

JUNIOR CERTIFICATE 2008

MARKING SCHEME

MATHEMATICS

ORDINARY LEVEL

PAPER 2

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips- numerical errors
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

(-1)

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

QUESTION 1

Part (a)	10 marks	Att 3
Part (b)	25(10,10,5) marks	Att 8(3,3,2)
Part (c)	15(5,5,5) marks	Att 6(2,2,2)

Part (a)

10 marks

Att 3

Add 430 cm to 179 cm and give your answer in metres.

(a)		10 marks	Att 3
Ŕ	430 + 179 = 609cm $\frac{609}{100}$ $6 \cdot 09m$		

Accept "," for decimal point if used throughout the paper. *

Blunders (-3)

- Correct answer without work *Æ* B1
- B2 Incorrect conversion or no conversion
- B3 Incorrect mathematical operation with work and continues correctly e.g. multiplies instead of adds.
- B4 Decimal error
- 430 + 179 = 609 = 6 m 9 cm and stops B5

Slips (-1)

- Numerical slips to a maximum of -3 **S**1
- Leaves answer as $\frac{609}{100}$ S2

Attempts (3 marks)

- A1 Some correct step with work.
- A2 Converts one or both to metres correctly and stops e.g. 4.30m
- A3 States 100 cm = 1 m and stops.
- Some correct effort at conversion and stops e.g. $\frac{430}{100}$ A4

- 609 without work and stops A5
- 430 + 179 and stops. A6

Worthless (0)

A bus leaves Sligo at 11:45 and arrives in Derry at 14:15.

(b)(i)	10 marks	Att 3
How long does the bus journey take? Give your answer in hours and minutes.		
$ \begin{array}{c} 14:15-11:45 \\ = 2:30 \end{array} $	or $13:75-11:45$ = 2:30	

- * Accept answer in twelve hour clock format.
- * Do not penalise the same error twice in part (b)

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect mathematical operation with work and continues.
- B3 Error in converting hours to minutes or no conversion.
- B4 Incorrectly converts to a twelve hour format and continues.

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

- A1 Some correct step with work
- A2 States 1 hour = 60 minutes and stops.
- A3 Writes 11:45-14:15=3:30

Worthless (0)

(b)(ii)	10 marks	Att 3
The bus travels a distance of 135 km.		
Calculate the average speed, in km/h, for	the journey from Sligo to Derry	

$$2 \text{ hours 30 minutes} = 2.5 \text{ hours}$$
Average Speed = $\frac{D}{T}$

$$= \frac{135}{2.5}$$

$$= 54$$

- * Accept candidates answer in part (i)
- * Accept ratio method.

Blunders (-3)

- B1 Correct answer without work 🖉
- B2 Incorrect relevant formula.
- B3 Error in converting hours to minutes or no conversion (unless penalised in part (i)).
- B4 No division.
- B5 Decimal error

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

- A1 Some correct step with work e.g. 2 hours 30 minutes = 2.5 hours
- A2 States 1 hour = 60 minutes and stops.
- A3 Correct formula and stops.

Worthless (0)

(b)(iii)			5 marks	Att 2
The bus On a pa Find the for the j Give yo	uses 1 litre of diesel for rticular day, diesel cost 1 e cost of the diesel used b ourney from Sligo to Dep our answer correct to the p	every 15·9 c by the l rry. nearest	4.5 km travelled. ent per litre. ous on that day t euro.	
Ľ				
	No. of litres required	=	$\frac{135}{4\cdot 5} = 30$	
	Cost	=	$30 \times 115 \cdot 9$	
		=	3477 or 34.77	
		=	€35	

Blunders (-3)

- B1 Correct answer without work
- B2 Incorrect mathematical operation with work and continues.
- B3 Decimal error.
- B4 Mathematical Error

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Incorrect round off or no round off.

Attempts (2 marks)

- A1 Some correct step with work e.g. $\frac{135}{4\cdot 5}$ and stops.
- A2 Answer given as 30 with or without work and stops.
- A3 Writes $135 \times 115 \cdot 9$ or $4 \cdot 5 \times 115 \cdot 9$ and stops.

Worthless (0)

(c)(i)	5 marks	Att 2
Taking π as 3.14, calculat	e the length of one of the semi-circular ends,	
correct to the nearest metre		

Length = πr = 3.14×15 = $47 \cdot 1$ = 47 m

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect mathematical operation with work and continues.
- B3 Incorrect relevant formula e.g. $2 \pi r$. or πr^2
- B4 Incorrect substitution and continues e.g. r = 30.
- B5 $\pi \neq 3.14$ or answer given in terms of π
- B6 Decimal Error

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 Incorrect round off or no round off.

Attempts (2 marks)

- A1 Some correct step with work.
- A2 r = 15 and stops or 15 without work.
- A3 Correct formula or $2 \pi r$ and stops.

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Incorrect formula without work.

(c)(ii)			5 marks	Att 2
Calculate correct to	the total lengt	h of one la etre.	ap of the track,	
Ľ	Length	=	153 + 153 + 47 + 47	

400 m

5 marks

Accept candidates answer from part (i)

=

Blunders (-3)

*

- Correct answer without work \swarrow B1
- B2 Incorrect mathematical operation and continues.
- B3 Omits one or more lengths.

Slips (-1)

- Numerical slips to a maximum of -3. **S**1
- S2 Fails to add.

Attempts (2 marks)

- A1 Some correct step with work e.g. 153+153 and stops
- Writes 47 and/or 94 and stops A2
- A3 Recognises 153 as part of the answer e.g. 153 + and stops or 153 on its own.

Worthless (0)

(c)(iii) 5 1	marks	Att 2		
Noirín ran a 5000 metre race on the above track in 15 minutes. Calculate, in seconds, the average time it took Noirín to complete one lap of the track during that race.				
Ľ				
1 metre in $\frac{15}{5000}$	$\frac{5000}{400}$ =	12.5		
400 metres in $\frac{15}{5000} \times 400$	$\frac{15}{12.5} \times 60 =$	72 seconds		

=	1.2 minutes	
=	72 seconds.	

Accept candidates answers from part (ii).

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect mathematical operation and continues.
- B3 Decimal error.
- B4 Fails to convert to seconds or converts incorrectly.

Slips (-1)

S1 Numerical slips to a maximum of -3.

Attempts (2 marks)

- A1 Some correct step with work.
- A2 States 1minute = 60 seconds.
- A3 Writes $\frac{15}{5000}$ and stops.

Worthless (0)

QUESTION 2

Dort (a)	10 montra	A 44-2
Fart (a)	TU marks	All 5
Part (b)	20(15,5) marks	Att 7(5,2)
Part (c)	20(10,5,5) marks	Att 7(3,2,2)
Part (a)	10 marks	Att 3
A disc has a radius of 2.	5 cm	

(a)			10 marks	Att 3
Ø				
	Area of disc	=	πr^2	
		=	$3 \cdot 14 \times 2 \cdot 5 \times 2 \cdot 5$	
		=	19.625 cm^2	

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect substitution and continues correctly
- B3 Mathematical error e.g. $(2 \cdot 5)^2 = 5$
- B4 Incorrect relevant formula and continues e.g. $2\pi r$ or a multiple of πr^2
- B5 $\pi \neq 3.14$ or answer in terms of π .
- B6 Decimal Error

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

- A1 Some correct step with work and stops e.g. πr^2
- A2 $3 \cdot 14 \times 2 \cdot 5$ with or without answer of 7.85.
- A3 Writes $(2 \cdot 5)^2$ and stops.

Worthless (0)

Part (b)	20 marks (15, 5)	Att 7 (5, 2)
A rectangular garden has measurement	^s ← 18 m >	as shown.
91 91	m	

(b)(i)	15 marks	Att 5
Find, in m^2 , the area of the garden.		
Find, in m ² , the area of the garden.		

 $\bigstar \text{ Area} = 18 \times 9 = 162 \, m^2$

Blunders (-3)

- B1 Correct answer without work 🖉
- B2 Incorrect substitution or omission or extra, each time and continues.
- B3 Incorrect mathematical operation and continues.
- B4 Incorrect relevant formula and continues.
- B5 Correctly finds the perimeter and continues.

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Leaves answer as 18×9

Attempts (5 marks)

- A1 Some correct step with work and stops.
- A2 Correct formula e.g. $L \times B$ and stops.

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Use of formula involving π
- W3 $L \times L$ and stops.

The garden is to be covered completely with square concrete slabs each of side 50 cm . Find the number of slabs required to cover the garden

Ľ							
	Area of one slab	=	0.5×0.5	=	$0 \cdot 25 m^2$	or	36×18
	Area of garden			=	$162 m^2$		= 648
	Number of slabs	=	$\frac{162}{0\cdot 25}$		= 648.		

* Accept candidates answer from part (i).

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Mathematical error
- B3 Incorrect relevant formula and continues
- B4 Incorrect mathematical operation and continues e.g. $162 \times 0.25 = 40.5$
- B5 Decimal error.

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 Correct formula for area of square or rectangle and stops.
- A3 Converts 50cm to metres correctly and stops.
- A4 Writes 162 or candidates answer from part (i) and stops.
- A5 Writes 36 and / or 18 and stops.
- A6 Writes $\frac{162 \times 100}{50}$ with or without answer
- A7 Writes $\frac{162}{0.5}$ with or without answer.

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Use of formula involving π

Blunders (-3)

- B1 Correct answer without work
- B2 Incorrect substitution or omission or extra, each time and continues.
- B3 Mathematical error
- B4 Incorrect relevant formula and continues e.g. surface area and continues.
- B5 Leaves answer as $10 \times 7 \times 25$

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

- A1 Some correct step with work and stops.
- A2 Correct formula for volume of rectangular solid and stops.
- A3 Writes 10 + 7 + 25 = 42

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Use of formula involving π
- W3 Writes 10 + 7 + 25 and stops.
- W4 Writes 42 without work

The orange juice fills 14 cylindrical glasses exactly. Find, in cm^3 , the volume of each glass

Z

	=	$125 \ cm^3$
Volume of glass	=	$\frac{1750}{14}$

* Accept candidates answer from part (i)

Blunders (-3)

- B1 Correct answer without work 🔊
- B2 Incorrect mathematical operation and continues e.g 1750×14

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 $\frac{1750}{14}$ and stops.

Attempts (2 marks)

- A1 Some correct step with work and stops
- A2 Writes 1750 and stops.

Worthless (0)

(c)(iii)

5 marks

Att 2

The radius of each glass is 2.4 cm. Taking π as 3.14,.
calculate the height of each glass, correct to the nearest cm.

Ľ		
$\pi r^2 h$	=	125
(3.14)(2.4)(2.4)(h)	=	125
h	=	$\frac{125}{(3\cdot 14)(2\cdot 4)(2\cdot 4)}$
	=	6.91
	=	7 cm

* Accept candidates answer from part (ii)

Blunders (-3)

- B1 Correct answer without work
- B2 Incorrect relevant cylinder formula with work e.g. $2\pi rh$.
- B3 Incorrect substitution.
- B4 Mathematical error
- B5 Transposition error
- B6 $\pi \neq 3.14$ or answer given in terms of π

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Incorrect round off or no round off.

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 A correct substitution and stops.
- A3 Use of the answer from part (ii) e.g. $\frac{125}{2 \cdot 4}$

Worthless (0)

QUESTION 3

10 marks	Att 3
20 (10,5,5) marks	Att 7(3,2,2)
20 (10,5,5) marks	Att 7 (3,2,2)
_	10 marks 20 (10,5,5) marks 20 (10,5,5) marks

Part (a)

10 marks

Att 3

Find the mode of the numbers: 11, 6, 8, 6, 11, 4, 6, 3, 8.

Mode = 6

* Accept correct answer without work.

Blunders (-3)

- B1 Gives 3 as the mode with explanation e.g. "because 6 occurs 3 times"
- B2 Finds mean of the given numbers e.g. 7

Attempts (3 marks)

- A1 Some correct step and stops.
- A2 Writes, "mode means most".
- A3 Writes 11 + 6 + 8 + 6 + 11 + 4 + 6 + 3 + 8 and / or 63 and stops.
- A4 Writes 9 or 3 or 63 and stops.
- A5 Rearranges the numbers in order and stops.

- W1 Incorrect answer without work unless attempt mark or B2 applies.
- W2 Just a list of numbers e.g. 6, 1, 5..

(b)(i)	10 marks	Att 3
What is the measure of the ang	le for Portugal?	

Ø			
	75 + 150 + 30 = 255	or	180 - 75
	360 - 255		105
	105		

* Do not penalise the same error twice in part (b)

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Angle at centre of circle $\neq 360^{\circ}$
- B3 Straight line angle $\neq 180^{\circ}$
- B4 Each angle omitted.

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Writes 360 255 or 180 75 and stops

Attempts (3 marks)

- A1 Some correct step with work and stops e.g. 75 + 30 = 105
- A2 States "Straight line = 180° " or similar and stops
- A3 States "Angle at centre of circle = 360° " or similar and stops.
- A4 Writes 255 and stops.

Worthless (0)

(b)(ii)

5 marks

10 people replied that Italy was their favourite holiday destination How many people were surveyed?

<i>∞</i> 30° =	10	or	30°	=	$\frac{1}{12}$ of 360
1° =	$\frac{10}{30}$		12×10	=	120
360° =	$\frac{10}{30} \times 360$				
_	120				

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect ratio
- B3 Mathematical error
- B4 Decimal error.

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 12×10 and stops

Attempts (2 marks)

- A1 Some relevant step with work
- A2 Writes 30° or 360° and / or $\frac{1}{12}$ or $\frac{1}{3}$ and stops

Worthless (0)

How many gave Spain as their reply?

Ŕ		$\frac{150}{360} \times 120$	<u>or</u>	30° =	10
				150° =	10×5
	=	50		=	50
*	Acc	ent candidates answer in par	t (ii)		

Accept candidates answer in part (ii)

Blunders (-3)

- Correct answer without work B1
- B2 Incorrect ratio
- B3 Mathematical error.
- B4 Decimal error.

Slips (-1)

- Numerical slips to a maximum of -3. **S**1
- Writes 10×5 and stops. S2
- S3 Early round off.

Misreading (-1)

M1 Gives correct answer for France or Portugal with work e.g. 25 or 35.

Attempts (2 marks)

- Some correct step with work and stops A1
- A2 Writes 150, 360 or 120 and stops.

Worthless (0)

(c)(i)

At the end of a month 50 students wrote down the number of days they were absent from school during that particular month.

The results are shown in the following table:

Number of days absent	0	1	2	3	4	5
Number of students	12	7	12	10	6	3

10 marks

Att 3

Draw a bar chart of the data.

- *
 - Accept correct graph with no labels.
- * Accept horizontal or vertical bar chart
- * Accept bars of unequal widths or bars joined as a histogram
- * Accept lines as bars

Blunders (-3)

- B1 Axis with student numbers not graduated uniformly.
- B2 Reverse variable and frequency when drawn.
- B3 Draws a trend graph or pie chart.

Slips (-1)

S1 Each incorrect bar or bar omitted to a max of -3.

Attempts (3 marks)

A1 Graduated axis or axes only.

Find the mean number of days absent per student.

Ŕ		
Mean	=	$\frac{\sum fx}{\sum f}$
	=	$\frac{(0 \times 12) + (1 \times 7) + (2 \times 12) + (3 \times 10) + (4 \times 6) + (5 \times 3)}{12 + 7 + 12 + 10 + 6 + 3}$
	=	$\frac{0+7+24+30+24+15}{50}$
	=	$\frac{100}{50}$
	=	2

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect mathematical operation in numerator or denominator.

B3 Incorrect denominator or no denominator e.g.
$$\frac{100}{12}$$

- B4 Inverted fraction.
- B5 Frequencies omitted in numerator
- B6 Omits 2 or more values in numerator.

Slips (-1)

S1 Numerical slips to a maximum of -3.

S2
$$\frac{100}{50}$$
 and stops

S3 Omits one value in numerator with work.

Attempts (2 marks)

A1 Some correct step with work and stops e.g. 12 + 7 + 12 + 10 + 6 + 3 and/or 50.

A2 Mean =
$$\frac{\sum fx}{\sum f}$$
 and stops.

- A3 A relevant multiplication and stops.
- A4 Average of the frequencies e.g. $\frac{12 + 7 + 12 + 10 + 6 + 3}{6} = \frac{50}{6}$

A5
$$\frac{0+1+2+3+4+5}{6} = \frac{15}{6}$$
.

A6 100 or 50 without work.

Worthless (0)

5 marks

Find the percentage of students who were absent for three or more days.

Blunders (-3)

- B1 Correct answer without work
- B2 Incorrect mathematical operation.
- B3 Omits the 100 or divides by the 100.
- B4 Omits an entry or inserts an incorrect entry in the addition
- B5 Leave answer as $\frac{19}{50} \times 100$
- B6 Decimal error

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 Writes 19×2 and stops.

Attempts (2 marks)

- A1 Some correct step with work and stops e.g. indicates the 100.
- A2 Writes any of the following numbers; 10, 6, 3, 19, 50, 100.

Worthless (0)

QUESTION 4

Part (a)	10 marks	Att 3
Part (b)	25 (10,5,5,5) marks	Att 9(3,2,2,2)
Part (c)	15 (5,5,5) marks	Att 6(2,2,2)

$x = 25^{\circ}$	y = 180 - 25	
	155°	

* Accept correct answer marked / indicated on a diagram

* Accept correct answer without work

Blunders (-3)

- B1 Straight line angle $\neq 180^{\circ}$
- B2 Finds one value only
- B3 Writes $x = 155^{\circ}$ and $y = 25^{\circ}$

Slips (-1)

S1 Numerical slips to a maximum of -3.

Attempts (3 marks)

- A1 Some correct step and stops e.g. 180°.
- A2 States "Straight line angle = 180° " or similar and stops.
- A3 States "Vertically opposite angles are equal" or similar and stops.
- A4 Uses an arbitrary value for *x* or *y* with relevant work.
- A5 $y = 25^{\circ}$.
- A6 $x = 155^{\circ}$.

Worthless (0)

(b)(i)

10 marks

Att 3

Find $|\angle pqr|$ and give a reason for your answer

 $|\angle pqr| = 65^{\circ}$

Reason: Base angles in an isosceles triangle are equal

* Accept correct answer marked / indicated on a diagram

* Accept correct answer without work

Blunders (-3)

- B1 States $|\angle prq| = 65^{\circ}$ and continues to get $|\angle pqr| = 50^{\circ}$
- B2 Sum of angles in a triangle $\neq 180^{\circ}$
- B3 Correct answer without a reason or with an incorrect reason.

Attempts (3 marks)

- A1 Some correct step with work and stops e.g. Finds $|\angle prs| = 25^{\circ}$
- A2 Indicates clearly $\angle pqr$ on the diagram
- A3 Marks |rp| = |rq| on the diagram.
- A4 Correct reason only given.

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Diagram reproduced without modification.

(b)(ii)

Find $|\angle prq|$.

 $|\angle prq| = 180 - 65 - 65 = 50^{\circ}$ <u>or</u> $\angle prq = 2\angle prs = 2(90 - 65) = 2(25) = 50^{\circ}$

* Accept correct answer marked / indicated on a diagram

* Accept correct answer without work

*Accept candidates answer from part (i)

Blunders (-3)

- B1 Sum of angles in a triangle $\neq 180^{\circ}$
- B2 Mathematical error.

Attempts (2 marks)

- A1 Some correct step and stops e.g. 180° or 25° or 90° or 130°.
- A2 States "Sum of angles in a triangle = 180° " or similar.
- A3 Clearly indicates $\angle prq$ on a diagram drawn in answer box.

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Diagram reproduced without modification.

(b)(iii)

Given that |pq| = 5.8 cm and |rs| = 6.2 cm, find the area of the Δpqr in cm².

X	Area	= = =	$\frac{1}{2}(base)(height) \\ \frac{1}{2}(5\cdot8)(6\cdot2) \\ \frac{1}{2}(35\cdot96) \\ 17\cdot98 \ cm^{2}$

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect relevant formula and continues e.g. $\frac{1}{2}$ omitted
- B3 Incorrect mathematical operation
- B4 Decimal error.

Slips (-1)

S1 Numerical slips to a maximum of -3.

Attempts (2 marks)

- A1 Some correct step with work and stops .
- A2 Correct formula for area of triangle and stops.
- A3 Writes 5.8×6.2 and stops.
- A4 Indicates on diagram $|pq| = 5 \cdot 8$ and/or $|rs| = 6 \cdot 2$ in this answer box.

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Diagram reproduced without modification.

(b)(iv)

Show that Δprs and Δqrs are congruent.

Ø	rp = rq	or	$ \angle rpq = \angle rqp $	or	rp = rq
	rs = rs common side.		rp = rq		$ \angle prs = \angle qrs $
	$\left \angle rsp \right = \left \angle rsq \right $		$\left \angle prs \right = \left \angle qrs \right $		rs = rs

* Accept correct answer marked or indicated on a diagram.

Blunders (-3)

B1 Each step omitted.

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 States same shape or SSS or ASA or SAS or RHS.
- A3 States triangles fold onto each other.
- A4 Clearly indicates the two required triangles in the answer box for this part.

Worthless (0)

W1 Diagram reproduced without modification.

(c)(i)

5 marks

Att 2

Name the image of Δ *aoc* under S_0 , the central symmetry in o.

 Δ box

- * Accept Δ box with points in any order.
- * Accept $a \to b$, $o \to o$ and $c \to x$.
- * Accept diagram with correct indication / shading.

Blunders (-3)

B1 Each point whose image is not found (or incorrectly found).

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 Shows some knowledge of central symmetry and stops.
- A3 States that the image is a triangle.
- A4 Finds the image of one or two points correctly e.g. $o \rightarrow o$ or $ao \rightarrow ox$
- A5 If *b*, *o* or *x* appears in any group of letters.

Worthless (0)

W1 Diagram reproduced without modification.

(c)(ii)

Find the value of w.

$30+90+ \angle abc $	=	180°
$ \angle abc $	=	180-120
$\angle abc$	=	60°
180	=	60 + w
120	=	W

Blunders (-3)

- B1 Correct answer without work 🖉
- B2 Straight line angle $\neq 180^{\circ}$.
- B3 Transposition error.
- B4 Error in finding $|\angle abc|$
- B5 Sum of angles in triangle $\neq 180^{\circ}$

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 180-60 and stops.

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 Writes down or indicates that $|\angle acb| = 90^{\circ}$.
- A3 States "angles in a straight line = 180° " or similar and stops.
- A4 States "sum of 3 angles in a triangle = 180° " or similar and stops.
- A5 Writes 30 + 90 and stops.
- A6 180 30 or 180 90 or 180 and stops.

- W1 Incorrect answer without work unless attempt mark applies
- W2 Diagram reproduced without modification.

(c)(iii)	5 marks	Att 2
pqrs is a cyclic quadrilateral of the circle K $ \angle spq = 82^{\circ}$ and $ \angle srq = z^{\circ}$.	p (82°) (82°) (100 (100 (100 (100 (100 (100 (100 (10	K
Find the value of z		

180 - 82 98° z ==

- * Accept correct answer marked / indicated on a diagram
- * Accept correct answer without work

Blunders (-3)

Opposite angles $\neq 180^{\circ}$ **B**1

Slips (-1)

- Numerical slips to a maximum of -3. **S**1
- Writes 180 82 and stops. S2

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 States "opposite angles of cyclic quadrilateral = 180°" or similar and stops.
 A3 Writes 180° or 360° or 164° and stops.

- W1 Incorrect answer without work unless attempt mark applies
- W2 Diagram reproduced without modification.

	QUESTION 5	
Part (a)	10 marks	Att 3
Part (b)	25 (10,10,5) marks	Att 8(3,3,2)
Part (c)	15 (10,5) marks	Att 5(3,2)

Part (a)	10 marks	Att 3
Write down the coordinates of the point a .	3 7	_
		-
	-3 -2 -1 1 2 3	-
		-
<i>b</i> .	-3	

a = (3,-2)

- * Accept without brackets for full marks e.g. 3,-2
- * Accept x = 3 and y = -2 for full marks.

Blunders (-3)

- B1 Incorrect order in couple (-2,3).
- B2 Incorrect x ordinate, if not sign error, subject to B1.
- B3 Incorrect y ordinate, if not sign error, subject to B1.
- B4 x = 3 and stops or y = -2 and stops

Slips (-1)

- S1 Sign error in *x* ordinate.
- S2 Sign error in *y* ordinate.

Attempts (3 marks)

A1 Draws a line through 3 and / or -2

Worthless (0)

- W1 3 on its own with no work
- W2 -2 on its own with no work

Notes:

(3,4): B3	(-3,2): S1,S2	(2,3): B2,B3
(3,0): B3	(0,2): S1,B2	(-2,-3): B2,B3
(3,2): S2	(4,4): B2,B3	(-2,3): B1

p is the point (1,	2) and q is the point (5, -8). Find each of the following:	
(b)(i)	10 marks	Att 3

the midpoint of [pq]

Ø	$(\frac{1+5}{2}, \frac{2-8}{2})$
	$=(\frac{6}{2},\frac{-6}{2})$
	= (3,-3)

* Accept translation method.

* No penalty on brackets.

Blunders (-3)

B1 Correct answer without work *Æ*

B2 Incorrect formula e.g. error in both signs
$$\left(\frac{x_1 - x_2}{2}, \frac{y_1 - y_2}{2}\right)$$
 or $\left(\frac{x_1 + y_1}{2}, \frac{x_2 + y_2}{2}\right)$ or

$$\left(\frac{x_1 + x_2}{2} + \frac{y_1 + y_2}{2}\right)$$
 or omits the divisor 2 and continues.

- B3 Incorrectly treats couples as (x_1, x_2) and (y_1, y_2) and continues.
- B4 Two or more signs incorrect in substitution and continues.
- B5 Reversal of coordinates i.e. (-3, 3) with work.
- B6 One ordinate only worked out correctly.
- B7 Uses one of the given points and some arbitrary point e.g. (1, 2) and (0,0) and continues.
- B8 Mathematical error e.g. Sign rules

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 Error in one sign in midpoint formula and continues.
- S3 One incorrect substitution or sign when substituting e.g. $\left(\frac{1+5}{2}, \frac{2+8}{2}\right)$ and continues
- S4 Takes (1,2) as midpoint and finds extremity e.g. $(5,-8) \rightarrow (1,2) \rightarrow (-3,12)$ or takes (5,-8) as midpoint and finds extremity e.g. $(1,2) \rightarrow (5,-8) \rightarrow (9,-18)$

Attempts (3 marks)

- A1 Some correct substitution
- A2 Correct midpoint indicated on graph and not named (if named B1 applies)
- A3 Point p and / or q plotted reasonably well for this part.
- A4 Labels p and / or q with (x_1, y_1) and stops.
- A5 Identifies (x_1, y_1) and/or (x_2, y_2) (for this part).

- W1 Use wrong formula e.g. slope or distance formula.
- W2 Writes midpoint formula and stops.

Att 3

$$\mathfrak{L}(\mathbf{ii})$$
 the slope of pq

$$\bigotimes \left(\frac{2+8}{1-5}\right) = \frac{10}{-4} \text{ or } \frac{-5}{2} \text{ or } -2.5 \quad \underline{\mathbf{OR}} \quad \left(\frac{-8-2}{5-1}\right) = \frac{-10}{4} \text{ or } \frac{-5}{2} \text{ or } -2.5$$

* Accept candidates midpoint as a point for finding the slope.

* Accept correct trigonometric method i.e. $\tan \theta = \frac{-5}{2}$.

Blunders (-3)

B1 Correct answer without work *Æ*.

B2 Incorrect slope formula e.g.
$$\frac{x_2 - x_1}{y_2 - y_1}$$
 or $\frac{y_2 + y_1}{x_2 + x_1}$ or $\frac{y_2 - y_1}{x_1 - x_2}$ or $\frac{x_1 - y_1}{x_2 - y_2}$ or $\frac{horizontal}{vertical}$

or
$$\tan \theta = \frac{aajacent}{opposite}$$
 and continues

B3 Incorrectly treats couples as (x_1, x_2) and (y_1, y_2) if not already penalised e.g. $\frac{5+8}{1-2}$ or

$$\frac{1-2}{5+8}$$

- B4 Mathematical error e.g. sign rules.
- B5 Uses one of the given point and some arbitrary point e.g. (1, 2) and (0,0) and continues.
- B6 Error in more than one sign when substituting.

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 Error in one sign in slope formula e.g. $\frac{y_2 y_1}{x_2 + x_1}$.
- S3 One incorrect substitution or sign for substituting.

Attempts (3 marks)

A1 Some correct step with work and stops.

A2
$$\tan \theta = \frac{opposite}{adjacent}$$
 or $m = \frac{vertical}{horizontal}$ and stops.

- A3 Some correct substitution into formula with $x_2 x_1$ and / or $y_2 y_1$
- A4 Points p and / or q plotted reasonably well for this part.
- A5 Identifies (x_1, y_1) and / or (x_2, y_2) in this part.

- W1 Use wrong formula e.g. midpoint formula.
- W2 States given formula only.

Z(iii) the length of [pq]

	pq	=	$\sqrt{(1-5)^2+(2+8)^2}$	pq	=	$\sqrt{(5-1)^2 + (-8-2)^2}$
		=	$\sqrt{(-4)^2 + (10)^2}$		=	$\sqrt{(4)^2 + (-10)^2}$
		=	$\sqrt{(16+100)}$		=	$\sqrt{(16+100)}$
		=	$\sqrt{116}$ or 10.77	$= \sqrt{1}$	16 or	10.77
*	Accept	correct us	e of Pythagoras			

Accept correct use of Pythagoras.

Blunders (-3)

- Correct answer without work. **B**1
- Correct answer without work. Zero Incorrect formula e.g. $\sqrt{(x_2 x_1)^2 (y_2 y_1)^2}$ or $\sqrt{(x_2 + x_1)^2 + (y_2 + y_1)^2}$ or omits B2 square root sign or squares and continues.
- Incorrectly treats couples as (x_1, x_2) and (y_1, y_2) if not already penalised. B3
- Mathematical error e.g. $4^2 = 8$ B4
- **B5** Two or more signs in substitution.

Slips (-1)

- **S**1 Numerical slips to a maximum of -3.
- Error in one sign in $(x_2 x_1)$ or $(y_2 y_1)$ in formula. S2
- S3 One incorrect substitution or sign when substituting.

Attempts (2 marks)

- A1 Some correct step with work.
- A2 Some correct substitution into a formula with $x_2 - x_1$ and/or $y_2 - y_1$
- A3 States theorem of Pythagoras and stops.
- A4 Point *p* and or *q* plotted reasonably well (for this part)
- Identifies (x_1, y_1) and/or (x_2, y_2) (for this part). A5

Worthless (0 marks)

- W1 Use of wrong formula e.g. midpoint formula.
- W2 Incorrect answer without work unless attempt mark applies.

Part (c) (i)	10 Marks	Att 3
The line L contains the point $(2, 1)$		
L has a slope of 3.		
Find the equation of <i>L</i> .		
L has a slope of 3. Find the equation of L.		

$$y - y_1 = m(x - x_1)$$

 $y - 1 = 3(x - 2)$

* 1-y = 3(2-x) or similar merits full marks.

Blunders (-3)

- B1 Correct answer without work.
- B2 Incorrect formula e.g. $y + y_1 = m(x + x_1)$ or $(x x_1) = m(y y_1)$ and continues.
- B3 Switches x and y e.g. y 2 = 3(x 1)
- B4 Mathematical error.
- B5 y = 3(x+c) and stops
- B6 Uses a point other than (2, 1) e.g. (0,0).
- B7 $m \neq 3$

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 Error in one sign in formula.
- S3 One incorrect substitution or sign when substituting.

Attempts (3 marks)

- A1 Some correct step with work.
- A2 Writes m = 3 and stops.
- A3 States $y = mx \pm c$ and stops

Worthless (0 marks)

- W1 Use of wrong formula
- W2 States given formula only.

Note: If an error is made while attempting to simplify this equation, penalise in part (ii)

Part (c) (ii)

5 Marks

By letting y = 0, find the coordinates of *p*, the point of intersection of the line *L* and the *x*-axis.

$$y-1 = 3(x-2)$$

$$0-1 = 3x-6$$

$$5 = 3x$$

$$\frac{5}{3} = x$$

$$p = (\frac{5}{3}, 0) \text{ or } (1\frac{2}{3}, 0)$$

* Accept candidates answer from part (i)

* Accept answer given as
$$x = \frac{5}{3}$$
 with work shown for full marks.

Blunders (-3)

- B1 Correct answer without work.
- B2 Substitutes x = 0 and continues.
- B3 Mathematical error.
- B4 Incorrect substitution and continues.
- B5 Transposition error

Slips (-1)

S1 Numerical slips to a maximum of -3.

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 Substitutes y = 0 and stops.
- A3 Writes y 1 = 3(x 2) and stops.
- A4 Writes answer as (x,0) without work where x is an arbitrary number subject to B1.

Worthless (0)

QUESTION 6

Part (a)	15 (10,5) marks	Att 5(3,2)
Part (b)	20 (10,5,5) marks	Att 7(3,2,2)
Part (c)	15 (10,5) marks	Att 5(3,2)

Part (a)	15 marks (10, 5)	Att 5 (3, 2)
The right-angled triangle <i>abc</i> has measurements as shown.	a 17 B B 15	\geq_b

Part (a) (i)

10 Marks

Att 3

Write down the length of the hypotenuse of the Δabc .

Length of the hypotenuse of the $\Delta abc = 17$

- * Correct answer with no work merits full marks.
- * Indicates 17 only in diagram, or "h" or "hypotenuse", accept for 10 marks.

Blunders (-3 marks)

B1 Gives answer as [*bc*].

Attempts (3 marks)

- A1 Any mention of a correct trigonometric ratio.
- A2 Gives answer as 8 or 15.

- W1 Incorrect answer with no work unless attempt mark applies.
- W2 Gives more than one answer.
- W3 Answer measured from examination paper.

Att 2

Write down the value of sin B, as a fraction.

 $\sin B = \frac{8}{17}$

- * Correct answer with no work merits full marks.
- * Accept consistent error from part (i)
- * Accept $\sin \frac{8}{17}$ for full marks.

Blunders (-3)

- B1 Incorrect or inverted ratio e.g. $\sin B = \frac{17}{8}$.
- B2 Gets $\sin \angle acb$ (check is not consistent error from (i)).

Slips (-1)

S1 Answer = 0.47 (answer not a fraction)

Attempts (2 marks)

- A1 Any correct trigonometric ratio written down in answer box.
- A2 Only gives answer = $28 \cdot 07^{\circ}$ or rounded to 28° for this part.
- A3 Only gives answer = 0.0082 i.e. $\sin \frac{8}{17}$

Worthless (0)

Part (b)	20 marks (10, 5, 5)	Att 7 (3, 2, 2)
6(b)	In the right-angled triangle pqr , $ qr = 4$, $ \angle qpr = 48^{\circ}$ and $ \angle pqr = t^{\circ}$.	q 48° 48° q 48° q

 Part (b) (i)
 10 marks
 Att 3

 (i)
 Find the value of t.
 (ii)
 (iii)
 (iiii)
 (iii)
 (iii)
 (iii)
 (iii)
 (iiii)
 (iii)
 (iiii)
 (iiii)
 (iiiiii)
 (iiii)
 (iiii)

 $t = 180 - 90 - 48 = 42^{\circ}$

* Correct answer with no work merits full marks.

Blunders (-3)

- B1 Three angles of a triangle $\neq 180^{\circ}$
- B2 Fails to subtract one of the angles e.g. $180 48 = 132^{\circ}$
- B3 Mathematical error.

Slips (-1)

S1 Numerical slips to a maximum of -3.

Attempts (3 marks)

- A1 Some correct step and stops e.g. 132 or 90 or 180.
- A2 Writes "3 angles in a triangle add up to 180" and stops.
- A3 Writes $|\angle prq| = 90^\circ$ or correctly writes the 90° angle on the diagram and stops.
- A4 Any correct trigonometric ratio written down.

Worthless (0)

Part (b) (ii)

5 marks

Using your calculator, or otherwise, write down the value of tan $\angle pqr$ correct to one decimal place.

 $\tan \angle pqr = \tan 42 = 0.9$

* Correct answer with no work merits full marks.

- * Accept candidates answer from part (i).
- * Accept tan 0.9 for full marks.

Blunders (-3)

- B1 Writes $\tan 48 = 1.1$ or 1.11 as the answer.
- B2 Finds sin 42 or cos 42 and continues.

B3
$$\tan 42 = \frac{pr}{4}$$
 and stops or $\frac{pr}{4}$ on it's own.

	RAD	GRAD
Tan 42	2.29	0.77

B4 Uses Radian or Grad mode on the calculator.

Slips (-1 marks)

S1 Failure to round off or rounds off incorrectly.

Attempts (2 marks)

- A1 Writes $\tan 42 = \frac{pr}{qr}$ or $\frac{pr}{qr}$ or Tan 42 and stops.
- A2 Any correct trigonometric ratio written down.
- A3 Correctly marks the hypotenuse or opposite or adjacent on a diagram reproduced and stops, for this part.
- A4 $\cos 48 = 0.72$ $\sin 48 = 0.68$ \rightarrow Grad mode $\frac{\text{or}}{\cos 48} = -0.64$ $\sin 48 = -0.76$ \rightarrow Rad mode.

- W1 Incorrect answer with no work unless attempt mark applies.
- W2 0.72 or similar on its own (must be in format given in A4 to merit marks)

Part (b) (iii)

5 marks

Hence, or otherwise, calculate	pr	correct to one decimal place
--------------------------------	----	------------------------------

Ŕ					
tan 42	$= \frac{pr}{4}$	or	0.9	$= \frac{pr}{4}$	
4 tan 42	= pr		4(0.9)	= <i>pr</i>	
4(0.9)	= pr		3.6	= <i>pr</i>	
3.6	= pr				

Accept candidates answers from parts (i) and (ii).

Blunders (-3)

*

B1 Correct answer without work.

B2 Error in forming equation e.g.
$$\frac{4}{pr} = 1.11$$
 and continues

- B3 Error in manipulation of equation.
- B4 Writes $\frac{pr}{4} = 1.11$ and continues i.e. tan 48
- B5 Uses Radian or Grad mode on calculator unless already penalised in part (ii).

Slips (-1 marks)

- S1 Numerical slips to a maximum of -3.
- S2 Failure to round off or rounds off incorrectly.

Attempts (2 marks)

A1 Any correct step with work and stops e.g.
$$\frac{x}{4}$$
 or $\frac{4}{x}$

- A2 Correct scale diagram.
- A3 $\tan 42$ or 0.9 or any trigonometric ratio.

- W1 Incorrect answer with no work unless attempt mark applies.
- W2 Answer = $4 \cdot 2$ cm (measured from examination paper)

	RAD	GRAD
Tan 42	2.29	0.77

$$|ab|^{2} = |ac|^{2} + |bc|^{2}$$
$$|25|^{2} = |ac|^{2} + |24|^{2}$$
$$625 = |ac|^{2} + 576$$
$$49 = |ac|^{2}$$
$$\sqrt{49} \text{ or } 7 = |ac|$$

* Accept |ac| found correctly using a correct trigonometric ratio method for full marks. Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect theorem of Pythagoras and continues.
- B3 Mathematical error e.g. $24^2 = 48$
- B4 Error in manipulation of equation.
- B5 Stops at $|ac|^2 = 49$

Slips (-1 marks)

S1 Numerical slips to a maximum of -3.

Attempts (3 marks)

- A1 Some correct step with work and stops e.g. 25^2 or writes 90° for $\angle C$ on diagram.
- A2 States theorem of Pythagoras and stops.
- A3 Correct Sin, Cos or Tan ratio written down and stops.
- A4 Labels correctly the hypotenuse e.g. h = 25.

- W1 Incorrect answer with no work unless attempt mark applies e.g. 625.
- W2 25 24 = 1 or 25 + 24 = 49.
- W3 Answer = 2.4cm (measured from examination paper)

Ľ

(ii) Find $|\angle bac|$, correct to the nearest degree.

$$\bigotimes \sin \angle bac = \frac{24}{25}$$

$$\bigotimes bac = 73 \cdot 73^{\circ} \text{ or } 73^{\circ}44'$$

$$\angle bac = 74^{\circ}$$

$$\bigotimes bac = 73 \cdot 73^{\circ} \text{ or } 73^{\circ}44'$$

$$\angle bac = 73 \cdot 73^{\circ} \text{ or } 73^{\circ}44'$$

$$\angle bac = 74^{\circ}$$

Accept candidates answer from part (i).

Blunders (-3)

- B1 Correct answer without work 🖉
- B2 Incorrect trigonometric ratio.
- B3 Decimal error.
- B4 Mathematical error.
- B5 Uses radian or grad mode on calculator.
- B6 Error in manipulation of equation.

Misreading (-1 marks)

M1 Finds $|\angle abc|$ correctly.

Slips (-1 marks)

- S1 Numerical slips to a maximum of -3.
- S2 Fails to round off or rounds off incorrectly.
- S3 Obvious slip in reading tables or calculator.

Attempts (2 marks)

- A1 Some correct step with work and stops e.g. Sine rule stated.
- A2 Any correct trigonometric ratio written down.
- A3 Correct scale diagram.
- A4 States 180 with or without work.

Worthless (0)