MARKING SCHEME JUNIOR CERTIFICATE EXAMINATION 2007 MATHEMATICS - ORDINARY LEVEL - PAPER 2

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips- numerical errors (-1)
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

QUESTION 1

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 8

Part (a)	10 marks	Att 3
One lap of a running track measures	440 m. James runs 50 laps of that tr	ack.
What distance, in kilometres, does Ja	ames run?	

(a)	10 marks	Att 3
K		
440×	$50 = 22,000 \mathrm{m}$	
22000		
1000	-	
= 22 k	m	
* Accon	t "" for desired point if used throughout the paper	

Accept "," for decimal point if used throughout the paper.

Blunders (-3)

- Correct answer without work *K* **B**1
- Incorrect conversion or no conversion B2
- Incorrect mathematical operation with work and continues correctly e.g. adds instead of B3 multiplies.
- B4 Decimal error

Slips (-1)

- **S**1 Numerical slips to a maximum of -3
- Leaves answer as $\frac{22000}{1000}$ S2 1000

Attempts (3 marks)

- Some correct step with work A1
- Converts to kilometres correctly and stops e.g. 0.440 km A2
- States 1000m = 1km and stops A3
- Some correct effort at conversion e.g. $\frac{50}{1000}$ A4
- 22000 without work and stops A5
- A6 440×50 and stops

Worthless (0)

Part (b)	20 marks (10, 5, 5)	Att 7 (3, 2, 2)
Aoife books a flight from Cork to L	ondon. The plane is due to le	eave Cork at 18:25
and to arrive in London 1 hour and	20 minutes later.	

(b)(i)10 marksAtt 3At what time should the plane arrive in London?

18:25+1:20 = 19:45

Accept answer in twelve hour clock format.

Blunders (-3)

Z

*

- B1 Correct answer without work *K*
- B2 Incorrect mathematical operation with work and continues.
- B3 Correctly adds an arbitrary time to 18:25 with work.
- B4 Incorrectly converts to a twelve hour format and continues.

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Leaves answer as 18:25+1:20

Attempts (3 marks)

- A1 Some correct step with work
- A2 States 1 hour = 60 minutes and stops.

Worthless (0)

X

On the day of her flight the departure time was delayed by 25 minutes but the flight time was 6 minutes less than expected. At what time did the plane land in London?

18:25+0:25+1:20-0:06=20:04

<u>Or</u>

```
19:45+0:25-0:06=20:04
```

- * Accept candidates answer in part (i)
- * Accept answer in twelve hour clock format.

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect mathematical operation with work and continues.
- B3 Error in converting hours to minutes or no conversion (unless penalised in part (i)).

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (2 marks)

- A1 Some correct step with work e.g. 25 6 = 19
- A2 States 1 hour = 60 minutes and stops.

Worthless (0)

Aoife's fare for the flight was €48. Excess hand baggage was charged at the rate of €3.50 per kg. Aoife had 5.6 kg of excess hand baggage. Find the total cost of Aoife's flight.

Ø			
	Cost of hand baggage	=	$5 \cdot 6 \times 3 \cdot 50 = \text{\ensuremath{\in}} 19 \cdot 60$
	Total Cost	=	48 + 19 · 60 €67 · 60

Blunders (-3)

- B1 Correct answer without work 🖉
- B2 Incorrect mathematical operation with work and continues.
- B3 Decimal error

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Leaves as $48 + 19 \cdot 60$

Attempts (2 marks)

- A1 Some correct step with work e.g. $5 \cdot 6 \times 3 \cdot 5$ and stops.
- A2 Answer given as \notin 48 and stops
- A3 Answer given as 19.60 with or without work.

Worthless (0)

20 marks (5, 5, 5, 5)

A garden with a semicircular lawn and two flowerbeds has measurements as shown in the diagram.

(c)(i)	5 marks	Att 2
	Find, in m^2 , the area of the garden.	

Area = $6 \times 12 = 72 \text{ m}^2$

Blunders (-3)

Z

- B1 Correct answer without work 🖉
- B2 Incorrect mathematical operation with work and continues
- B3 Incorrect relevant formula e.g. $\frac{1}{2}(6 \times 12) = 36$
- B4 Incorrect substitution and continues
- B5 $6^2 \times 12^2 = 5184$

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Leaves answer as 6×12

Attempts (2 marks)

- A1 Some correct step with work.
- A2 Finds perimeter of part or whole correctly or incorrectly with work shown e.g. 6+6=12
- A3 Correct formula for area and stops e.g. Area = $L \times W$

Worthless (0)

Taking π as 3.14, find the area of the lawn, in m².

Ľ			
	Area of lawn	=	$\frac{1}{2} \times \pi r^2$
		=	$\frac{1}{2} \times 3 \cdot 14 \times 6 \times 6$
		=	$\frac{1}{2} \times 113.04$
		=	56.52 m^2

Blunders (-3)

- B1 Correct answer without work *Æ*
- B2 Incorrect relevant formula and continues e.g. $2\pi r$ or πr^2
- B3 Mathematical error e.g. $6^2 = 12$ and continues.
- B4 Incorrect substitution and continues e.g. r = 12
- B5 $\pi \neq 3.14$ or answer given in terms of π
- B6 Decimal error

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Leaves answer as $\frac{1}{2} \times 113.04$

Attempts (2 marks)

- A1 Some correct step with work.
- A2 Product of two relevant numbers and stops
- A3 Writes 6^2 and stops
- A4 Correct formula for area of lawn and stops

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Incorrect formula without work

(c)(iii)

5 marks

Att 2

Find the area of the flowerbeds, in m^2 .

Ľ	Area of flowerbeds	=	$72 - 56 \cdot 52$ $15 \cdot 48 \text{ m}^2$	
*	Accept candidates answers	from p	parts (i) and (ii).	

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect mathematical operation and continues.
- B3 Decimal error

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Leaves answer as $72 56 \cdot 52$

Attempts (2 marks)

- A1 Some correct step with work.
- A2 Writes 72 and / or 56.52 and stops.

Worthless (0)

1 -	<u>۱</u>	<i>\</i>
10		V/
10		. . .
· ·		

Taking π as 3.14, find the total perimeter of the semicircular lawn, in m

Ľ					
	Total perimeter	=	12	+	$\frac{1}{2} \times 2\pi r$
		=	12	+	$\frac{1}{2} \times 2 \times 3 \cdot 14 \times 6$
		=	12	+ 1 m	18.84
		_	50.95	+ 111	

Blunders (-3)

- B1 Correct answer without work *Æ*
- B2 Incorrect mathematical operation
- B3 Decimal error
- B4 Incorrect relevant formula and continues e.g. πr^2 .
- B5 $\pi \neq 3.14$ or answer given in terms of π (unless penalised in (c)(ii)).
- B6 Incorrect substitution and continues.

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Leaves answer as $12 + 18 \cdot 84$.

Attempts (2 marks)

- A1 Some correct step with work.
- A2 Correct formula for perimeter of semi-circle and stops
- A3 Recognises 12 as part of the answer e.g. 12 + and stops or writes 12 on its own.
- A4 A correct substitution and stops
- A5 π omitted with some relevant work.

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies.

Att 2

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	25 marks	Att 9
Part (c)	15 marks	Att 6

Part (a)

10 marks

Att 3

A triangle has measurements as shown in the diagram.

Find, in cm^2 , the area of the triangle.

(a)		10 marks	Att 3
X			
Area	=	$\frac{1}{2} \times 16 \times 6 = 48 \text{ cm}^2$	

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect substitution and continues correctly e.g. $\frac{1}{2} \times 6 \times 8 = 24$
- B3 Mathematical error
- B4 Incorrect relevant formula and continues e.g. $16 \times 6 = 96$

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

- A1 Some correct step with work and stops.
- A2 Product of any two dimensions with the exception of 6 and 16.
- A3 Area = $\frac{1}{2} \times base \times height$ or similar and stops.
- A4 $\frac{1}{2} \times 16$ or $\frac{1}{2} \times 6$ and stops
- A5 Writes 16 + 6 = 22

Worthless (0)

A solid rectangular block of wood has length 16 cm, width 4 cm and height 6 cm.

(b)(i)

15 marks

Find, in cm³, the volume of the block of wood

Att 5

Volume of block = $16 \times 4 \times 6 = 384 \text{ cm}^3$

Blunders (-3)

- B1 Correct answer without work *Æ*
- B2 Incorrect substitution or omission or extra, each time and continues.
- B3 Mathematical error
- B4 Incorrect relevant formula and continues e.g. surface area and continues.
- B5 Leaves answer as $16 \times 4 \times 6$

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (5 marks)

- A1 Some correct step with work and stops.
- A2 Correct formula for volume of rectangular solid and stops
- A3 Writes 16 + 4 + 6 = 26

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Use of formula involving π
- W3 Writes 16 + 4 + 6 and stops

Cubes with sides of length 2 cm, as shown, are made from the block of wood. Find the number of cubes that can be made from the block of wood.

Ø Volume of one cube $8 cm^3$ $2 \times 2 \times 2$ = = $384 \, cm^3$ Volume of block = 384 Number of cubes 48. = = 8

* Accept candidates answer from part (i).

Blunders (-3)

- Correct answer without work *K* B1
- Incorrect substitution or omission or extra and continues. B2
- Mathematical error e.g. $2^3 = 6$ B3
- Incorrect relevant formula and continues B4
- B5 Incorrect mathematical operation e.g. 384×8

Slips (-1)

- Numerical slips to a maximum of -3 **S**1
- Leaves answer as $\frac{384}{2}$ S2

Attempts (2 marks)

- Some correct step with work and stops. A1
- Correct formula for volume of rectangular solid and stops A2
- A3 Some correct substitution and stops
- Writes 384 or candidates answer from part (i) and stops A4
- A5 Writes 2+2+2=6 or $2 \times 2 = 4$ and stops

Worthless (0)

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Use of formula involving π

2 cm

5 marks

Calculate, in cm^2 , the surface area of the block of wood.

X							
	Surface area	=	$2 \times 16 \times 4$	+	$2 \times 4 \times 6$	+	$2 \times 16 \times 6$
		=	128	+	48	+	192
		=	368 cm^2				

Blunders (-3)

- B1 Correct answer without work *Æ*
- B2 Incorrect substitution or omission or extra and continues.
- B3 Mathematical error
- B4 Incorrect relevant formula and continues

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Failure to add the three areas

Attempts (2 marks)

- A1 Some correct step with work and stops e.g. 4×6
- A2 Correct formula and stops
- A3 Some correct substitution and stops
- A4 Writes $16 \times 4 \times 6$ with or without an answer
- A5 Finds surface area of the cube correctly with work

- W1 Incorrect answer without work unless attempt mark applies
- W2 Use of formula involving π

(c)(i)	5 marks	Att 2
	Find the volume of the sphere in terms of π .	

Volume	$=$ $\frac{4}{3}\pi r^3$
=	$\frac{4}{3} \times \pi \times 3 \times 3 \times 3$
=	$36 \pi \text{ cm}^3$

* Accept $\frac{4}{8}\pi r^3$ for volume of sphere formula.

* Correct answer with no work merits full marks.

Blunders (-3)

- B1 Incorrect substitution and continues.
- B2 Mathematical error e.g. $r^3 = 9$
- B3 Incorrect relevant formula and continues e.g. multiples of πr^3 or πr^2 with work
- B4 Decimal error

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Answer not given in terms of π

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 Product of two relevant numbers e.g. $3 \cdot 14 \times 3 = 9 \cdot 42$
- A3 Correct formula and stops
- A4 Some correct substitution and stops.

Worthless (0)

(c)(ii)

5 marks

The cylinder in the trophy has a diameter of 8 cm and its volume is four times the volume of the sphere. Find h, the height of cylinder in the trophy.

X			
	Volume of cylinder	=	$4 \times 36\pi$
	$\pi r^2 h$	=	144π
	$\pi imes 4 imes 4 imes h$	=	144π
	16 <i>h</i>	=	144
	h	=	$\frac{144}{16}$
	h	=	9 cm

* Accept candidates answer from part (i)

Blunders (-3)

- B1 Correct answer without work 🖉
- B2 Incorrect substitution and continues.
- B3 Mathematical error
- B4 Incorrect relevant formula and continues
- B5 Decimal error

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 $\frac{144}{16}$ and stops.

Attempts (2 marks)

- A1 Some correct step with work and stops e.g. $4^2 = 16$ or r = 4
- A2 Writes 36π or candidates answer from part (i) and stops.
- A3 Correct formula and stops
- A4 Some correct substitution and stops.
- A5 Writes 144π or $(4 \times \text{ candidates answer from part (i)})$ with or without work.

Worthless (0)

Find the total height of the trophy.

Ø

Total height	=	9+6
c	=	15 cm

* Accept candidates answer from part (ii)

Blunders (-3)

- B1 Correct answer without work *Æ*
- B2 Incorrect mathematical operation e.g. $9 \times 6 = 54$
- B3 Uses radius instead of diameter for height of sphere

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 9+6 and stops.

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 Writes 9 or candidates answer from part (ii) or 6 without work.

Worthless (0)

QUESTION 3

Part (a) 5 marks	Att 2
Part (b) 25 mark	s Att 8
Part (c) 20 mark	s Att 7

Part (a)

5 marks

Att 2

Find the mode of the numbers: 1, 4, 3, 4, 1, 4, 12, 4, 15, 4.

Mode = 4

* Accept correct answer without work.

Blunders (-3)

B1 Gives 5 as the mode

Attempts (2 marks)

- A1 Writes "mode means most"
- A2 Writes 1 + 4 + 3 + 4 + 1 + 4 + 12 + 4 + 15 + 4 and / or 52
- A3 Writes $\frac{52}{10}$ and or 5.2
- A4 Writes 10 or 5 and stops.
- A5 Rearranges the numbers in order

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Just a list of numbers e.g. 4, 7, 5

How many hours study did Anne do on the Monday of that week?

2 hours

* Accept correct answer without work.

Attempts (3 marks)

A1 Writes 3.5 or 3 or 2.5 or 1 as the answer

Worthless (0)

On what day of that week did Anne do the least study?

Friday

* Accept correct answer without work.

Attempts (3 marks)

A1 Tuesday

A2 Writes 3.5 or 1

Worthless (0)

Express the hours of study done by Anne on Wednesday as a percentage of her total hours of study for that week.

$$\cancel{2} + 3 \cdot 5 + 3 + 2 \cdot 5 + 1 = 12$$
$$\frac{3}{12} \times 100 = 25\%$$

Blunders (-3)

- B1 Correct answer without work 🖉
- B2 Omits the 100 or divides by the 100.
- B3 Omits an entry or inserts an incorrect entry in the addition.
- B4 Multiplies hours of study instead of adding them
- B5 Leaves the answer as $\frac{3}{12} \times 100$

Misreading (-1)

M1 Takes figure for a different day and continues e.g. $\frac{2}{12} \times 100 = 16\frac{2}{3}\%$

Slips (-1)

S1 Numerical slips to a maximum of -3.

Attempts (2 marks)

- A1 Some correct step with work and stops e.g. indicates the 100.
- A2 Writes any of the following numbers, 2, 3.5, 3, 2.5, 1, 12.

Worthless (0)

The table shows the price in dollars of a barrel of crude oil for the first six months of 2006. Month January February March April May June Price 50 70 60 65 70 75 10 marks Att 3 (c)(i) Draw a trend graph of the data, putting months on the horizontal axis. 80 Price of oil in 60 dollars \$ 40 20 J F Μ A Μ J

- * Accept correct graph with no labels.
- * Be lenient with the plotting of points.

Blunders (-3)

- B1 Axes not graduated uniformly (once).
- B2 Points not joined or joined in incorrect order.
- B3 Reorders months axis
- B4 Axes reversed.
- B5 Draws a bar or pie chart correctly.

Slips (-1)

S1 Each incorrect plot or point omitted

Attempts (3 marks)

- A1 Graduated axis or axes or x and y axis only
- A2 Plots only one point.

5 marks

Calculate the mean price, in dollars, of a barrel of crude oil over this six-month period.

$$\frac{50 + 70 + 60 + 65 + 70 + 75}{6} = \frac{390}{6} = 65$$

Blunders (-3)

- B1 Correct answer without work *Æ*
- B2 Incorrect divisor
- B3 Inverted fraction
- B4 Multiplies instead of adding

Slips (-1)

S1 Numerical slips to a maximum of -3.

S2 $\frac{390}{6}$ and stops.

S3 Omits an entry or includes an incorrect entry in the addition (each time).

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 Addition of data only
- A3 Partial addition of data with work and stops
- A4 Idea of mean indicated e.g. $\frac{\sum x}{n}$ or a verbal description.
- A5 States median is $67 \cdot 5$ or mode is 70 and stops.
- A6 390 or 6 without work

Worthless (0)

(c)(iii)

5 marks

The mean price of a barrel of crude oil for the first seven months of 2006 was 67 dollars.

Find the price of a barrel of such oil in July 2006.

Ŕ			<u>or</u>			
67×7	=	469		390 + x	=	469
65×6	=	390		x	=	469 - 390
					=	79
Price in July	=	469 - 390				
	=	79				

*Accept candidates answer from part (ii).

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect mathematical operation
- B3 Error in manipulation of equation

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 Omits an entry or includes an incorrect entry in the addition (each time).
- S3 Writes 469 390 and stops.

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 Writes 50 + 70 + 60 + 65 + 70 + 75 + x and stops.
- A3 Partial addition of data with work and stops
- A4 Idea of mean indicated e.g. $\frac{\Sigma x}{\Sigma}$ or a verbal description.
- A5 Indicates subtraction i.e. 67 65 = 2

Worthless (0)

QUESTION 4

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 8
Part (c)	20 marks	Att 8
Part (a)	10 marks	Att 3
Construct a triangle <i>abc</i> with	$ ab = 6$ cm, $ \angle bac = 50^{\circ}$ and $ \angle abc = 70^{\circ}$	

Label your diagram clearly.

- * Accept base other than [ab]
- * Tolerance of $\pm 2mm$ on the side and $\pm 5^{\circ}$.
- * Examiners must measure candidate's work.

Blunders (-3)

- B1 Incorrect length of [*ab*] i.e. outside tolerance
- B2 Each incorrect angle measurement i.e. outside tolerance
- B3 Failure to complete the triangle

Slips (-1)

- S1 No labels or incorrect labels on the diagram
- S2 Units other than centimetres

Attempts (3 marks)

- A1 Pilot diagram drawn
- A2 Draws a line segment [ab] of 6 cm in length labelled or unlabelled <u>or</u> draws a labelled line segment [ab] of any length.
- A3 Unlabelled angle of 50° or 70° drawn and stops

(b)(i)	5 marks	Att 2
Name the image of the point a	x under the translation \overrightarrow{tw} .	

Image of x = y

- * Accept diagram with image point indicated
- * Accept answer without work.

Misreading (-1)

M1 Image of x shown on an extended diagram under translation *wt*

Attempts (2 marks)

- A1 States tw = xy or $tw \parallel xy$ or indicates either on a diagram.
- A2 Shows some knowledge of the given translation and stops.

- W1 Gives answer as *t* or *w* or *z* or *x*.
- W2 Diagram reproduced without modification.

Name the image of [wz] under the translation wx.

	Image of $[wz] = [xy]$
*	Accept line segment [xy] indicated on a diagram in appropriate answer box for this part.

* Accept the answer without work.

Blunders (-3)

B1 Line segment with either x or y correct e.g. [xt]

Misreading (-1)

M1 Image of [wz] shown on an extended diagram under the translation \overline{xw} .

Attempts (2 marks)

- A1 Image of one point only found correctly.
- A2 States $wz \parallel xy$ or |wz| = |xy| or indicates either on a diagram reproduced for this part.
- A3 Shows some knowledge of the given translation and stops.

- W1 Gives answer as [*tw*]
- W2 Diagram reproduced without modification.

5 marks

Given that the area of $\Delta xtw = 5 \text{ cm}^2$, find the area of the figure *txyz*.

$$\bigstar$$
 Area = $3 \times 5 = 15 \text{ cm}^2$

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect mathematical operation e.g. 5 + 3 = 8

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 3×5 and stops.

Attempts (2 marks)

- A1 Some correct step with work and stops
- A2 States $\Delta xtw = \Delta xyw$ or similar.
- A3 States the diagonal bisects the area of a parallelogram.
- A4 Writes 5 in each of the triangles in the given diagram reproduced for this part and stops.
- A5 Writes correct formula for area of triangle.

Worthless (0)

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Diagram reproduced without modification.

Page 27

Att 2

(b)(iv)

Show that Δxyw and Δywz are congruent.

X	xy = wz or	$\left \angle yxw \right = \left \angle yzw \right $	or $ xy = wz $	
	yw = yw common side.	xw = yz	$\left \angle yxw \right = \left \angle yzw \right $	
	xw = yz	$\left \angle ywx\right = \left \angle wyz\right $	xw = yz	

* Accept correct answer marked or indicated on a diagram.

Blunders (-3)

B1 Each step omitted.

Attempts (2 marks)

- A1 Some correct step.
- A2 States same shape or SSS or ASA or SAS.
- A3 States triangles fold onto each other.
- A4 Clearly indicates the two required triangles in the answer box for this part.

Worthless (0)

W1 Diagram reproduced without modification.

(c)(i)

5 marks

Att 2

Write down $|\angle acb|$ and give a reason for your answer.

 $|\angle acb| = 90^{\circ}$

Reason: Angle in a semi circle <u>or</u> an angle subtended by a diameter at the circumference

Accept right angle marked or indicated on the diagram.

Slips (-1)

*

S1 Correct answer without a reason or with an incorrect reason.

Attempts (2 marks)

- A1 States "angle at centre is twice the angle at circle standing on same arc" or similar and stops.
- A2 States "straight line angle = 180° " or similar and stops.
- A3 States "sum of three angles in triangle = 180° " or similar.
- A4 Clearly indicates $|\angle acb|$ on the diagram.
- A5 Reason only given

- W1 Incorrect answer without work unless attempt mark applies e.g. $|\angle acb| = 30^{\circ}$
- W2 Diagram reproduced without modification.

Write down $|\angle bac|$, and give a reason for your answer.

$|\angle bac| = 30^{\circ}$

Reason: The 3 angles in a triangle add up to 180° or $180 - 90 - 60 = 30^{\circ}$

* Accept candidates answer from part (i).

Blunders (-3)

- B1 Sum of the angles in a triangle $\neq 180^{\circ}$.
- B2 Mathematical error.
- B3 Takes an arbitrary angle for $|\angle acb|$ and continues.

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 Correct answer without a reason or with an incorrect reason.

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 Writes down or indicates that $|\angle acb| = 90^{\circ}$ for this part.
- A3 Clearly indicates $\angle bac$ on diagram drawn in the answer box.
- A4 States "sum of 3 angles in a triangle = 180° " or similar and stops.
- A5 Writes 60 + 90 and stops.
- A6 180 60 or 180 90 and stops.
- A7 Reason only given.

- W1 Incorrect answer without work unless attempt mark applies
- W2 Diagram reproduced without modification.

Write down $|\angle adc|$ and give a reason for your answer.

$$|\angle adc| = 120^{\circ}$$

Reason: Opposite angles of a Cyclic quadrilateral add to 180°
 $\frac{Or}{180 - 60} = 120^{\circ}$

Blunders (-3)

- B1 Use of 360° instead of 180°.
- B2 Mathematical error

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 Correct answer without a reason or with an incorrect reason.

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 Reason only given.
- A3 Clearly indicates $\angle adc$ on diagram reproduced in answer box.
- A4 Some reference to 180° and stops.

- W1 Incorrect answer without work unless attempt mark applies
- W2 Diagram reproduced without modification.

(c)(iv)

5 marks

Given that |oa| = 2 cm and |bc| = 2 cm, find |ac|.

Give your answer correct to one decimal place.

 $|ac|^{2} + |cb|^{2} = |ab|^{2}$ $|ac|^{2} + 2^{2} = 4^{2}$ $|ac|^{2} + 4 = 16$ $|ac|^{2} = 12$ $|ac| = \sqrt{12} \text{ or } 3.46 = 3.5 \text{ cm}$

- * Accept candidates answers from parts (i) and (ii).
- * Accept |ac| found correctly by trigonometric ratio method for full marks.

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Mathematical error e.g. $4^2 = 8$
- B3 Incorrect theorem of Pythagoras.
- B4 Takes an arbitrary figure or 2 for |ab| and continues.
- B5 Error in manipulation of equation.

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 Fails to round off or rounds off incorrectly.

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 States theorem of Pythagoras.
- A3 States |ab| = 4 or indicates this on a reproduced diagram and stops.
- A4 Marks |bc| = 2 and / or |oa| = 2 on a reproduced diagram and stops.
- A5 2^2 and / or 4^2 and stops.

- W1 Incorrect answer without work unless attempt mark applies e.g. 4
- W2 2 + 4 = 6

QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	25 marks	Att 8
Part (c)	15 marks	Att 5

Part (a)

10 marks

Att 3

a is the point (2, 1) *b* is the point (-2, -3) Plot the points *a* and *b*.

* Accept correct answer without work.

Blunders (-3)

- B1 Correctly plots and labels one point.
- B2 Plots incorrect order of both couples penalise once

Misreadings (-1)

- M1 Plots (-2,3) or (2,-3) or similar.
- M2 Plots (2,3) or similar. Penalise twice.

Slips (-1)

S1 Fails to label points (each time).

Attempts (3 marks)

- A1 Some correct step and stops
- A2 Plots (2,0) and / or (0,1) for point *a* or similar.
- A3 Writes x = 2 and / or y = 1 for point *a* or similar.
- A4 Picks a random point and plots it correctly.

- W1 Random point selected and plotted incorrectly.
- W2 Diagram reproduced without modification

p is the point (3, -3) and q is the point (5, -1). Find each of the following:

(b)(i)

10 marks

Att 3

the midpoint of	[na
the inapoint of	P q

Ľ	$(\frac{3+5}{2}, \frac{-3-1}{2})$
	$=(\frac{8}{2},\frac{-4}{2})$
	=(4,-2)

* Accept translation method.

* No penalty on brackets.

Blunders (-3)

- B1 Correct answer without work *K*
- B2 Incorrect formula e.g. error in both signs $\left(\frac{x_1 x_2}{2}, \frac{y_1 y_2}{2}\right)$ or $\left(\frac{x_1 + y_1}{2}, \frac{x_2 + y_2}{2}\right)$ or

 $\left(\frac{x_1 + x_2}{2} + \frac{y_1 + y_2}{2}\right)$ or omits the divisor 2 and continues.

- B3 Incorrectly treats couples as (x_1, x_2) and (y_1, y_2) and continues.
- B4 Two or more signs incorrect in substitution and continues.
- B5 Reversal of coordinates i.e. (-2,4) with work.
- B6 One ordinate only worked out correctly.
- B7 Uses one of the given points and some arbitrary point e.g. (3,-3) and (0,0) and continues.

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 Error in one sign in midpoint formula and continues.
- S3 One incorrect substitution or sign when substituting e.g. $\left(\frac{-5+3}{2}, \frac{-1-3}{2}\right)$ and continues
- S4 Take (3,-3) as midpoint and finds extremity e.g. $(5,-1) \rightarrow (3,-3) \rightarrow (1,-5)$ or takes (5,-1) as midpoint and finds extremity e.g. $(3,-3) \rightarrow (5,-1) \rightarrow (7,1)$

Attempts (3 marks)

- A1 Some correct substitution
- A2 Correct midpoint indicated on graph and not named (if named B1 applies)
- A3 Point *p* and / or *q* plotted reasonably well for this part.
- A4 Labels p and / or q with (x_1, y_1) and stops.

- W1 Use wrong formula e.g. slope or distance formula.
- W2 Writes midpoint formula and stops.

 \swarrow (ii) the slope of pq

$$(\frac{-3+1}{3-5}) = \frac{-2}{-2}$$
 or $\frac{2}{2}$ or 1

* Accept candidates midpoint as a point for finding the slope.

* Accept correct trigonometric method i.e. $\tan \theta = \frac{2}{2}$.

Blunders (-3)

B1 Correct answer without work 🖉

B2 Incorrect slope formula e.g.
$$\frac{x_2 - x_1}{y_2 - y_1}$$
 or $\frac{y_2 + y_1}{x_2 + x_1}$ or $\frac{y_2 - y_1}{x_1 - x_2}$ or $\frac{x_1 - y_1}{x_2 - y_2}$ or $\frac{horizontal}{vertical}$

or
$$\tan \theta = \frac{adjacent}{opposite}$$
 and continues.

B3 Incorrectly treats couples as (x_1, x_2) and (y_1, y_2) if not already penalised e.g. $\frac{3+3}{5+1}$ or

$$\frac{-3-3}{-1-5}$$

- B4 Mathematical error e.g. sign rules.
- B5 Uses one of the given point and some arbitrary point e.g. (3,-3) and (0,0) and continues.
- B6 Error in more than one sign when substituting.

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 Error in one sign in slope formula e.g. $\frac{y_2 y_1}{x_2 + x_1}$.
- S3 One incorrect substitution or sign for substituting.

Attempts (3 marks)

A1 Some correct step with work and stops.

A2
$$\tan \theta = \frac{opposite}{adjacent}$$
 or $m = \frac{vertical}{horizontal}$ and stops.

- A3 Some correct substitution into formula with $x_2 x_1$ and / or $y_2 y_1$
- A4 Points p and / or q plotted reasonably well for this part.
- A5 Identifies (x_1, y_1) and / or (x_2, y_2) in this part.

- W1 Use wrong formula e.g. midpoint formula.
- W2 States given formula only.

 \cancel{K} (iii) the equation of the line *pq*.

(y+3) = 1(x-3) or y+1 = 1(x-5) or y+2 = 1(x-4)

Accept candidates slope from part (ii) and midpoint from part (i) if used.

Blunders (-3)

*

- B1 Correct answer without work.
- B2 Incorrect formula e.g. $y + y_1 = m(x + x_1)$ or $(x x_1) = m(y y_1)$ and continues.
- B3 Switches x and y e.g. y-3 = 1(x+3)
- B4 Mathematical error.
- B5 y = 1(x+c) and stops
- B6 Uses a point other than (3,-3) and (5,-1) or (4, -2) e.g. (0,0).
- B7 $m \neq 1$

Slips (-1)

- S1 Numerical slips to a maximum of -3.
- S2 Error in one sign in formula.
- S3 One incorrect substitution or sign when substituting.

Attempts (2 marks)

- A1 Some correct step with work.
- A2 Writes m = 1 and stops.
- A3 States $y = mx \pm c$ and stops
- A4 -1+3=1(5-3), substitutes both points.

Worthless (0 marks)

- W1 Use of wrong formula
- W2 States given formula only.

Note

 $-3 - y_1 = 1(3 - x_1)$ or similar merits full marks.

Part (c) (i)	10 Marks	Att 3
K is the line $2x + 3y - 6$	5=0.	
K cuts the y-axis at the	point r.	
By letting $x = 0$, find	the co-ordinates of the point <i>r</i> .	

X	2(0) + 3y	y - 6 = 0			
		3y = 6			
		$y = \frac{6}{2}$			
		y=2			
	r = (0, 2)				
	<i>i</i> (0,2)		 	2 2 11	

Accept answer given as y = 2 with work shown for full marks.

Blunders (-3)

- B1 Correct answer without work.
- B2 Substitutes y = 0 and continues.
- B3 Mathematical error.
- B4 Incorrect substitution and continues.

Slips (-1)

S1 Numerical slips to a maximum of -3.

$$S2 \quad 2(0) = 2$$

S3 Stops at $\frac{6}{3}$ with work.

Attempts (3 marks)

- A1 Some correct step with work and stops.
- A2 Substitutes x = 0 and stops.
- A3 Any correct manipulation of equation and stops e.g. 2x + 3y = 6.
- A4 Writes answer as (0,y) without work where y is an arbitrary number subject to B1.

Worthless (0)

Find the image of the point *r* under S_o , the central symmetry in the origin, (0, 0).

$$\swarrow (0,2) \to (0,0) \to (0,-2)$$

Accept candidates answer from part (i)

Blunders (-3)

*

- B1 Correct answer without work.
- B2 Writes answer as (-2,0)
- B3 Omits second ordinate.

Slips (-1)

S1 Numerical slips to a maximum of -3.

Attempts (2 marks)

- A1 Some correct step with work and stops.
- A2 Writes down (0,2) or candidates answer from part (i) and stops.
- A3 Effort at finding graphically without naming image point.
- A4 Plots (0,2) and / or (0,0) for this part.
- A5 Effort at translation i.e. *x* remains unchanged, *y* goes down 4 or similar.
- A6 Correctly finds only one ordinate.

Worthless (0)

QUESTION 6

15 marks	Att 5
20 marks	Att 7
15 marks	Att 5
	15 marks 20 marks 15 marks

15 marks (10, 5)

The right-angled triangle <i>abc</i> has measurements as shown.	$\begin{array}{c} 10 \\ \hline \\ 6 \\ \end{array}$
	ab

Part (a) (i)

Part (a)

10 Marks

Att 3

Att 5 (3, 2)

Write down the length of the hypotenuse of the Δabc .

Length of the hypotenuse of the $\Delta abc = 10$

- * Correct answer with no work merits full marks.
- * Indicates 10 only in diagram, or "h" or "hypotenuse", accept for 10 marks.

Blunders (-3)

B1 Gives answer as [*ac*].

Attempts (3 marks)

- A1 Any mention of a correct trigonometric ratio.
- A2 Gives answer as 8 or 6

- W1 Incorrect answer with no work unless attempt mark applies.
- W2 Gives more than one answer.
- W3 Answer measured from examination paper.

Write down the value of $\cos C$, as a fraction.

 $\cos C = \frac{6}{10} \text{ or } \frac{3}{5}$

* Correct answer with no work merits full marks.

- * Accept consistent error from part (i)
- * Accept $\cos\frac{6}{10}$ for full marks.

Blunders (-3)

- B1 Incorrect or inverted ratio e.g. $\cos C = \frac{10}{6}$.
- B2 Gets $\cos \angle bac$ (check is not consistent error from (i)).

Slips (-1)

S1 Answer = 0.6 (answer not a fraction)

Attempts (2 marks)

- A1 Any correct trigonometric ratio written down in answer box.
- A2 Only gives answer = $53 \cdot 13^{\circ}$ or rounded to 53° for this part.
- A3 Only gives answer = 0.99999 i.e. $\cos\frac{6}{10}$

Worthless (0)

Part (b)	20 marks (10, 5, 5)	Att 7 (3, 2, 2)
6(b)	In the right-angled triangle pqr , $ pq = 8$ and $ \angle pqr = 50^{\circ}$.	
Part (b) (i)	10 marks	Att 3

Find $|\angle qpr|$.

 $|\angle qpr| = 180 - 90 - 50 = 40^{\circ}$

* Correct answer with no work merits full marks.

Blunders (-3)

- B1 Three angles of a triangle $\neq 180^{\circ}$
- B2 Fails to subtract one of the angles e.g. $180 50 = 130^{\circ}$
- B3 Mathematical error.

Slips (-1)

S1 Numerical slips to a maximum of -3.

Attempts (3 marks)

- A1 Writes "3 angles in a triangle add up to 180" and stops.
- A2 Writes $|\angle prq| = 90^\circ$ or correctly writes the 90° angle on the diagram and stops.
- A3 Any correct trigonometric ratio written down.
- A4 Clearly indicates $\angle qpr$ on the diagram

Worthless (0)

5 marks

(ii) Using your calculator, or otherwise, write down the value of $\sin |\angle qpr|$ correct to two decimal places.

 $\sin |\angle qpr| = 0.64$

- * Correct answer with no work merits full marks.
- * Accept candidates answer from part (i).
- * Accept sin 0.64 for full marks.

Blunders (-3)

- B1 Writes $\sin 50 = 0.77$ or 0.766 as the answer.
- B2 Finds tan 40 or cos 40 and continues.

B3
$$\sin 40 = \frac{qr}{8}$$
 and stops or $\frac{qr}{8}$ on it's own.
B4 Uses Radian or Grad mode on the calculator.

		UKAD
Sin 40 0	·75	0.59

Slips (-1 marks)

S1 Failure to round off or rounds off incorrectly.

Attempts (2 marks)

- A1 Writes $\sin 40 = \frac{qr}{qp}$ or $\frac{qr}{qp}$ and stops.
- A2 Any correct trigonometric ratio written down.
- A3 Correctly marks the hypotenuse or opposite or adjacent on a diagram reproduced and stops, for this part.
- A4 $\cos 50 = 0.71$ $\tan 50 = 1 \rightarrow$ Grad mode $\frac{\text{or}}{\cos 50} = 0.96$ $\tan 50 = -0.27 \rightarrow$ Rad mode.

- W1 Incorrect answer with no work unless attempt mark applies.
- W2 0.71 or similar on its own (must be in format given in A4 to merit marks)

Part (b) (iii)

5 marks

X							
	sin 40	=	$\frac{qr}{8}$	or	0.64	=	$\frac{qr}{8}$
	8 sin 40	=	qr		$8 \times 0 \cdot 64$	=	qr
	5.12	=	qr		5.12	=	qr
	5.1	=	qr		5.1	=	qr
*	Accept candi	idates a	nswers	from parts (i)	and (ii)		

Accept candidates answers from parts (i) and (ii).

Blunders (-3)

Correct answer without work. **B**1

B2 Error in forming equation e.g.
$$\frac{8}{qr} = 0.64$$
 and continues

- Error in manipulation of equation. B3
- Writes $\frac{qr}{8} = 0.77$ and continues. B4
- Uses Radian or Grad mode on calculator. **B**5

RAD GRAD 0.750.59 Sin 40

Slips (-1 marks)

- Numerical slips to a maximum of -3. **S**1
- S2 Failure to round off or rounds off incorrectly.

Attempts (2 marks)

A1 Any correct step with work and stops e.g.
$$\frac{x}{8}$$
 or $\frac{8}{x}$

- Correct scale diagram. A2
- $\sin 40$ or 0.64 or any trigonometric ratio. A3

- W1 Incorrect answer with no work unless attempt mark applies.
- W2 Answer = 3.5 cm (measured from examination paper)

Part (c) (i)

10 Marks

Att 3

(i) Find, in metres, |bc|.

$$|ab|^{2} = |ac|^{2} + |bc|^{2}$$

$$|13|^{2} = |5|^{2} + |bc|^{2}$$

$$169 = 25 + |bc|^{2}$$

$$144 = |bc|^{2}$$

$$\sqrt{144} \text{ or } 12 = |bc|$$

* Accept |bc| found correctly using a correct trigonometric ratio method for full marks. Blunders (-3)

- B1 Correct answer without work 🖉
- B2 Incorrect theorem of Pythagoras and continues.
- B3 Mathematical error e.g. $5^2 = 10$
- B4 Error in manipulation of equation.
- B5 Stops at $|bc|^2 = 144$

Slips (-1 marks)

S1 Numerical slips to a maximum of -3.

Attempts (3 marks)

- A1 Some correct step with work and stops e.g. 13^2 .
- A2 States theorem of Pythagoras and stops.
- A3 Correct Sin, Cos or Tan ratio written down and stops.

- W1 Incorrect answer with no work unless attempt mark applies e.g. 169.
- W2 5+13=18 or 13-5=8.

Att 2

Ľ

(ii) Find $|\angle bac|$, correct to the nearest degree.

$$\bigotimes \sin \angle bac = \frac{12}{13}$$

$$\bigotimes bac = 67 \cdot 38^{\circ} \text{ or } 67^{\circ}22'$$

$$\angle bac = 67^{\circ}$$

$$\bigotimes bac = 67 \cdot 38^{\circ} \text{ or } 67^{\circ}22'$$

$$\angle bac = 67 \cdot 38^{\circ} \text{ or } 67^{\circ}22'$$

$$\angle bac = 67^{\circ}$$

Accept candidates answer from part (i).

Blunders (-3)

- B1 Correct answer without work
- B2 Incorrect trigonometric ratio.
- B3 Decimal error.
- B4 Mathematical error.
- B5 Uses radian or grad mode on calculator.
- B6 Error in manipulation of equation.

Misreading (-1 marks)

M1 Finds $|\angle abc|$ correctly.

Slips (-1 marks)

- S1 Numerical slips to a maximum of -3.
- S2 Fails to round off or rounds off incorrectly.
- S3 Obvious slip in reading tables or calculator.

Attempts (2 marks)

- A1 Some correct step with work and stops e.g. Sine rule stated.
- A2 Any correct trigonometric ratio written down.
- A3 Correct scale diagram.

Worthless (0)