline{5}+$ Att 5
* Correct graph but no table \Rightarrow full marks i.e. $(15+15)$ marks.
* Accept reversed co-ordinates if
(i) axes not labelled or (ii) axes are reversed to compensate (see B1 below)

Blunders (-3)

B1 Reversed co-ordinates plotted against non-reversed axes (once only) \{See $4^{\text {th }} *$ above $\}$.
B2 Scale error (once only)
B3 Points not joined or joined in incorrect order (once only)
Slips (-1)
S1 Each point of candidate graphed incorrectly. \{Tolerance ± 0.25 \}
S2 Each point \{ $\mathbf{6}$ points needed $\}$ from table not graphed [See $2^{\text {nd }} *$ above]

Attempts (5 marks)

A1 Graduated axes (need not be labelled)
A2 Some effort to plot a point \{See $2^{\text {nd }} *$ above $\}$
A3 Straight line att from linear table
(c) (i) The value of $2 x^{2}-2 x-5$ when $x=0 \cdot 5$. (Show work on graph)

Answer: -5.5
(c) (ii) The values of x when $g(x)=0$. (Show work on graph)

Answer: $\quad x=-1.2 \quad x=2.2$

* Accept candidate's values from previous work.
* Correct answer (clearly consistent with candidate's graph) inside the tolerance without graphical indication $\Rightarrow 2$ marks.

Blunders (-3)

B1 Correct answer without work
B2 Answer on the diagram but outside of tolerance (± 0.25)
B3 Fails to write down the answer, when indicated correctly on graph.

Misreadings (-1)

M1 Answer not presented in designated box (but is written elsewhere)

Attempts (2 marks)

A1 Attempts at algebraic evaluation or calculator
A2 Marks 0.5 in any way on either axes and stops
A3 One point of intersection indicated only or one value of x written down
Worthless (0)
W1 Answer outside of tolerance without graphical indication

Coimisiún na Scrúduithe Stáit

State Examinations Commission

Junior Certificate Examination, 2013

Mathematics
 (Project Maths - Phase 1)

Paper 2
Ordinary Level

Solutions

and
Marking scheme

Question 1

Niamh wants to extend her kitchen. She has two plans.
The extension is the shaded area in each plan.

Plan 1

Plan 2

(a) Find the area of the extension for each plan.

(b) Which plan adds the biggest area to the kitchen? Tick the correct box.

Plan 1

Plan $2 \square$
(c) How many extra square metres would Niamh have if she uses this plan rather than the other plan?

Question 2

The data in the table below is taken from CensusAtSchool.
The data gives information about how students recycle soft drink cans.

Student	Gender	Age	Year	Location	Cans Bought	Cans Recycled
A	Female	12	$1^{\text {st }}$ Year	Dublin	6	2
B	Male	13	$1^{\text {st }}$ Year	Tipperary	0	0
C	Male	14	$2^{\text {nd }}$ Year	Cork	1	1
D	Female	15	$5^{\text {th }}$ Year	Cavan	0	0
E	Male	15	$4^{\text {th }}$ Year	Cork	2	1
F	Male	13	$1^{\text {st }}$ Year	Offaly	5	2
G	Female	17	$5^{\text {th }}$ Year	Westmeath	1	1
H	Male	17	$5^{\text {th }}$ Year	Westmeath	2	0
I	Male	13	$1^{\text {st }}$ Year	Mayo	1	1
J	Male	13	$2^{\text {nd }}$ Year	Galway	2	2
K	Male	17	$5^{\text {th }}$ Year	Kilkenny	5	5
L	Female	12	$1^{\text {st }}$ Year	Dublin	3	1
M	Female	17	$6^{\text {th }}$ Year	Kerry	2	1
N	Female	17	$5^{\text {th }}$ Year	Dublin	3	1

(a) How many students are in the sample?

							14	14															

(b) Complete the table below to show the junior students ($1^{\text {st }}$ to $3^{\text {rd }}$ year) in the sample and to show how many cans they each bought and recycled.

Student	A	B	C	F	I	J	L
Cans Bought	6	0	1	5	1	2	3
Cans Recycled	2	0	1	2	1	2	1

(c) How many soft drink cans were bought by the junior students?

(d) How many soft drink cans were recycled by the junior students?

$$
2+0+1+2+1+2+1=9
$$

(e) Based on the data, would you conclude that the junior students from this sample are better at recycling than the senior students ($4^{\text {th }}$ to $6^{\text {th }}$ year)?
Use calculations to justify your answer.

| No | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Student | D | E | G | H | K | M | N | Total |
| Cans
 Bought | 0 | 2 | 1 | 2 | 5 | 2 | 3 | 15 |
| Cans
 Recycled | 0 | 1 | 1 | 0 | 5 | 1 | 1 | 9 |

Question 3

A hurling match is played between Team A and Team B.
A player on Team A, Fiachra, has the ball and attempts to score.
The probability of Fiachra scoring a point is 0.6 and the probability of him scoring a goal is $0 \cdot 1$.

(a) Is Fiachra more likely to score a point or a goal?

A point

(b) What is the probability that Fiachra will not score a point in this attempt?

$1-0.6=0.4$ (or $^{2} / 5$)												
1												

A player on Team B, Peadar, has the ball and attempts to score. The probability of Peadar scoring a point is 0.7 and the probability of him scoring a goal is 0.2 .
(c) Peadar is more likely to score than Fiachra.

Give a reason why this is true.

(d) A spectator says "Peadar will always score more than Fiachra in a game between the two teams".

Do you agree with the spectator?

Give a reason for your answer.
While the probability of Peadar scoring is higher, it does not mean that he will score(or score more) in any particular game.
(e) A penalty is awarded to Team B.

The goalkeeper for Team A has saved 12 penalties out of 20 this season.
What is the probability that the goalkeeper will save the penalty based on his previous record?
$12 / 20=3 / 5$ or 0.6

Amy is a scout. The scoutmaster has made an equilateral triangle with pegs and a rope as shown in the diagram. Amy measures one side of the triangle. It is 6 m in length.

(a) Find the perimeter of the triangle.

(b) Construct an accurate scale diagram of the equilateral triangle in the space below. Use a scale of 1 cm to represent 1 m .

Question 5

(a) Use your calculator to find the following trigonometric ratios.

Write each answer correct to four decimal places.
$\sin 25^{\circ}=$ - $0 \cdot 4226$
$\cos 39^{\circ}=$ $\mathbf{0 . 7 7 7 1}$
$\tan 40^{\circ}=$ \qquad
(b) The angle P is shown in the triangle below.

(i) On the diagram, clearly label the side opposite the angle P.
(ii) On the diagram, clearly label the side adjacent to the angle P.
(iii) If the length of the opposite side is 9 and the length of the adjacent side is 12 , find the length of the hypotenuse.

																						-						
			$\begin{aligned} & H^{2}=12^{2}+9^{2}=225 \\ & H=\sqrt{ } 225=15 \end{aligned}$																									

Question 6

Jasmine wants to find the height of her house. She measures the angle of elevation of the top of the roof using a clinometer. The angle is 30°. She is standing 18 m from the point on the ground directly below the apex of the roof. Jasmine draws the diagram above to show this information.
(a) Use Jasmine's measurements to find x.

Write your answer in metres correct to one decimal place.

(b) What other information is needed to find the height of the house?

(a) The perimeter of a rectangle is 28 cm . The length of the rectangle is 9 cm . Find the width of the rectangle.

	$2(1+w)=28$									$2(1+w)=28$												
	$2(9+w)=28$										$9+w=14$											
	$18+2$ w =28										$w=14-9$											
	$2 \mathrm{w}=28-18=10$									$=5 \mathrm{~cm}$												
	$\mathrm{w}=5 \mathrm{~cm}$																					

(b) The symbol for the Olympic Games is five intersecting rings. The rings represent the five continents which compete in the games. The radius of each ring is 4 m .
Find the total circumference of the five rings. Use $\pi=3 \cdot 142$.

Question 8

Cement is stored in a silo in the shape of a cylinder on a cone as shown in the diagram.

(a) The height of the cylinder is 7 m and the radius is 2 m .

Find the volume of the cylinder. Use $\pi=3 \cdot 142$.
Give your answer correct to the nearest m^{3}.

			$\square \mathrm{L}$																		
			$\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$																		
			$=3.142 \times 2^{2} \times 7$																		
			$=87.976=88 \mathrm{~m}^{3}$																		
			T W \|			W															

(b) The volume of the cone is $12 \mathrm{~m}^{3}$.

Find the total volume of cement in the silo when it is full. Give your answer correct to the nearest m^{3}.
\(\left.\left.\square $$
\begin{array}{|c|c|c|c|c|}V=88+12 \\
=100 \mathrm{~m}^{3}\end{array}
$$\right] \begin{array}{l}V=87.976+12

=99.976=100 \mathrm{~m}^{3}\end{array}\right]\)| |
| :--- |
| \square |

(c) If $1 \mathrm{~m}^{3}$ of cement weighs 2.5 tonnes, what is the total weight of the cement in the silo?

(a) Draw two axes of symmetry of the regular pentagon shown in the diagram below.

(b) What is the total number of lines of symmetry of a regular pentagon?

| | | | | $\mathbf{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(c) Complete the image of the pentagon under a central symmetry in the origin.

(a) Convert the following times to the 24 hour clock.
(i) $1.30 \mathrm{pm}=\ldots \mathbf{1 3 : 3 0}$
(ii) $7.15 \mathrm{am}=\underline{07: 15}$ \qquad
(iii) $9.50 \mathrm{pm}=$ \qquad 21:50

(b) An aeroplane leaves Shannon airport. It flies west for six and a half hours and lands at JFK airport in New York. The distance between the two airports is 4596 km .
Find the average speed of the aeroplane in km / h.

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | |
| | | |

(c) During the flight, the aeroplane uses 240 litres of fuel per minute.

How many litres of fuel were used in the flight?

(d) For emergencies the aeroplane must carry 20% more fuel than it requires.

Find the total amount of fuel carried by the aeroplane.

Question 11

An archaeologist has discovered various items at a site. The site is laid out in a grid and the position of each item is shown on the grid. The items found are a brooch (B), a plate (P), a ring (R), a statue (S) and a tile (T).

(a) Write down the co-ordinates of the position of each item.
$\mathrm{B}=(2,7)$
$P=($ 7,1)
$R=($
6,4)
$S=($
2,1)
$\mathrm{T}=(\mathbf{9}, \mathbf{5})$
(b) Each square of the grid represents $1 \mathrm{~m}^{2}$.

Find the total area of the grid.

		$10 \times 10=100 \mathrm{~m}^{2}$																								

(c) Which of the items is nearest to the tile (T)?

(d) Find the distance between the brooch (B) and the statue (S).

| $\mathbf{6}$ (by inspection) | | | |
| :---: | :---: | :---: | :---: |$|$| $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ |
| :--- |
| $=\sqrt{(2-2)^{2}+(7-1)^{2}}=\sqrt{\mathbf{3} 6=\mathbf{6}}$ |

(e) What is the slope of the line from the plate (P) to the brooch (B)?

| $\frac{7-1}{2-7}=\frac{6}{-5}=-\mathbf{6} / 5$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Question 12
(a) Choose the correct terms for A, B and C from the following list:

radius
diameter
circumference
centre
chord

Write the answers into the grid.

A	CHORD
B	RADIUS
C	CENTRE

(b) Find the missing angles in the diagram. Write the answers into the grid.

			$\begin{aligned} & 70+35=105 \\ & 180-105=75 \end{aligned}$																				

(c) The measurements of the sides of four triangles are as follows:

Triangle	Sides
A	$5,3,4$
B	$5,6,5$
C	$5,6,7$
D	$5,6,8$

Which triangle is isosceles? Give a reason for your answer.

(d) Cian used a protractor to measure the angle α in the diagram below.

His answer was 100°.

Do you agree or disagree with Cian's measurement? Give a reason for your answer.

(e) Theorems on your course can be used to find the measure of the angles in the diagram below. Write down, in your own words, any theorem that you could use to find one of the missing angles.

Theorem	Exterior angle $=$ sum of 2 interior opposite angles or	3 angles of a triangle add up to 180°

(f) Find the measure of each of the missing angles in the diagram in part (e) above. Show your calculations.

Question 13

(30 marks)
A group of students was asked how many text messages each had sent the previous day.
The results were:

14	32	6	17	19	15	3	35	42	25
9	28	34	18	40	11	16	28	31	7

(a) How many students were in the group?

(b) Represent the data on a stem-and-leaf diagram.

	0	3	6	7	9									$\|c\| c \mid$	
	1	1	4	5	6	7	8	9							
	2	5	8	8											
	1	2	4	5											
	0	2													
								Key:	$2 \mid 5=25$						

(c) Find the mode of the data.

						28																			

(d) Find the mean of the data.

$14+32+$	$6+$	$17+$	$19+$	$15+$	$3+$	$35+$	$42+$	$25+$
$9+2+34+18+40+11+16+28+31+$$=430$								
$430 / 20$	$21 \cdot 5$							

(e) What percentage of students sent more than 30 texts?

		6 students sent > 30 texts$6 / 20 \times 100=30 \%$																			

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	A	B	C
No of categories	2	3	4
2 mark scale	0,2	$0,1,2$	
5 mark scale	0,5	$0,3,5$	$0,3,4,5$
10 mark scale	0,10	$0,5,10$	$0,5,8,10$
15 mark scale	0,15	$0,10,15$	$0,10,12,15$

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving incorrect rounding or omission of units, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk.

Thus, for example, scale $10 C^{*}$ indicates that 9 marks may be awarded.
Summary of mark allocations and scales to be applied Paper 2
Question 1
(a) $10 \mathrm{C}^{*}$
(b) 5 A
(c) 5 B
(a) 5 A
(b) 5 B
(c) 5 B
(d) 5 B
(e) 10 C
(e) 5 B
(a) 5 A
(b) 5 A
(c) 5 B
(d) 5 B

Question 5
Question 6
(a) $5 \mathrm{C}^{*}$
(b)(i) and (ii) 5 B
(a) $10 \mathrm{C}^{*}$
(b)(iii) 5 C
(b) 5 A

Question 3

Question7

(a) $10 \mathrm{C}^{*}$
(b) $10 \mathrm{C}^{*}$

Question 8
(a) $10 \mathrm{C}^{*}$
(b) $5 \mathrm{~B}^{*}$
(c) $5 \mathrm{C}^{*}$

Question 9

(a)5B
(b) 5 A
(c) 10 C

Question 10

(a)5B
(b)5C
(c) 10 C
(d) $5 \mathrm{C}^{*}$

Question 11
(a)5B
(b)5B
(c) 5 A
(d) 5 C
(e) 10 C

Question 12
(a) 10 C
(b)5C
(c)5B
(d)5B
(e) 5 A
(f) 5 C

Question 13

(a) 5 A
(b) 10 C
(c) 5 A
(d) 5 C
(e) 5 C

Detailed Marking Notes Paper 2

The * for units to be applied only if answered fully correct.
The * to be applied once only per question

QUESTION 1

The $*$ is only applied once in this question
(a) Scale 10 C*

High Partial Credit: Finds area of one plan correctly
Low partial Credit: Finds area of one triangle correctly (Plan 2)
Writes 4×6 or 9×7 or 7×3 or 6×3 (Plan 1)
Writes 6×4 or 3×2 or 9×9 or 9×6 or 7×3 or 6×3 or 9×3 or 4×3 (Plan2)
Correct relevant formula .
(b) Scale 5 A
(c) Scale 5 B

Partial Credit: 24-15.
Uses answer(s) from part (a) in this part
9 (or equivalent).

QUESTION 2

(a) Scale 5
(b) Scale 5 B

Partial Credit: One correct entry in table or one correct row in table .
(c) Scale 5 B

Partial Credit: Attempt at adding two or more numbers from correct list or adding recycled list correctly in this part.
(d) Scale 5 B

Partial Credit: Attempt at adding two or more numbers from correct list or adding bought list correctly in this part.
(e) Scale 10 C

High Partial Credit : Both percentages worked out correctly but no conclusion or an incorrect conclusion given

Low Partial Credit: One of the percentages worked out correctly.
The number of cans that senior students bought calculated (15) or an attempt at same .
The number of cans that senior students recycled calculated (9) or an attempt at same .
Correct conclusion but no calculations .

QUESTION 3

(a) Scale 5 A
(b) Scale 5 A
(c) Scale 5 B

Partial Credit: \quad Gets the probability of Peadar scoring as 0.9 . Gets the probability of Fiachra scoring as 0.7 .
States $0.2>0.1$ or $0.7>0.6$.
(d) Scale 5 B

Partial Credit : Correct answer or valid explanation
Correct answer but unsound explanation Incorrect answer but gives a valid explanation
(e) Scale 5 B

Partial Credit: A numerator of 12 .
A denominator of 20 .
Any correct statement regarding the probability of an event occurring (e.g. $\mathrm{P}(\mathrm{E})=\frac{\text { number of favourable outcomes }}{\text { number of possible outcomes }}$)

Question 4

(a) Scale 5 B*

Partial Credit : $\quad 6+6+6 \neq 18$.
Attempt at adding two sides i.e. $6+6$
Incorrect mathematical operation .
(b) Scale 10 B

Allow tolerances of $\pm 0.1 \mathrm{~cm}$ in lengths and $\pm 2^{\circ}$ in degree measurements
Partial Credit: Minimum of one side of 6 cm . and / or one angle of 60° correct within tolerance .

QUESTION 5

(a) Scale 5 C*

High Partial Credit: Two correct answers .
All answers correct but calculator in incorrect mode .

Low partial credit: One correct answer .
Gets cos or tan of 25° or \sin or tan of 39° or cos or \sin of 40° correctly
(b) (i) and (ii) Scale 5 B

Accept appropriate abbreviations for the sides (e. g. Opposite $\equiv \mathrm{Opp} \equiv O$)
Partial Credit: One correct label .
(b) (iii) Scale 5 C

High Partial Credit: States $\mathrm{H}^{2}=12^{2}+9^{2}$.
Low Partial Credit : Gets 12^{2} and / or 9^{2}.
Indicates clearly the correct hypotenuse on the diagram .
States hypotenuse is side directly across from 90° angle .
States Pythagoras ' Theorem correctly.
Correct relevant formula .

QUESTION 6

(a) Scale 10 C* *

High Partial Credit : $0.577350269=\frac{x}{18}$.
Use of $\sin 30^{\circ}$ or $\cos 30^{\circ}$ and finishes correctly .

Low Partial Credit : $\quad \tan 30^{\circ}=0.577350269$.
$\frac{x}{18}$.
States $\tan =\frac{\text { opposite }}{\text { adjacent }}$. (see note in Question 5 (b) (i) and (ii))
Tan 30°.
Correct relevant formula .
(b) Scale 5 A

QUESTION 7

(a) Scale 10 C *

High Partial Credit : $28=2(9)+2($ width $)$ or $14=9+$ width

Low Partial Credit: \quad	$2(9)$ or $9+9$.
	States perimeter $=2($ length $)+2($ width $)$.
	$28=2($ length + width $)$ or $14=$ length + width.

(b) Scale 10 C *

High Partial Credit: Gets circumference of one ring correctly .
Incorrect circumference of ring after using correct formula and then multiplies correctly .
$\pi \neq 3.142$.
Low Partial Credit: Multiplies by 5 .
4 and / or 3.142 substituted correctly into correct relevant formula or into incorrect relevant formula, i.e. πr^{2}
3.142×4 or 2×4 or 3.142×2 or 3.142×8.
Correct relevant formula.

QUESTION 8

(a) Scale 10 C*

High Partial Credit: (3.142)(2) $)^{2}(7)$. $\pi \neq 3.142$.

Low Partial Credit : One or two of $3.142,2$ or 7 substituted correctly into the correct formula or into incorrect relevant formula i.e. $2 \pi r h$ or πr^{2}. $3.142 \times 2^{2}($ or 4$)$ or $2^{2}($ or 4$) \times 7$ or 3.142×7.
Correct relevant formula.
(b) Scale 5 B*

Partial Credit: $\quad 88+12 \neq 100$
Use of 88 and / or 12
Substituting $r=2$ into correct volume of cone formula.
(c) Scale 5 C*

High Partial Credit: $\quad 100 \times 2.5 \neq 250$.
Low Partial Credit: Use of 100 and / or 2.5 .

QUESTION 9

(a) Scale 5 B

Full Credit : Two correct axes of symmetry.
Partial Credit: \quad One correct axis of symmetry.
(b) Scale 5 A
(c) Scale 10 C

Allow a tolerance of $\pm 0.1 \mathrm{~cm}$. in lengths.
Full Credit: \quad All image points correct and image of pentagon drawn .

High Partial Credit: Images of all points correct but image of pentagon not formed. Two or three image points correct.

Low Partial Credit : One correct image point.
Finds correct image of pentagon by symmetry in either axes.

QUESTION 10

(a) Scale 5 B

Partial Credit : One time correct .
(b) Scale 5 C

High Partial Credit: $\frac{4596}{6.5}$.
Takes 6 hours 30 minutes as 6.3 hours and continues correctly (729.52)

Low Partial Credit : Use of 4596 and / or 6.5.
Speed $=\frac{\text { distance }}{\text { time }}$ or $\mathrm{S}=\frac{D}{T}$.
(c) Scale 10 C

High Partial Credit: $\quad 240 \times 390 \neq 93600$
240×390.
93600 .
Low Partial Credit: Use of 240 and / or 390 .
Changes 6.5 hours to 390 minutes .
(d) Scale 5 C*

High Partial Credit : $93600+18720 \neq 112320$
$120 \% \times 93600 \neq 112320$
$93600+18720$.
$120 \% \times 93600$.
Low Partial Credit : $\quad 20 \% \times 93600=18720$
$20 \%=\frac{1}{5}$.
Use of 93600 .
Use of 20%.

QUESTION 11

(a) Scale 5 B

Partial Credit: One point correct.
All points correct but interchanges x and y co-ordinates.
(b) Scale 5 B*

Partial Credit: $\quad \begin{gathered}10 \times 10 \neq 100 . \\ 10 \times 10 . \\ \text { Use of } 10\end{gathered}$
(c) Scale 5 A
(d) Scale 5 C

High Partial Credit: $\sqrt{36}$.
Low Partial Credit: Any correct substitution into correct distance formula . Correct relevant formula.
(e) Scale 10 C

High Partial Credit: $\frac{1-7}{7-2}$.
Low Partial Credit : Any correct substitution into correct slope formula.
States slope $=\frac{\text { rise }}{\text { run }}$ or similar.
Correct relevant formula.

QUESTION 12

(a) Scale 10 C

High Partial Credit: Two correct answers.
Low Partial Credit : One correct answer.
(b) Scale 5 C

High Partial Credit : Two or three correct answers .
Low Partial Credit : One correct answer .
(c) Scale 5 B

Partial Credit: \quad Correct answer but no reason or incorrect reason given .
(d) Scale 5 B
$\begin{array}{ll}\text { Partial Credit: } \quad & \text { Correct answer or valid explanation . } \\ & \text { Correct answer but unsound explanation. } \\ \text { Incorrect answer but gives a valid explanation. }\end{array}$
(e) Scale 5 A
(f) Scale 5 C

High Partial Credit: One correct answer .
Two correct answers without work.
Low Partial Credit : $x^{\circ}+73^{\circ}+60^{\circ}=180^{\circ}$.
$y^{\circ}=60^{\circ}+73^{\circ}$.
$x^{\circ}+y^{\circ}=180^{\circ}$.
One correct answer without work.

QUESTION 13

(a) Scale 5 A
(b) Scale 10 C

High Partial Credit : All entries in diagram correct but no key given .
Key given but one entry omitted.
Low Partial Credit : At least five correct entries with / without key.
(c) Scale 5 A
(d) Scale 5 C

High Partial Credit : $\frac{430}{20}$ or similar .
Low Partial Credit: Denominator of 20 or numerator of 430 .
Attempt at addition of any two numbers in list.
Correct relevant formula.
(e) Scale 5 C

High Partial Credit : $\frac{6}{20} \times 100 \neq 30$.
$\frac{6}{20} \times 100$.
Low Partial Credit : Numerator $=6$.
Denominator $=20$.
Multiplies by 100 .

