

JUNIOR CERTIFICATE EXAMINATION

2009

MARKING SCHEME

MATHEMATICS ORDINARY LEVEL PAPER 1

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips- numerical errors
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

(-1)

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

QUESTION 1

Part (a) Part (b) Part (c)	10 marks 20(5,5,5,5) marks 20(10,5,5) marks	Att 3 Att 2,2,2,2 Att 3,2,2
Part (a)	10 marks	Att 3
$P = \{w, x, y, z\}$	$Q = \{v, w, x\}$	
Fill the ele	ments of P and Q into the following diagram.]
	P	Q

* • Not necessary

Slips (-1)

- S1 Each element incorrectly filled into the diagram
- S2 Each element omitted from the diagram but see W1
- S3 Each unlisted element used

Misreadings (-1)

M1 Interchanging P and Q totally

Attempts (3 marks)

A1 Totally incorrect filling of the Venn diagram using given elements

Worthless

W1 No filling in of the Venn diagram or use of unlisted elements only

(b)(i)	5 marks	Att 2
	$B \cup C = \{1, 3, 4, 5, 8, 10\}$	

B1 Any incorrect set of the elements of B and C other than the misreading as below

Misreadings (-1) M1 $B\cap C$ giving $\{5, 8\}$

Attempts (2 marks) A1 2, 6, 9 or 7 appear in the answer

(b) (ii)	5 marks	Att 2
	$A' = \{2, 3, 4, 7, 8\}$	

B1 Any incorrect set of elements of A' other than the misreadings below.

Misreadings (-1)

M1 A\B giving $\{6,9,10\}$. A\C giving $\{6,9,1\}$ or A\ $(B \cup C)$ giving $\{6,9\}$.

Attempts (2 marks)

A1 2, 4, 7, 8 or 3 appear in the answer.

A2 A or any proper subset of A

(b) (iii)	5 marks	Att 2
	$(B \cap C) \setminus A = 8$	

Blunders (-3)

B1 Any incorrect set of elements of *A* and *B* and *C* other than the misreading as below.

Misreadings (-1)

M1 $(B \cup C)$ /A giving {3, 4, 8,}, $A \setminus (B \cap C)$ giving {1,6,9,10}

Attempts (2 marks)

A1 2 or 7 appear in the answer.

(b) (iv)	5 marks	Att 2
	<i>#B.</i> = 4	

Blunders (-3)

B1 Any incorrect cardinal number of $B \le 10$ other than the misreading as below.

Misreadings (-1) M1 Set *B* giving {1, 3, 5, 8}. M2 #*B* = 6 i.e, #*B*'

Attempts (2 marks)

A1 Some understanding of notation e.g. Cardinal numbers or number of elements

A2 #B = 17 or 120

Worthless W1 Any number greater than 10, but see A2

Part	(c)	20(10,5,5) marks	Att3,2,2
1(c)		In a survey, a group of students were asked if they were studying Fre	nch or German
	at sc	hool.	
	80 o	f these students said they were studying French (F).	
	24 o	f these students said they were studying German (G) .	
	15 o	f these students said they were studying both French and German.	
	11 o	f these students said they were studying neither of the two languages.	
	(i)	Represent this information in the Venn diagram below.	
	(ii)	How many students were in the group?	
	(iii)	How many students did not study German?	

.Failing to subtract 15 from 80 and/or 24 is one blunder only(-3)

B1 Each incorrect or omitted entry but see S1 and M1 below and * above

Slips (-1)

*

S1 Numerical errors, where work is clearly shown to a max of 3

Misreadings (-1)

M1 Interchanges French and German

Attempts (3 marks)

A1 Any one correct relevant entry

(c)(i	i)	5 marks	Att 2
	c(ii)	65 + 15 + 9 + 11 = 100	
*	Any correct answer written	here in the space provided takes pr	ecedence over an incorrect
*	Venn diagram (Subject to Accept candidate's work fro	o S1) om previous part c(i)	
Blun	ders (-3)		
B1	Any incorrect use of the giv (Subject to S1)	en numbers or the numbers from a	n incorrect Venn diagram
B2	Number of students = $11+1$	5+24+80 = 130	
Slips	- (-1)		
S1 S2	Numerical errors where wor Fails to finish	rk is clearly shown, to a max of 3	
Atter	npts (2 marks)		
A1	Any one correct relevant su	m where work is clearly shown	
Wor	thless		
W1	Incorrect answer with no we	ork shown	
(c)(ii	i)	5 marks	Att 2
	c(iii)	65 + 11 = 76 or $100-24$	
*	Any correct answer written	here in the space provided takes pr	ecedence over an incorrect
	Venn diagram (Subject to	o M1)	
*	Accept candidate's work fro	om previous part c(i)	
Blun	<i>ders</i> (-3)		
B1	Any incorrect use of the giv (Subject to S1)	en numbers or the numbers from a	n incorrect Venn diagram
Slips	- (-1)		
S1	Numerical errors, where we	ork is clearly shown to a max of 3	

S2 Fails to finish.

Misreadings (-1)

M1 German read as French (Ans. = 20).

Attempts (2 marks)

A1 Mention of 65 or 11 or candidate's work from c(i)

Worthless

W1 Incorrect answer with no work shown

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	20(5,10,5) marks	Att 2,3,2
Part (c)	20(10,5,5) marks	Att 3,2,2

10 marks

Att 3

 $\left(\frac{31}{20}\right)$

(a) 9 metres of cloth cost $\in 13.95$. Find the cost of 20 metres of the same cloth.

(a)	-	10 marks	Att 3
Method (1)	Method (2)	Method (3)	Method (4)
9m = 13.95	9:20	9:20 = 13.95:x	$\frac{13.95}{9} \times 20$
$1m = \frac{13.95}{9} = 1.55$	$\frac{13.95}{9} = 1.55$	$\frac{9}{20} = \frac{13.95}{x}$	1.55 ×20
20m=1.55×20=31	1.55×20=31	$9x = 13.95 \times 20 = 279$	31
		$x = \frac{279}{9} = 31$	

* Correct answer without work \Rightarrow 7 marks

* Special Case
$$\frac{9}{20} \times 13.95 = 6.2775 \Rightarrow 7$$
 marks

- * Stops at 1.55 or $\frac{13.95}{9}$ [=1.55] \Rightarrow 4 marks (no use of 20(-3) and B4 or B5
- * Stops at $13.95 \times 20[= 279] \Rightarrow 4$ marks (no use of 9 and possible slips)
- * Incorrect answer without work \Rightarrow 0 marks except 279,155 or equivalent

Blunders (-3)

Part (a)

- B1 Divisor \neq 9 and continues but see 2nd *
- B2 Incorrect multiplier i.e. $\neq 20$ and continues but see $2^{nd} *$
- B3 20:9=13.95:x and continues
- B4 Error in decimal point (once only)
- B5 Fails to finish

Slips (-1)

S1 Numerical errors where work is clearly shown to a max of 3 *Attempts (3 marks)*

A1 Indicates
$$\frac{20}{9}$$
 or 9 : 20 or 13.95 : x ,only, and stops

A2 279 or 1.55 or
$$\left(\frac{21}{20}\right)$$
, only, appears

A3 $\frac{1}{9}$ only appears

- A4 13.95 \times 9 or 13.95 \div 20 and stops or continues
- A5 13.95 is multiplied or divided by any wrong number correctly *Worthless*
- W1 13.95 +9 = 22.95 or similar

_	Part	(b) 20(5,10,5) marks	Att 2,3,2
	(i)	Simplify $\frac{a^9 \times a^3}{a^6 \times a^2}$, giving your answer in the form a^n , where $n \in \mathbb{N}$.	
	(ii)	By rounding each of these numbers to the nearest whole number, estimate the $\frac{18 \cdot 207}{3 \cdot 7 + 2 \cdot 08}$	ne value of
2	(iii) 3	Using a calculator, or otherwise, find the exact value of $\frac{18 \cdot 207}{3 \cdot 7 + 2 \cdot 08}$.	
	} (<u>b)(i</u>) 5 marks	Att 2
		(i) $\frac{a^9 \times a^3}{a^6 \times a^2} = \frac{a^{12}}{a^8} = a^4$ or $\frac{a^9 \times a^3}{a^6 \times a^2} = a^3 \times a = a^4$	
		or $\frac{a^9 \times a^3}{a^6 \times a^2} = \frac{a}{a} \frac{a}{a}$	
	*	$\frac{a^{12}}{a^8}$ and stops \Rightarrow 2 marks	
	*	a^{12} and stops \Rightarrow 2 marks	
	*	Correct answer without work \Rightarrow 2 marks	
	*	$a^3 \times a$ and stops \Rightarrow 2marks	
	*	$a \times a \times a \times a$ as answer $\Rightarrow 2$ marks	
	Blun	ders (-3)	
	B1	Correct answer, without work	
	B2	Each error in calculation involving indices	
	B3	Each incorrect number of a's in the extended form	
	B4	Each incorrect elimination of a's in the extended form	
	Slips	(-1)	
	S 1	$\frac{a^{12}}{a^8} = 4$ or $\frac{1}{a^{-4}}$ as final answer	

Attempts (2 marks)A1Some correct manipulation of indices

Worthless

W1 Incorrect answer with no work shown

A2 Ans. 3 with no preceding rounding off

Worthless (0)

W1 Incorrect answer without work

(b)(iii) 5 marks						Att 2
	$\frac{18.207}{5.78} = 3.15 \text{ or } \left(\frac{63}{20}\right)$					
*	Any of the follow	ving ; 7.0008108	13.6741	762 2.36	65774428	11.23888889
	10.23528649	or 12.45336	538 <u>merit 2</u>	<u>2 marks (wit</u>	<u>th or without</u>	<u>work)</u>
Blur	nders (-3)					
B1	Decimal error					
B2	Fails to finish					
Slip.	s (-1)					
S 1	Numerical errors	to a max of 3				
aa	1. 00	r				

S2 Any rounding off.

Attempts (2 marks)

A1 Any correct relevant calculation and stops.

e.g.
$$\frac{18.207}{3.7}$$
 = 4.9208 or similar

Worthless (0)

W1 Incorrect answer without work but see *

Part (c)		20(10,5,5) marks	Att 3,2,2
2(c)	(i)	Using a calculator, or otherwise, write $\frac{1}{8}$ and $\frac{13}{80}$ as decimals. Hence or otherwise, put the following numbers in order, starting with the smallest and finishing with the largest: $\frac{1}{8}$, $\frac{13}{80}$, 0.1525.	
	(ii)	Using a calculator, or otherwise, find the exact value of $(3 \cdot 61)^{\frac{1}{2}}$.	
	(iii)	Using a calculator, or otherwise, evaluate $\sqrt{94 \cdot 09} \times (2 \cdot 75)^2 - \frac{1}{0 \cdot 3125}$. Give your answer correct to two decimal places.	
*	Note	$rac{1}{8} = 0.125$ or $\frac{13}{80} = 0.1625$ merits 4 marks.	

(c)(i)		10marks		Att 3
	$\frac{1}{8} = 0.125$		$\frac{13}{80} = 0.1625$	
	<u>1</u> 8	0.1525	<u></u>	

* Accept: 0.125, 0.1525, 0.1625, merits <u>10</u> marks.

* Note:
$$\frac{1}{8} = 0.125$$
 or $\frac{13}{80} = 0.1625$ merits 4 marks

Blunders (-3)

- B1 Fails to write a fraction as a decimal (each time)
- B2 Writes fraction as incorrect decimal (each time)
- B3 Decimal error (once only if consistent)
- B4 Inverts fraction and continues. (each time)
- B5 Incorrect order or fails to order.

Attempts (3 marks)

A1 $0.1525 = \frac{1525}{10000}$ and stops

A2 Attempt at ordering

Worthless(0) W1 Nothing correct

(c)(ii)	5 marks	Att 2
	1.9 or $\left(\frac{19}{10}\right)$	
Blunders (-3)		
B1 Squares		
B2 Decimal error		

Attempts (2 marks)

A1 mentions square root or power

Worthless(0)

W1 Dividing by 2 or multiplying by 2

(c)(ii	i) 5 marks	Att 2
	$9.7 \times 7.5625 - 3.2 = 70.15625 = 70.16$	
*	answer 70.15625 \Rightarrow 2 marks	
*	answer 70.15625 = 70.16 \Rightarrow 5 marks	
*	$\left[\frac{2245}{32}\right]$ as final answer $\Rightarrow 0$ marks but = 70.15625 $\Rightarrow 4$ marks	
*	Ans 70.15 (no work shown) \Rightarrow 2 marks	
Blun	ders (-3)	

- B1 Correct answer, without work 🖉
- B2 Decimal error
- B3 Inverts fraction
- B4 Incorrect operator

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Fails to give answer to 2 dec. places
- S3 Each premature rounding off, that effects final answer,(to a maximum of 3marks)

Attempts (2 marks)

A1 Any relevant step. e.g. Partial long division or similar

QUESTION 3

Part (a)	10 marks	Att 3
Part (b)	20(10,10) marks	Att 3,3
Part (c)	20(10,10) marks	Att 3,3

Part	(a) 10 marks	Att 3	
(a)	Aideen owns 6000 shares in a certain company. She sells two-thirds of her shares. How many shares does she now own in th	e company?	

(a)		10 marks	Att3
Ľ	6000 ÷ 3	= 2000	
or	Number of shares sold: Shares now owned:	$6000 \text{ x } ^{2}\text{/}_{3} = 4000$ $6000 - 4000 = 2000$	

Blunders (-3)

B1 Correct answer without work

B2 $6000 \div \frac{2}{3}$

- B3 Calculates the number of shares sold and stops
- B4 Operation other than subtraction in final step

Slips (-1)

- S1 Numerical errors (to max -3)
- S2 Early rounding off

Attempts (3 marks)

- A1 Any attempt at getting $\frac{2}{3}$ of 6000
- A2 Writes down $\frac{1}{3}$ or $\frac{6000}{2} = 3000$

Part (b)	20(10,10) marks	Att 3,3
(i)	Brian's gross annual pay is €26 000. His annual tax credit is €2800. tax at the rate of 20%. What is his annual take-home pay?	He pays income
(ii)	A dealer buys a car for $\notin 17500$. He sells the car for $\notin 23800$.	

^{00.} Calculate his profit as a percentage of the cost price.

(b) () 10 marks	Att 3
(i)	Brian's gross annual pay is €26 000. His annual tax credit is €2800	. He pays income tax at
	the rate of 20%. What is his annual take-home pay?	

Att 3

10 mar	KS
Gross Pay	€26 000
Tax @ 20%	5200
Tax Credit	€2800
Tax Due	2400
Take-home Pay	23600

X	$\frac{26000 \times 20}{100} = 5200$	5200 - 2800 = 2400	26000 - 2400 = 23600	
*	Finds Tax Due 2400 a	and stops \Rightarrow 7 marks	(at least 2 out 3 boxes filled in)	

Finds Tax Due 2400 and stops \Rightarrow 7 marks (at least 2 out 3 boxes filled in)

Blunders (-3)

(b)(i)

- Correct answer, without work. B1
- Mishandles 20% of 26,000. {Must use 26,000} B2
- B3 Decimal error
- B4 Misuse of Tax Credit
- Incorrect use of Tax Amount e.g. 26000 + 5200 B5
- Fails to finish. {B4 may apply} B6

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (3 marks)

A1 Some use of 100 in attempt to find percentage e.g. 20% = 20/100 and stops.

Worthless (0)

W1 Incorrect answer without work

(b) (ii)

10 marks

Att 3

(b) (i	i) A dealer buys a car for $\notin 17500$. He sells the car for $\notin 23800$.		C
	Calculate his profit as a percentage of the cost price.		
(b)(ii) 10 marks	Att 3	
Ľ	$23800 - 17500 = 6300 \qquad \frac{6300}{17500} \times 100 = 36\%$		
or	Method 2: $\frac{23800}{17500} \times 100 = 136 \implies 136 - 100 = 36\%$		
*	Answer $6300 \Rightarrow 4$ marks		
*	$\frac{6300}{100} \times 17500 = 1102500 \Longrightarrow 7 \text{ marks}$		
Blund	ders (-3)		
B1	Correct answer without work		
B2	Adds €17 500 to €23 800.		
B3	Calculates profit as percentage of selling price.		
B4	Divisor not equal to 17500		
В5	Mishandles the calculation of profit as a percentage e.g. $\frac{6300}{100} \times 17500$		
B6	Incorrect cancellation(s)		
B7	Fails to multiply by 100		

Fails to finish **B**8

Slips (-1)

Numerical errors to a max of 3 **S**1

Attempts (3 marks)

- A1 Some indication of subtraction
- Some use of 100 A2

Part	: (c)	20(10,10) marks	Att 3,3
3(c)	(i) Wha	€20 000 is invested at $5 \cdot 2\%$ per annum. at is the amount of the investment at the end of one year?	
	(ii) The Wha	€5000 is withdrawn from this amount at the beginning of the second year interest rate for the second year is $6 \cdot 25\%$ per annum. at is the amount of the investment at the end of that year?	ır.

(c)(i)	10 marks	Att3
$\swarrow \frac{20000 \times 5.2}{100} = 1040 20000 + 1000$	-1040 = €21040 or 2	$0000 \times 1.025 = 21040$
or $1 \% = \frac{20000}{100}$ $5.2\% = \frac{20000}{100} \times 5.2$ Interest = 1040 Amount = 20000 + 1040 Amount = 21040	or $I = \frac{P \times R}{100}$ $I = \frac{20000}{100} \times 5.2$ Interest = 1040 Amount = 20000 + 1040 Amount = €21040	<i>or</i> Amount = 20000×1·052 Amount = €21040

* \notin 1040 (without work) and stops \Rightarrow 4 marks.

* Writes down 20000 +5.2% = $21040 \Rightarrow 10$ marks

* Writes down 20000 $\times 5.2\% = 1040$ and stops $\Rightarrow 7$ marks.

* Writes down 20000 \times 5.2% and stops, or 20000 +5.2% and stops \Rightarrow 4 marks.

Blunders (-3)

B1 Correct answer without work *K*

B2 Mishandles 5.2%. e.g. $\frac{20000}{52} \times 100$ Note: {20000 must be used}.

- B3 Decimal error (once only)
- B4 Stops at interest i.e. fails to calculate amount.
- B5 Subtracts to calculate amount.
- B6 $1 \cdot 052$ treated as $1 \cdot 52$.

Slips (-1)

S1 Numerical errors to a max of 3

Misreadings (-1) M1 Reads as €2000

Page 16

Attempts (3 marks)

A1 Correct formula with or without substitution and stops

A2 Some use of 100 in attempt to find percentage e.g. $5.2\% = \frac{5.2}{100}$ or 1.052 and stops.

Worthless (0)

- W1 Incorrect answer without work
- W2 20000 + 5.2 = 20005.2 and stops or continues.

(c)(ii)	10 marks	Att3
	21040 - 5000 = 16040	$\frac{16040 \times 6.25}{100} = 1002.5$	Ľ
	16040 + 1002.5 = €17042.5	[or $16040 \times 1.0625 = 17042.5$]	
*	Accept candidates answer fro	om (i)	

- * \notin 16040 (without work) and stops \Rightarrow 4 marks.
- * Writes down $16040 + 6.25\% = 17042.5 \Rightarrow 10$ marks
- * Writes down 16040 \times 6.25% = 1002.5 and stops \Rightarrow 7 marks.
- * Writes down 16040 × 6.25% and stops, or 16040 + 6.25% and stops \Rightarrow 4 marks.
- * Uses 5000 (-3)(-3). Uses 20000 (-3)

Blunders (-3)

- B1 Correct answer without work *Æ*
- B2 Fails to subtract 5000
- B3 Mishandles 6.25%
- B4 Decimal error (once only).
- B5 Stops at interest i.e. fails to calculate amount.
- B6 Subtracts to calculate amount.
- B7 Incorrect Principal

Slips (-1)

S1 Numerical errors to a max of 3

Misreadings (-1)

M1 Reads as €500 or similar.

Attempts (3 marks)

- A1 Correct formula with or without substitution and stops
- A2 Some use of 100 in attempt to find percentage and stops.
- A3 21040-5000 = 16040 and stops

Worthless (0)

- W1 Incorrect answer without work
- W2 21040 + 6.25 and stops or continues

QUESTION 4

Part (a)	10 marks	Att 2,2
Part (b)	20(10,10) marks	Att 3,3
Part (c)	20(5,5,10) marks	Att 2,2,3

Part (a)		10 (5,5)marks	Att 2,2
(a) If <i>a</i> =	= 5, find the	value of	
	X	(i) $4a + 1$	
	Æ	(ii) $a^2 - 3a + 6$	

(a)(i)	5 marks	Att2
(i)	4(5) + 1 = 21	

* 20 + 1 => 4 marks

Blunders (-3)

- B1 Correct answer, without work
- B2 Leaves 4(5), in the answer
- B3 Incorrect substitution and continues
- B4 Breaks order i.e. 4(5+1) = 4.6 = 24
- B5 Treats 4(5) as 9 or 45

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Treats as 4a 1

Attempts (2 marks)

- A1 Any number substituted for *a* and stops e.g. 4(8).
- A2 Writes 5 in this part
- A3 Any correct step.

Worthless (0)

W1 Incorrect answer with no work.

(a) (ii)	5 marks Att2		
(ii)	$(5)^2 - 3(5) + 6 = 16$	or	25-15 + 6 = 10 + 6 = 16	
*	31 - 15 or $10 + 6 => 4$ marks			

31 - 15 or 10 + 6 => 4 marks

Blunders (-3)

- B1 Correct answer without work
- Leaves 5^2 or -3(5) in the answer B2
- B3 Incorrect substitution and continues.
- B4 Breaks order e.g. -3(5+6).
- B5 Treats -3(5) as 2 or -35.
- Fails to finish but see * above B6

Slips (-1)

- Numerical errors to a max of 3 **S**1
- Treats as $a^2 3a 6$ S2

Attempts (2 marks)

- Any substitution for either a^2 or -3a and stops e.g. (8) etc. A1
- writes 5 in this part. A2
- Any correct step. A2

Worthless (0 marks)

W1 Incorrect answer, with no work.

Part	(b)	20(10,10) marks	Att 3,3
	4(b) (i)	Solve the equation $5x - 10 = 3(x + 2)$.	
	(ii)	Multiply $(x-3)$ by $(2x+1)$. Write your answer in its simplest form.	
(b)(i))	10 montrs	A ++ 2
(b)(i))	10 marks	Att 3
(b)(i) (i)) 5 <i>x</i> –	10 marks - 10 = 3x + 6 => 5x - 3x = 6 + 10 => 2x = 16 => x =	Att 3
(b)(i) (i) Blund) 5x – ders (-3)	$10 \text{ marks} \\ -10 = 3x + 6 \implies 5x - 3x = 6 + 10 \implies 2x = 16 \implies x = 10$	Att 3 8
(b)(i) (i) Blund B1) <u>5x –</u> ders (-3) Correct ar	10 marks = 10 = 3x + 6 => 5x - 3x = 6 + 10 => 2x = 16 => x = 10 ==	Att 3 8
(b)(i) (i) Blund B1 B2	$\frac{5x - 5x - 5x}{6x - 3x}$ Correct ar Error in di	10 marks $-10 = 3x + 6 \implies 5x - 3x = 6 + 10 \implies 2x = 16 \implies x =$ nswer without work ($x = 8$ stated or substituted). istributive law and continues, e.g. $5x - 10 = 3x + 2$.	Att 3 8
(b)(i) (i) Blund B1 B2 B3) 5x – ders (-3) Correct ar Error in di Errors in t	10 marks $-10 = 3x + 6 \implies 5x - 3x = 6 + 10 \implies 2x = 16 \implies x =$ nswer without work ($x = 8$ stated or substituted). istributive law and continues, e.g. $5x - 10 = 3x + 2$. transposition (each time)	Att 3 8

B4

Slips (-1)

- Numerical errors to a max of 3 **S**1
- Leaves as $\frac{16}{2}$ or similar. S2

Attempts (3 marks)

- A1 Any substitution for values of *x* other than x = 8.
- Any correct step. A2
- Combines "x's" to numbers and continues with any correct step e.g. 5x 10 = -5x. A3

Worthless (0 marks)

- Combines "*x*'s" to numbers and stops. W1
- W2 Incorrect answer, with no work

(b)(ii)

(ii)	2x(x-3) + 1(x-3)	or	x(2x+1) - 3(2x+1)
	$=> 2x^2 - 6x + x - 3$		$=> 2x^2 + x - 6x - 3$
	$=> 2x^2 - 5x - 3$		$=> 2x^2 - 5x - 3$

* $2x^2 + x - 6x - 3 => 7$ marks

Blunders (-3)

- B1 Correct answer without work
- B2 Error(s) in distribution.(each time)
- B3 Fails to group or groups incorrectly

Slip (-1)

S1 Numerical errors to a max of 3.

Attempts (3 marks)

- A1 Any correct multiplication e.g. $2x^2$ etc.
- A2 Any correct grouping of terms.
- A3 Any correct step.
- A4 Substitutes a value of "x" and continues correctly.
- A5 Treats as $(x 3) \pm (2x + 1)$ to give 3x 2 or -x 4
- A6 Combines "x's" to numbers and continues with correct step e.g. x 3 = -3x or 2x + 1 = 3.x

Worthless (0 marks)

- W1 Combines "x's" to numbers and stops.
- W2 No distribution but A2 or A5 may apply to subsequent work e.g. gathering of terms.

Part (c)		20(5,5,10) marks	Att 2,2,3
(i)	The cost of a cinema ticket is $\notin t$ for an adult and $\notin 5$ for a child. The cost of tickets for 2 adults and 3 children is $\notin 33$.		
	Write down an equation i	n <i>t</i> to represent this inform	nation.
(ii)	Solve the equation you for	ormed in part (i) above, fo	r <i>t</i> .
(iii)	Solve for <i>x</i> and for <i>y</i> :	5x - 4y = 16 $2x + 3y = 11$	
(c)(i)		5 marks	Att2
2t+	3(5) = 33	or	2t + 15 = 33
Blunders ((-3)		

B1 Each incorrect term in equation

Misreading (-1)

M1 Substitutes x (or similar) for t

Attempt (2 marks)

A1 Any attempt at forming an equation **but** numbers written on their own (except **15** or **33**) are **worthless**

(c)(ii)	5marks		Att 2
	2t + 15 = 33	=> 2t = 18 => t = 9	

* Accept candidates' equation from previous work.

Blunders (-3)

- B1 Correct answer without work (t = 9 stated or substituted).
- B2 Errors in transposition
- B3 Stops at 2t = 18 or similar

Slip (-1)

- S1 Numerical errors to a max of 3
- S2 Leaves as $\frac{18}{2}$ or similar.

Attempts (2 marks)

- A1 Answer from part c(i) written down and stops
- A2 Any correct step e.g. 3.5 = 15

Worthless (0 marks)

W1 Incorrect answer, with no work

(c)	(iii)
· · ·	· /

Att 3

	Ι	II
5x - 4y = 16	5x - 4y = 16	4y = 5x - 16
2x + 3y = 11	$\underline{2x + 3y = 11}$	$y = \frac{5x - 16}{4}$
15x - 12y = 48	10x - 8y = 32	$2x + 3(\frac{5x - 16}{4}) = 11$
8x + 12y = 44	-10x - 15y = -55	8x + 15x - 48 = 44
23x = 92	-23y = -23	23x = 92
		$\mathbf{x} = 4$
$x = \frac{92}{23} = 4$	$y = \frac{-23}{-23} = 1$	=> y = 1
=> y = 1	=> x = 4	

* Apply only <u>one</u> blunder deduction (B2 or B3) to any error(s) in establishing the first equation; in terms of x only or the first equation in terms of y only.

* Finding the second variable is subject to a maximum deduction of (3).

Blunders (-3)

- B1 Correct answers without work(stated or substituted)
- B2 Error or errors in establishing the first equation in terms of x only (23x = 92) or the first equation in terms of y only (-23y = -23) through elimination by cancellation (**but see S1**)
- B3 Errors in transposition when finding the first variable.
- B4 Errors in transposition when finding the second variable
- B5 Incorrect substitution when finding second variable
- B6 Finds one variable only
- Slips (-1)
- S1 Numerical errors to a max of 3

Attempt (3 marks)

- A1 Attempt at transposition and stops
- A2 Multiplies either equation by some number and stops
- A3 Incorrect value of x or y substituted correctly to find his correct 2^{nd} variable

Worthless (0 marks)

W1 Incorrect values for *x* or *y* substituted into the equations

QUESTION 5

10 marks	Att 3
15(5,5,5) marks	Att 2,2,2
25(5,10,10) marks	Att 2,3,3
10 marks	Att 3
m $3(x+2) + 4(3x+1)$.	
10marks	Att 3
3x + 6 + 12x + 4 = 15x + 10	
	13(3,3,5) marks $25(5,10,10) marks$ $10 marks$ $m 3(x+2) + 4(3x+1).$ $10 marks$ $3x + 6 + 12x + 4 = 15x + 10$

- * Stops after correct removal of brackets \Rightarrow 7marks
- * Ignore excess work 5(3x+2)

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Error(s) in distribution (each time)
- B3 Combining unlike terms

Attempts (3 marks)

- A1 Any correct multiplication
- B4 Fails to group like terms

Slips (-1)

S1 Numerical errors to a max of 3

Misreadings (-1)

M1 $3(x+2) \times 4(3x+1)$ and continues

Worthless (0)

W1 combining unlike terms, before attempting multiplication and stops

Part (b)		15(5,5,5) marks	Att 2,2,2
5(b)	Factorise		
	(i)	5 <i>cd</i> + 7 <i>d</i>	
	🖉 (ii)	ax + 3ay + 4x + 12y	
	(iii)	$x^2 - 49$	

(b)(i)	5 marks	Att 2
	d(5c+7)	

B1 Removes factor incorrectly.

Attempts (2 marks)

A1 Indication of common factor e.g. underline *d*s and stops.

(b) (ii	i)	5m	arks	Att 2
	ax + 3ay + 4x + 12y		ax + 4x + 3ay + 12y	
Ľ	a(x+3y)+4(x+3y)	or	x(a+4) + 3y(a+4)	
	(a+4)(x+3y)		(x+3y)(a+4)	
*	Accept also (with or without br	ackets) for	5 marks any of the following	

(a+4) and (x+3y) [The word **and** is written down.]

(a+4) or (x+3y) [The word **or** is written down.]

(a+4), (x+3y) [A comma is used]

Blunders (-3)

- B1 Correct answer without work *Æ*
- B2 Stops after first line of correct factorisation e.g. a(x+3y) + 4(x+3y) or equivalent.
- B3 Error(s) in factorising any pair of terms (each time)
- B4 Incorrect common factor and continues. e.g. x(a+4) + y(3a+12) (B2 will apply)
- B5 Correct first line of factorisation but ends as (x + 3y)4a.

Slips (-1)

S1 $(x+3y)\pm(a+4)$

Attempts (2 marks)

- A1 Pairing off, or indication of common factors and stops.
- A2 Correctly factorises any pair and stops.

(b) (i	iii) 5 marks	Att 2
	$x^2 - 49$	
	$x^2 - 7^2$	
	(x-7)(x+7)	
*	Accept also (with or without brackets) for 5 marks any of the following	
	(x-7) and $(x+7)$ [The word and is written down.]	
	(x-7) or $(x+7)$ [The word or is written down.]	
	(x-7), $(x+7)$ [A comma is used]	
*	Quadratic equation formula method is subject to slips and blunders.	
*	$(x - \sqrt{49})(x + \sqrt{49})$ merits 5 marks	
Blun	ders (-3)	
B1	Incorrect two term linear factors of $x^2 - 49$ formed from correct (but inapple	icable) factors
	of x^2 and ± 49 .e.g. $(x - 49)(x + 1)$	
B2	Incorrect factors of 49	
B3	Incorrect factors of x^2	
B4	(7-x)(7+x).	
B5	(x-49)(x+49).	
B6	Answer left as roots. $(x = \pm 7)$	
Slins	s (-1)	
Slips Sl	$(x-7)\pm(x+7)$	
Atter	npts (2 marks)	
A1	Correct factors of x^2 only	
A2	Correct factors of ± 49 only	
A3	$\pm x \text{ or } \pm 7 \text{ appears.}$	
A4	$x^2 - 49 = x \times x - 7 \times 7$	
A5	Mention of the difference of two squares .e.g. $x^2 - 49^2$	
A6	Correct quadratic equation formula quoted and stops.	
A7	$\sqrt{49}$	
Wort	thless (0 marks)	

W1 Combines xs to "numbers" and continues or stops.

Part	c (c)	25(5,10,10) marks	Att 2,3,3
	(i)	Express $\frac{5x+1}{3} - \frac{x+6}{5}$ as a single fraction.	
		Give your answer in its simplest form.	
	(ii)	Verify your answer to part (i) by substituting $x = 4$ into $\frac{5x+1}{3} - \frac{x+6}{5}$	
		and into your answer to part (i).	
	(iii)	Solve the equation $x^2 - 4x - 21 = 0$.	
(c)(i))	5 marks	Att2
(i)		$\frac{5(5x+1)-3(x+6)}{15} = \frac{25x+5-3x-18}{15} = \frac{22x-13}{15}$	
*	1	$\frac{5x+1}{3} - \frac{x+6}{5} = \frac{4x+7}{-2}$ Zero marks	
Blun	aers (-3)	
B1 B2	Erro	r(s) in distribution e g $5(5x + 1) = 5x + 1$	
B3	Matl	nematical error e.g. $5-18=13$, $-3(6)=18$	
B4	Inco	rrect common denominator and continues $3(5x+1) = 5(x+6)$	
B5	Inco	rrect numerator, from candidate's denominator e.g. $\frac{5(5x+1)-5(x+0)}{15}$	
B6 B7	No s Omi	implification of numerator tting denominator	

Slips (-1)

- S1 Drops denominator
- S2 Numerical errors to a max of 3

S3 Answer not in simplest form. e.g.
$$\frac{44x - 26}{30}$$
.

Attempts (2 marks)

A1 15 only or a multiple of 15 only appears.

A2 Any correct step.

Worthless (0)

W1
$$\left(\frac{5x+1}{3}\right)\left(\frac{x+6}{5}\right)$$
 and stops.

Part(c) (ii	i)	10 marks		Att 3
Ľ	$\frac{5(4)+1}{3} - \frac{4+6}{5}$ $= \frac{20+1}{3} - \frac{10}{5}$ $= \frac{21}{3} - \frac{10}{5}$ $= 7-2$ $= 5$	and	$\frac{22x - 14}{15} = \frac{22(4) - 13}{15} = \frac{88 - 13}{15} = \frac{75}{15} = 5$	

- * Accept candidates answer from previous section [May result in inequality].
- * Accept usage of a value other than 4 for verification.

- B1 Correct answer, without work *Æ*
- B2 Substitutes into <u>one</u> expression only (B4 will also apply)
- B3 Manipulation to force equality
- B4 Conclusion missing

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (3 marks)

- A1 Writes answer from previous part in this section
- A2 Substitutes a value into one expression and stops

$x^{2} - 4x - 21 = 0$ $x^{2} - 7x + 3x - 21 = 0$	x + 3	$\frac{-(-4)\pm\sqrt{(-4)^2-4(1)(-21)}}{2(1)}$
x(x-7) + 3(x-7) = 0 (x + 3)(x - 7) = 0	x	$\frac{4\pm\sqrt{16+84}}{2} = \frac{4\pm10}{2}$
$\Rightarrow x = -3$ and $x = 7$		$\frac{14}{2} = 7$ and $\frac{-6}{2} = -3$
		$\Rightarrow x = 7$ and $x = -3$
	$\Rightarrow (x+3)(x-7) = 0$	
	$\Rightarrow x = 7$ and $x = -3$	

Factor Method

Blunders (-3)

- B1 Correct answers without work *K*
- B2 Incorrect two term linear factors of $x^2 4x 21$ formed from correct (but inapplicable) factors of x^2 and/or ± 21 . e.g. (x+21)(x-1)
- B3 No roots given.(each time)
- B4 Incorrect factors of x^2 and/or ± 21 .
- B5 Correct cross method but factors not shown and stops [Note: B3 applies also].
- B6 x(x-7) + 3(x-7) or similar and stops [Note: B3 applies also].
- B7 Error in transposition (each time)

Slips (-1)

S1 Numerical errors, to a max of 3

Attempts (3 marks)

- A1 Some effort at factorisation
- A2 One correct answer without work

Worthless (0 marks)

- W1 $x^2 4x = 21$, or similar, and stops.
- W2 Trial and error
- W3 Oversimplification, resulting in a linear equation

Formula Method

Blunders (-3)

- B1 Correct answers without work.
- B2 Error in *a,b,c* substitution (apply once only)
- B3 Sign error in substituted formula (apply once only)
- B4 Error in square root or square root ignored.

- Stops at $\frac{4\pm10}{2}$ B5
- Incorrect quadratic formula and continues. B6

- Slips (-1) S1 Numerical errors to a max of 3
- Roots left in the form $\frac{p}{q}$ S2

Attempts (3 marks)

- Correct formulas and stops A1
- One correct substitution and stops A2

QUESTION 6

Part (a)	10(5,5) marks	Att 2,2
Part (b)	25(10,15) marks	Att 3,5
Part (c)	15(10,5) marks	Att 3,2

Part (a)		10 (5,5)marks	Att 2,2
(a)	f(x) = 4x - 5. (i) $f(3)$ (ii) $f(-2)$	Find:	

(a)(i)		5 marks	Att 2
	Ľ	f(3) = 4(3) - 5 = 12 - 5 = 7	

* Answer $12-5 \Leftrightarrow 4$ marks

Blunders (-3)

- B1 Correct answer no work.
- B2 Leaves 4(3) in the answer
- B3 Mathematical error e.g. treats 4(3) as 43.
- B4 Breaks order i.e. [4(3-5)=4(-2)=-8].

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Leaves x in the answer e.g. 7x

Misreadings (-1)

M1 Correct substitution of any number other than 3 and continues.

Attempts (2 marks)

- A1 Substitutes for x and stops e.g. 4(3)
- A2 Treats as an equation and continues or stops 4x 5 = 3
- A3 Combines "x"s to "numbers" and continues. e.g. 4x-5 = -x=-(3)

Worthless (0)

- W1 Combines "*x*'s to "numbers" and stops.
- W2 Ignores x giving 4-5=-1
- W3 3[f(x)] = 12x 15
- W4 Replaces coefficient i.e. $4x \rightarrow 3x$
- W5 Incorrect answer, without work

(a) (ii)

$$\pounds f(-2) = 4(-2) - 5 = -8 - 5 = -13$$

- * Answer $-8-5 \Leftrightarrow 4 \text{ marks} (\text{stops or continues})$
- * $-8x 5x = 13x \implies 4$ marks but $-8x 5x = 13 \implies 5$ marks (rectified error)

Blunders (-3)

- B1 Correct answer no work
- B2 Leaves 4(-2) in the answer
- B3 Mathematical error e.g. treats 4(-2) as ± 42 .
- B4 Breaks order i.e. [4(-2-5)=4(-7)=-28].

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Leaves x in the answer e.g. -13x
- A3 Combines "x's to "numbers" and continues. e.g. 4x-5 = -x=-(-2)=2
- A4 Substitutes positive value for x and **continues** correctly

Misreadings (-1)

M1 Correct substitution of any negative number other than -2 and continues

Attempts (2 marks)

- A1 Substitutes for x and stops e.g. 4(-2)
- A2 Treats as an equation and continues or stops 4x 5 = -2

Worthless (0)

- W1 Combines "*x*'s to "numbers" and stops
- W2 Ignores x giving 4-5=-1
- W3 $-2[f(x)] = -8x \pm 10$
- W4 Replaces coefficient i.e. $4x \rightarrow -2x$
- W5 Incorrect answer, without work

(b) Draw the graph of the function

$$f: x \to x^2 - 2x - 1$$

in the domain $-1 \le x \le 3$, where $x \in \mathbf{R}$.

10mark

10marks						Att	3							
<i>f</i> (-1)	=	$(-1)^2$	-2(-1)	-1	=	2		x	-1	0	1	2	3	
<i>f</i> (0)	=	$(0)^2$	-2(0)	-1	=	-1		<i>x</i> ²	1	0	1	4	9	
<i>f</i> (1)	=	$(1)^2$	-2(1)	-1	=	-2		-2 <i>x</i>	2	0	-2	-4	-6	
<i>f</i> (2)	=	$(2)^2$	-2(2)	-1	=	-1		-1	-1	-1	-1	-1	-1	
<i>f</i> (3)	=	$(3)^2$	-2(3)	-1	=	2		1	1	1	1	1	1	
							1	f(x)	2	-1	-2	-1	2	

* Error(s) in each row /column calculation attracts a maximum deduction of 3 marks

Blunders (-3)

- Correct answer, without work i.e. 5 correct couples only and no graph B1
- "-2x" taken as "2" all the way. [In row headed "-2x" by candidate] B2
- "-1" calculated as "-x" all the way. [In row headed "-1" by candidate] **B**3
- B4 Adds in top row when evaluating f(x).
- B5 Omits "-1" row
- B6 Omits "-2 x" row
- **B**7 Omits a value in the domain (each time).
- **B8** Each incorrect image without work i.e. calculation through the function method

Slips (-1)

Numerical errors to a max of 3 in any row / column **S**1

Misreadings (-1)

- Misreads " x^2 " as " $-x^2$ " and places " $-x^2$ " in the table or function. M1
- Misreads "-2x" as "2x" and places "2x" in the table or function. M2
- Misreads "-1" as "1" and places "1" in the table or function M3

Attempts (3 marks)

- Omits " x^2 "row from table or treats " x^2 " as $\pm xor \pm 2x$. A1
- Any effort at calculating point(s). A2
- A3 Only one point calculated and stops.

15 Marks

- * Accept candidate's values from previous work.(**5 co-ordinates needed**) but see S2
- * Only <u>one</u> correct point <u>graphed correctly</u> \Rightarrow Att <u>3</u> + Att <u>5</u>
- * **Correct graph but no table** \Rightarrow full marks i.e. (10+15) marks.
- * Accept reversed co-ordinates if
 - (i) if axes not labelled or (ii) if axes are reversed to compensate (see B1 below)

Blunders (-3)

- B1 Reversed co-ordinates plotted against non-reversed axes (once only) {See 4th * above}.
- B2 Scale error (once only).
- B3 Points not joined or joined in incorrect order (once only).

Slips (-1)

- S1 Each point of candidate graphed incorrectly. {Tolerance ± 0.25 }
- S2 Each point (**5 points needed**) from table not graphed [See 2nd * above].

Attempts (5 marks)

- A1 Graduated axes (need not be labelled)
- A2 Some effort to plot a point {See 2nd * above}

Part (c)	15(10,5) marks	Att 3,2			
Use the graph drawn in 6(b) to estimate:					
	(i) the values of x for which $x^2 - 2x - 1 = 0$ (ii) the value of $f(x)$ when $x = 1.5$.				
(c) (i)	10 marks	Att 3			
Æ	x = 2.4 and $x = -0.4$				
	work to be shown on graph for correct answer				

* Accept candidate's values from previous work.

* 2 indications on graph and 2 values written down (blunder each time)

Blunders(-3)

B1 Answers beyond tolerance. {Tolerance ± 0.25 }

Misreading (-1)

M1 Answers not presented in designated box (but elsewhere)

Attempts (3marks)

A1 One point of intersection indicated only or one value of *x* written down

A2 Algebraic evaluation ($x = 1 \pm \sqrt{2}$)

Worthless (0)

- W1 Answers outside of tolerance without graphical indication
- W2 f(0) gives -1 as answer.

(c) (ii)

Ľ	f(x) = -1.75
	work to be shown on graph for correct answer
*	Accept candidate's values from previous work.

Blunders (-3)

- B1 Answer beyond tolerance. {Tolerance ± 0.25 }.
- B2 Correct answers no work
- B3 Sign error

Misreading (-1)

M1 Answers not presented in designated box (but elsewhere)

Attempts (2 marks)

- A1 Point indicated only.
- A2 Algebraic evaluation or correct calculator calculation.
- A3 Testing x value for y = 1.5

Worthless(0)

W1 Answers outside of tolerance without graphical indication.

BONUS MARKS FOR ANSWERING THROUGH IRISH

Bonus marks are applied separately to each paper as follows:

If the mark achieved is 225 or less, the bonus is 5% of the mark obtained, rounded *down*. (e.g. 198 marks \times 5% = 9.9 \Rightarrow bonus = 9 marks.)

If the mark awarded is above 225, the following table applies:

Bunmharc	Marc Bónais	Bunmharc	Marc Bónais	
(Marks obtained)	(Bonus Mark)	(Marks obtained)	(Bonus Mark)	
226	11	261 - 266	5	
227 - 233	10	267 – 273	4	
234 - 240	9	274 - 280	3	
241 - 246	8	281 - 286	2	
247 - 253	7	287 - 293	1	
254 - 260	6	294 - 300	0	