## MARKING SCHEME JUNIOR CERTIFICATE EXAMINATION 2007 MATHEMATICS - ORDINARY LEVEL - PAPER 1

#### GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
  - Blunders mathematical errors/omissions (-3)
  - Slips- numerical errors (-1)
  - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
  - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
  - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
  - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

|                 | <b>QUESTION 1</b>                                   |                              |
|-----------------|-----------------------------------------------------|------------------------------|
| Part (a)        | 10(5, 5) marks                                      | Att 4(2, 2)                  |
| Part (b)        | <b>20</b> (5, 5, 5, 5) marks                        | Att 8(2, 2, 2, 2)            |
| Part (c)        | 20(5, 5, 5, 5) marks                                | Att 8(2, 2, 2, 2)            |
| Part (a) (i)    | 5 marks                                             | Att 2                        |
| <b>1(a) (i)</b> | Using the Venn diagram below, shade in the region t | that represents $A \cup B$ . |
|                 | A                                                   |                              |



B1 Any incorrect indication other than the misreading below.

# $\begin{array}{ll} \textit{Misreadings} (-1) \\ \text{M1} & A \cap B \text{ indicated.} \end{array}$



Blunders (-3)B1 Any incorrect indication other than the misreading below.

Misreading (-1) M1  $A \cup B$  indicated.



| Part (b) (i) |                                    | 5 marks | Att 2 |
|--------------|------------------------------------|---------|-------|
| 1(b) (i)     | List the elements of: $P \cup Q$ . |         |       |
|              |                                    |         |       |

| Part (b) (i) | 5 marks                            | <b>Att 2</b> |
|--------------|------------------------------------|--------------|
|              | $P \cup Q = \{1, 2, 4, 5, 7, 8.\}$ |              |

B1 Any incorrect set of elements of P and Q other than the misreading as below.

Misreadings (-1) M1  $P \cap Q$  giving {7, 8}.

Attempts (2 marks) A1 3 or 6 or 9 appear in the answer.

| Part (b) (ii) |                                         | 5 marks | Att 2 |
|---------------|-----------------------------------------|---------|-------|
| 1(b) (ii)     | List the elements of: $P \setminus R$ . |         |       |

| Part (b) (ii) | 5 marks                    | Att 2 |
|---------------|----------------------------|-------|
|               | $P \setminus R = \{4, 8\}$ |       |

Blunders (-3)

B1 Any incorrect set of elements of P and R other than the misreading as below. e.g.  $\{P \setminus (Q \cup R)\} = \{4\}$ .

 $\begin{array}{ll} \textit{Misreadings} (-1) \\ \text{M1} \quad R \setminus P \ \text{giving} \ \{1, 2, 3, 6\}. \end{array}$ 

Attempts (2 marks) A1 5 or 9 appear in the answer.

| Part | ( <b>h</b> ) | (iii) |
|------|--------------|-------|
| Iaii | (U)          | (m)   |

5 marks

1(b) (iii) List the elements of:  $(P \cup R) \cap Q$ 

| Part (b) (iii) | 5 marks                              | Att 2 |
|----------------|--------------------------------------|-------|
|                | $(P \cup R) \cap Q = \{1, 2, 7, 8\}$ |       |

Blunders (-3)

- B1 Any incorrect set of elements of P and Q and R other than the misreading as below.
- B2  $P \cup R = \{1, 2, 3, 4, 6, 7, 8\}.$

Misreadings (-1)

- M1  $(P \cap R) \cup Q$  giving  $\{1, 2, 5, 7, 8\}$ .
- M2  $(P \cup R) \cup Q$  giving  $\{1, 2, 3, 4, 5, 6, 7, 8\}$ .
- M3  $(P \cap R) \cap Q$  giving  $\{7\}$ .

Attempts (2 marks)

A1 9 appears in the answer.

| Part (b) (iv) |                                             | 5 marks | Att 2 |
|---------------|---------------------------------------------|---------|-------|
| 1(b) (iv)     | List the elements of: $(P \cup Q)^{\prime}$ |         |       |
|               |                                             |         |       |

| Part (b) (iv) | 5 marks                     | Att 2 |
|---------------|-----------------------------|-------|
|               | $(P \cup Q)' = \{3, 6, 9\}$ |       |

Blunders (-3)

B1 Any incorrect set of elements of P and Q other than the misreading as below.

B2  $(P \cup Q) = \{1, 2, 4, 5, 7, 8\}$  in this part.

Misreadings (-1)

- M1  $(P \cap Q)^{\vee}$  giving  $\{1, 2, 3, 4, 5, 6, 9,\}$ .
- M2  $P' \cup Q'$  giving  $\{1, 2, 3, 4, 5, 6, 9\}$ .

Attempts (2 marks)

A1 Any incorrect listing of elements other than the misreadings above.

Att 2

| Part | (c) 20(5,5,5,5)marks                                                                                                                                                                                                                               | Att(2,2,2,2) |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1(c) | In a class, all the students study Science ( <i>S</i> ) or Technical Graphics ( <i>T</i> ).<br>A number of the students study both of these subjects.<br>22 students study Science. 12 students study Technical Graphics<br>8 study both subjects. |              |
|      |                                                                                                                                                                                                                                                    |              |





B1 Incorrect Venn diagram subject to S1 below.

#### Slips (-1)

S1 Numerical errors where work is clearly shown to a max of 3.

#### Misreadings (-1)

M1 Interchanges Technical Graphics and Science.

#### Attempts (2 marks)

- A1 Any one correct relevant entry.
- A2 Incorrect work with numbers 8, 12, and 22. (work shown)

| Part(c) (ii)       |                                        | 5 marks                                                                      | Att 2        |
|--------------------|----------------------------------------|------------------------------------------------------------------------------|--------------|
|                    | 1(c) (ii)                              | How many students study Science only?                                        |              |
| Part               | (c) (ii)                               | 5 marks                                                                      | Att 2        |
|                    |                                        | 14                                                                           |              |
| *                  | A correct answ<br>Venn diagram.        | er written here in the space provided takes precedence over a                | in incorrect |
| *                  | Accepts candid                         | ates work from previous part c (i).                                          |              |
| *                  | If no work app<br>diagram.             | ears here, award $\underline{2}$ marks if the correct answer appears in the  | Venn         |
| Blun               | ders (-3)                              |                                                                              |              |
| B1                 | Any incorrect u<br>Venn diagram.       | ise of the given numbers or the numbers from the candidates {Subject to S1}. | incorrect    |
| <i>Slips</i><br>S1 | (-1)<br>Numerical erro                 | rs where work is clearly shown to a max of 3.                                |              |
| <i>Misr</i><br>M1  | <i>eadings (-1)</i><br>Science read as | a Technical Graphics.                                                        |              |

Attempts (2 marks)

A1 Incorrect work with numbers 8, and/or 22. (work shown)

| Part(c) (iii) | 5 marks                                   | Att 2 |
|---------------|-------------------------------------------|-------|
| 1(c) (iii)    | How many students are there in the class? |       |
| Part(c) (iii) | 5 marks                                   | Att 2 |

|   | 20                                                                                     |
|---|----------------------------------------------------------------------------------------|
| * | A correct answer written here in the space provided takes precedence over an incorrect |
|   | Venn diagram.                                                                          |

26

 \* Accepts candidates work from previous part c (i), c (ii). Note: Answer c (ii) + 12 added correctly merits full marks.

Blunders (-3)

B1 Any incorrect use of the given numbers or numbers from the candidates incorrect Venn diagram. {Subject to 2nd \* above}.

#### Slips (-1)

- S1 Numerical errors where work is clearly shown to a max of 3.
- S2 Written as 14 + 8 + 4.

#### Attempts (2 marks)

A1 Incorrect work with numbers 14, 8,4,12 or 22.

| Part  | (c) (iv)                     | 5 marks                                                                                    | Att 2       |
|-------|------------------------------|--------------------------------------------------------------------------------------------|-------------|
|       | 1(c) (iv)                    | How many students study only one of the two subjects?                                      |             |
| - D ( | ()(•)                        |                                                                                            |             |
| Part  | $(\mathbf{C})$ ( <b>IV</b> ) | 5 marks                                                                                    | Att 2       |
|       |                              | 18                                                                                         |             |
| *     | A correct an                 | iswer written here in the space provided takes precedence over an                          | n incorrect |
|       | Venn diagra                  | ım.                                                                                        |             |
| *     | Accepts can                  | didates work from previous part c (i), c (ii) and c (iii).                                 |             |
|       |                              | Note: Answer c (iii) - 8 merits full marks.                                                |             |
| Blun  | ders (-3)                    |                                                                                            |             |
| B1    | Any incorre diagram. {S      | ct use of the given numbers or numbers from the candidates inco<br>ubject to 2nd * above}. | orrect Venn |

### Slips (-1)

- Numerical errors where work is clearly shown to a max of 3. Written as 14 + 4. S1
- S2

Attempts (2 marks) A1 Incorrect work with numbers 14, 8, 4, 12, or 22.

# **QUESTION 2**

| Part (a) | 10 marks                  | Att 3          |
|----------|---------------------------|----------------|
| Part (b) | <b>20(5, 10, 5) marks</b> | Att 7(2, 3, 2) |
| Part (c) | <b>20(5, 5, 10) marks</b> | Att 7(2, 2, 3) |

| Part (a) | 10 marks                                                                                   | Att 3 |
|----------|--------------------------------------------------------------------------------------------|-------|
| 2(a)     | €6650 was shared between Ciarán and Sheila in the ratio 2:5.<br>How much did each receive? |       |

| Part (a)                        | 10 marks                              | Α                               | tt 3 |
|---------------------------------|---------------------------------------|---------------------------------|------|
| X                               |                                       |                                 |      |
| hand                            |                                       |                                 |      |
|                                 |                                       |                                 |      |
| 2 parts : 5 parts               | 2 + 5 = 7                             | 2x:5x                           |      |
| $\rightarrow \frac{6650}{-950}$ | $\frac{1}{2} - 950$                   | $\Rightarrow$ 7 $x = 6650$      |      |
| $\rightarrow$ 7 $^{-50}$        | 7                                     | $\Rightarrow x = 950$           |      |
| Ciaran = $950 \times 2 = €1900$ | $\Rightarrow \frac{2}{7} = €1900 (C)$ | $\Rightarrow 2x = \in 1900 (C)$ |      |
| Sheila = 950 × 5 = €4750        | ⇒6650-1900 = €4750 (S)                | ⇒ 5 <i>x</i> = €4750 (S)        |      |
|                                 |                                       |                                 |      |

Blunders (-3)

- B1 Correct answer without work.
- B2 Divisor  $\neq$  7 only and continues.
- B3 Incorrect multiplier or fails to multiply. (each time).
- B4 Error in transposition.
- B5 Fails to find second amount.
- B6 Adds instead of subtracts. e.g. 6650 + 1900 = 8550.

#### Slips (-1)

S1 Numerical errors to a max of 3.

Misreadings (-1)

M1 Interchanges Ciaran and Sheila.

Attempts (3 marks)

A1 Divisor  $\neq$  7 e.g.  $\frac{6650}{2}$  and/or  $\frac{6650}{5}$  and stops.

A2 Indicates 7 parts or 2 parts or 5 parts or  $\frac{2}{7}$  or  $\frac{5}{7}$  or 2+5=7 and stops.

- A3 Indicates multiplication of 6500 by 2 and/or 5 and stops.
- A4 Both answers added together equal €6650. (No work shown).

#### Worthless (0)

W1 Incorrect answer without work. {Subject to A4}.

| Part (b) (i) | 5 marks                                                                                                                | Att 2 |
|--------------|------------------------------------------------------------------------------------------------------------------------|-------|
| 2(b) (i)     | Simplify $\frac{a^8 \times a^{10}}{a^5 \times a^7}$ , giving your answer in the form, $a^n$ where $n \in \mathbb{N}$ . |       |

Part (b) (i)

#### 5 marks

Att 2

| $\frac{a^8 \times a^{10}}{a^5 \times a^7} = \frac{a^{18}}{a^{12}} = a^6$ | $\left(\frac{a^8}{a^5}\right) \times \left(\frac{a^{10}}{a^7}\right) = a^3 \times a^3 = a^6$ | $\frac{a}{a} \times \frac{a}{a} \dots \dots \frac{a}{a} \dots \dots \frac{a}{a} = a^6$ |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|

Blunders (-3)

- B1
- Correct answer without work. Æ Error in calculation involving indices. B2
- B3 Error in number of a's in the extended form.
- B4 Error in elimination in the extended form.
- B5 Fails to finish.

Slips (-1)

S1 
$$\frac{a^{18}}{a^{12}} = 6$$

Answer left  $a \times a \times a \times a \times a \times a$ . S2

#### Attempts (2 marks)

Some correct manipulation of indices. e,g, 8+10,  $\frac{18}{12}$ ,  $a^3$ ,  $a^5$ , or a and stops. A1

#### Worthless (0)

| 2(b) (ii) By rounding each of these numbers to the nearest whole numbers to the nearest whole numbers the value of $\frac{24 \cdot 092}{6 \cdot 1 - 2 \cdot 93}$ . | Part (b) (ii) | 10 marks                                                              | Att 3   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------|---------|
| estimate the value of $\frac{24 \cdot 092}{6 \cdot 1 - 2 \cdot 93}$ .                                                                                              | 2(b) (ii)     | By rounding each of these numbers to the nearest whole                | number, |
|                                                                                                                                                                    |               | estimate the value of $\frac{24 \cdot 092}{6 \cdot 1 - 2 \cdot 93}$ . |         |



\* 
$$\frac{24}{6-3}$$
 and stops  $\Rightarrow$  4 marks.

\* No penalty if the intermediate step between approximations and final answer is not shown.

i.e  $\frac{24}{3}$  not shown.

\* Special Case:  $\frac{24 \cdot 092}{6 \cdot 1 - 2 \cdot 93} = 7 \cdot 6$  presented in this part  $\Rightarrow$  Attempt 3 marks.

#### Blunders (-3)

- B1 Correct answer without work.
- B2 Error(s) in rounding off to the nearest whole number.
- B3 Decimal error in calculation of final value.
- B4 An arithmetic operation other than indicated.

B5 Error(s) in the manipulation of the denominator. e.g. 
$$\frac{24}{6} - \frac{24}{3}$$
 or similar.

Slips (-1)

S1 Numerical errors to a max of 3.

#### Attempts (3 marks)

- A1 Only one or two approximations made to the given numbers and stops.
- A2 No rounding off applied to given numbers.

#### Worthless (0)

#### 5 marks

Att 2

Using a calculator, or otherwise, find the exact value of  $\frac{24 \cdot 092}{6 \cdot 1 - 2 \cdot 93}$ 2(b)(iii)

| Part (b) (iii) | 5 marks                                                                           | Att 2 |
|----------------|-----------------------------------------------------------------------------------|-------|
|                | $\frac{24 \cdot 092}{24 \cdot 092} = \frac{24 \cdot 092}{27 \cdot 6} = 7 \cdot 6$ |       |
|                | $6 \cdot 1 - 2 \cdot 93 = 3 \cdot 17 = 7 \cdot 6$                                 |       |

#### Blunders (-3)

| B1    | Decimal error.                                                                                                                               |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
| B2    | Treats as $\frac{24 \cdot 092}{6 \cdot 1} - 2.93 = 3 \cdot 949508197 - 2 \cdot 93 = 1 \cdot 019 \dots \{B1 \text{ may occur}\}.$             |
| B3    | Treats as $24 \cdot 092 - \frac{24 \cdot 092}{2 \cdot 93} = 24 \cdot 092 - 8 \cdot 2225 = 15 \cdot 8695$ . {B1 may occur}.                   |
| B4    | Treats as $\frac{24 \cdot 092}{6 \cdot 1 + 2 \cdot 93} = \frac{24 \cdot 092}{9 \cdot 03} = 2 \cdot 66799$ . {B1 may occur}.                  |
| В5    | Treats as $\frac{24 \cdot 092}{6 \cdot 1 \times 2 \cdot 93} = \frac{24 \cdot 092}{17 \cdot 873} = 1 \cdot 347955016$ . {B1 may occur}.       |
| B6    | Treats as $24 \cdot 092 - \frac{24 \cdot 092}{3 \cdot 17} = 24 \cdot 092 - 7 \cdot 6 = 16 \cdot 492$ . {B1 may occur}.                       |
| B7    | Treats as $\frac{24 \cdot 092}{6 \cdot 1} - \frac{24 \cdot 092}{2 \cdot 93} = 3 \cdot 9495 - 8 \cdot 2225 = -4 \cdot 2755$ . {B1 may occur}. |
| Sling | (1)                                                                                                                                          |

#### *Slips* (-1)

- Numerical errors to a max of 3. **S**1
- Any rounding off. S2

#### Attempts (2 marks)

Any correct relevant calculation and stops. A1

#### Worthless (0)

| Part(c) (i) | 5 marks                                                                                  | Att 2 |
|-------------|------------------------------------------------------------------------------------------|-------|
| 2(c) (i)    | Using a calculator, or otherwise, find the exact value of $(2 \cdot 25)^{\frac{1}{2}}$ . |       |
| Part(c) (i) | 5 marks                                                                                  | Att 2 |
|             | $(2 \cdot 25)^{\frac{1}{2}} = \frac{3}{2} = 1.5$                                         |       |

- B1 Mishandles  $(2 \cdot 25)^{\frac{1}{2}}$  e.g.  $(2 \cdot 25)^2 = 5 \cdot 0625$ .
- B2 Decimal error.

Attempts (2 marks) A1  $\sqrt{2 \cdot 25}$  and stops. A2  $2 \cdot 25 \times \frac{1}{2} = 1 \cdot 125$ . Worthless(0)

W1  $2 \cdot 25 \times 2$  or  $2 \cdot 75$ .

| Part(c) (ii) | 5 marks                                                                                                                                 | Att 2              |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 2(c) (ii)    | Using a calculator, or otherwise, multiply 54.5 by 60<br>and express your answer in the form $a \times 10^n$ , where $1 \le a < 10$ and | $n \in \mathbf{N}$ |
| Part(c) (ii) | 5 marks                                                                                                                                 | Att 2              |

|   | ·                                                      |  |
|---|--------------------------------------------------------|--|
| Ŕ | $54 \cdot 5 \times 60 = 3270 = 3 \cdot 27 \times 10^3$ |  |

Blunders (-3)

- B1 Correct answer without work. *Æ*
- B2 Decimal error.

Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 Rounds off to,  $3 \cdot 3 \times 10^3$  or  $3 \cdot 0 \times 10^3$
- S3 Incorrectly rounds off. e.g.  $3 \cdot 2 \times 10^3$  also attracts S2.
- S4 Incorrect format, where a < 1 or  $a \ge 10$  and  $n \notin N$ .

Attempts (2 marks)

A1 Any relevant step. e.g. Partial multiplication.

#### Part(c) (iii)

#### 10 marks

| Part(c) (iii) | 10 marks                                           | Att 3 |
|---------------|----------------------------------------------------|-------|
| 2(c) (iii)    | Using a calculator, or otherwise, evaluate         |       |
|               | $(6\cdot 9)^2 - \sqrt{139\cdot 8} \div 3\cdot 55.$ |       |
|               | Give your answer correct to two decimal places     |       |
|               |                                                    |       |

| Part(c) (iii) | 10 marks                                                                                                                       | Att 3 |
|---------------|--------------------------------------------------------------------------------------------------------------------------------|-------|
| £             | $= 47 \cdot 61 - 11 \cdot 823705 \div 3 \cdot 55$<br>= 47 \cdot 61 - 3 \cdot 330621127<br>= 44 \cdot 27937887<br>= 44 \cdot 28 |       |
|               | – TT 20                                                                                                                        |       |

\* Correct answer (without work) incorrectly rounded off  $\Rightarrow \underline{6}$  marks

#### Blunders (-3)

- **B**1 Correct answer without work.
- Mishandles  $(6 \cdot 9)^2$ . B2
- Mishandles  $\sqrt{139 \cdot 8}$ . B3
- B4 Error in  $11.823705 \div 3.55$  or candidate's equivalent from previous work.
- B5 Error in  $47 \cdot 61 - 3 \cdot 330621127$  or candidate's equivalent from previous work.
- B6 Decimal error.
- B7 Subtracts before Division  $35 \cdot 786295 \div 3 \cdot 55 = 10 \cdot 08064648 = 10 \cdot 08$  {Note S2,S3 }
- Use of mathematical operator other than that which is indicated. **B**8
- B9 Works as  $47 \cdot 61 \div 3 \cdot 55 - 11 \cdot 823705 = 1 \cdot 587562606 = 1 \cdot 59$ . {Note S2,S3 }

#### Slips (-1)

- **S**1 Numerical errors to a max of 3.
- S2 Each premature rounding off that effects the final answer to a max of 3.
- **S**3 Fails to round off or rounds off incorrectly when giving final answer.

#### Attempts (3 marks.)

Any correct relevant step e.g.  $(6 \cdot 9)^2 = 47 \cdot 61$ ,  $\sqrt{139 \cdot 8} = 11 \cdot 823705$ . A1

# **QUESTION 3**

| Part (a) | 10 marks                | Att 3       |
|----------|-------------------------|-------------|
| Part (b) | <b>20(10, 10) marks</b> | Att 6(3, 3) |
| Part (c) | <b>20(10, 10) marks</b> | Att 6(3, 3) |

| Part | t(a) 10 marks                                              | Att 3 |
|------|------------------------------------------------------------|-------|
| 3(a) | In one week Bríd sent 26 text messages on her mobile phone |       |
|      | 11 of these messages cost 8c each                          |       |
|      | The rest of the text messages cost 12c each.               |       |
|      | Find the total cost of Bríd's texting.                     |       |

| Part (a)                                    | 10 marks                        | Att 3 |
|---------------------------------------------|---------------------------------|-------|
| Ř                                           |                                 |       |
| 26 - 11 = 15                                | 26 - 11 = 15                    |       |
| $11 \times 8 = 88$                          | $8 + 8 \dots 11$ Times = 88     |       |
| $15 \times 12 = 180$                        | $12 + 12 \dots 15$ Times = 180. |       |
| $Total \ Cost = 268c \ (\notin 2 \cdot 68)$ | $Total \ Cost = 268c \ (€2.68)$ |       |
|                                             |                                 |       |

- \* No penalty for omission of  $\in$  symbol.
- \* Accept 268c, (€2.68)
- \* Adds 8 + 12 = 20 and stops merits 3 marks (Oversimplification).

#### Blunders (-3)

- B1 Correct answer without work.
- B2 Fails to subtract 11 from 26.
- B3 Each missing product when finding each cost e.g. 11 not multiplied by 8.
- B4 Each missing item when finding total cost e.g. Expensive texts omitted.
- B5 Fails to find total cost i.e. no addition.
- B6 Operation other than addition when finding total cost.
- B7 Decimal error e.g.  $\notin 26 \cdot 8$  (Note: 1<sup>st</sup>\* above).

Slips (-1)

S1 Numerical errors to a max of 3.

Misreadings (-1)

M1 15 texts @ 8c and 11 texts @ 12c.

Attempts (3 marks)

A1 Any attempt at addition /multiplication.

Worthless (0)

| Part (b) (i) | 10 marks                                                                                                                    | Att 3 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|-------|
| 3(b) (i)     | John's gross pay is €23 000. His tax credit is €3400<br>He pays income tax at the rate of 20%<br>Find John's take-home pay. | EURO  |

| Part (b) (i) | 10 ma                               | rks                    | Att 3 |
|--------------|-------------------------------------|------------------------|-------|
| Ŕ            |                                     |                        |       |
|              | Gross Pay                           | €23 000                |       |
|              | Tax @ 20%                           | €4600                  |       |
|              | Tax Credit                          | €3400                  |       |
|              | Tax-Due                             | €1200                  |       |
|              | Take-home Pay                       | €21,800                |       |
|              |                                     |                        |       |
|              |                                     |                        |       |
|              | $Tax = 23,000 \times \frac{1}{100}$ | $\frac{20}{00} = 4600$ |       |
|              | or 23,000 × 0                       | 0.2 = 4600             |       |
|              | Tax Due $= 4600$                    | - 3400                 |       |
|              | = 1200                              |                        |       |
|              | Take-home Pay =                     | = 23000 - 1200         |       |
|              | =                                   | €21,800                |       |

- B1 Correct answer without work. *Æ*
- B2 Mishandles 20% of 23,000. {Must use 23 000}
- B3 Decimal error.
- B4 Misuse of Tax Credit
- B5 Incorrect use of Tax Amount.
- B6 Fails to finish. {B4 may apply}

#### Slips (-1)

S1 Numerical errors to a max of 3

#### Attempts (3 marks)

A1 Some use of 100 in attempt to find percentage e.g.  $20\% = \frac{20}{100}$  and stops.

#### Worthless (0)

Part (b) (ii)

#### 10 marks

3(b) (ii) VAT at 21% is added to a bill of €255 Calculate the total bill.

| Part (b) (ii)                         | 10 marks                           | Att3                               |
|---------------------------------------|------------------------------------|------------------------------------|
| Æ                                     |                                    |                                    |
| 100 % = 255                           | $21\% = \frac{21}{100}$            | 255×1·21                           |
| $1\% = \frac{255}{100}$               | $VAT = \frac{21}{100} \times 255$  | Total Bill = $\notin 308 \cdot 55$ |
| $121 \% = \frac{255}{100} \times 121$ | = 53.55                            |                                    |
| = 2.55 121                            | $Total Bill = 255 + 53 \cdot 55$   |                                    |
| Total Bill = $\notin 308 \cdot 55$    | Total Bill = $\notin 308 \cdot 55$ |                                    |

\*  $\in$  53.55 without work and stops merits 4 marks.

Blunders (-3)

- B1 Correct answer without work.
- B2 Decimal error

B3 Inverts  $\frac{121}{100}$  or  $\frac{21}{100}$  and continues (giving answers 210.74 or 1214.29).

- B4 Mishandles 21%. e.g.  $255 \times 21$  or  $255 \div 21$ . Note: {255 must be used}.
- B5 255 taken as 121%.
- B6 No addition of VAT (as per candidates work) to the bill.
- B7 Subtraction of VAT ( as per candidates work) from the bill.

Slips (-1)

S1 Numerical errors to a max of 3.

Misreadings (-1)

M1 Reads as €225.

Attempts (3 marks)

A1  $\frac{21}{100}$  and stops. A2 100% = 255 and stops.

A2 
$$100\% = 255$$
 and sto  
A2  $255$ 

- A3  $\frac{233}{100}$  and stops.
- A4  $100 \times \frac{21}{255}$  and stops.
- A5  $\frac{255}{21}$  and stops.
- A6 Use of any other %.
- A7 255 + 21% and stops.

Att3

| Part(c) (i) | 10 marks                                                                                                  | Att 3 |
|-------------|-----------------------------------------------------------------------------------------------------------|-------|
| 3(c) (i)    | €15 000 is invested at 3% per annum<br>What is the amount of the investment at the end of the first year? |       |
|             | what is the amount of the investment at the end of the first year?                                        |       |

| Part(c) (i)                         | 10 marks                         | Att 3                       |
|-------------------------------------|----------------------------------|-----------------------------|
| Ŕ                                   |                                  |                             |
| $1 \% = \frac{15000}{100}$          | $I = \frac{P \times R}{100}$     | Amount =15000 $\times 1.03$ |
| $3 \% = \frac{15000}{100} \times 3$ | $I = \frac{15000 \times 3}{100}$ | Amount = €15 450            |
| Interest = 450                      | I = 450                          |                             |
| Amount = $15000 + 450$              | Amount = $15000 + 450$           |                             |
| Amount = €15 450                    | Amount = €15 450                 |                             |

\*  $\in$  450 (without work) and stops  $\Rightarrow$  4 marks.

Blunders (-3)

- B1 Correct answer without work.
- B2 Mishandles 3 %. e.g.  $\frac{15000 \times 100}{3}$  Note: {15000 must be used}.
- B3 Decimal error (once only).
- B4 Stops at interest i.e. fails to calculate amount.
- B5 Subtracts to calculate amount.
- B6 Mathematical error(s) working with  $\frac{15000 \times 3}{100}$ .

B7 
$$1.03$$
 treated as  $1.3$ .

Slips (-1)

S1 Numerical errors to a max of 3.

#### Attempts (3 marks)

- A1 Correct formula with or without substitution and stops.
- A2 Some use of 100 in attempt to find percentage e.g.  $3\% = \frac{3}{100}$  or 1.03 and stops.
- A3 15000 + 3% and stops.

#### Worthless (0)

#### Part(c) (ii)

#### 10 marks

Att 3

| 3(c) (ii) | €1450 is withdrawn from this amount at the beginning of the second year. |
|-----------|--------------------------------------------------------------------------|
|           | The interest rate for the second year is $3.5\%$ .                       |
|           | What is the amount of the investment at the end of that year?            |

| Part(c) (ii)                           | 10 marks                           | Att 3                         |
|----------------------------------------|------------------------------------|-------------------------------|
| Æ                                      |                                    |                               |
| Principal                              | for second year = $15450 - 1450$   | = 14000                       |
| $1 \% = \frac{14000}{100}$             | $I = \frac{P \times R}{100}$       | Amount = $14000 \times 1.035$ |
| $3.5\% = \frac{14000}{100} \times 3.5$ | $I = \frac{14000 \times 3.5}{100}$ | Amount = €14 490              |
| Interest = 490                         | I = 490                            |                               |
| Amount = $14000 + 490$                 | Amount = 14000 + 490               |                               |
| Amount = €14 490                       | Amount = €14 490                   |                               |

\* No penalty for consistent error(s) already penalised in (c) (i).

- \* Accept candidates work from previous part (c) (i).
- \* €490 (without work) and stops  $\Rightarrow$  4 marks.
- \* €14000 (without work) and stops  $\Rightarrow$  3 marks.

#### Blunders (-3)

- **B**1 Correct answer without work.
- B2 Incorrect principal for second year.
- B3 Incorrect interest rate for second year.
- Mishandles 3.5 %. e.g.  $\frac{14000 \times 100}{3.5}$  see (1<sup>st</sup> \* above) Note: {14000 must be used}. B4
- B5 Decimal error (once only).
- B6 Stops at interest i.e. fails to calculate amount.
- **B**7 Subtracts to calculate amount.

1.035 treated as 1.35

B8 Mathematical error(s) working with 
$$\frac{14000 \times 3.5}{100}$$

# Slips (-1)

B9

**S**1 Numerical errors to a max of 3.

#### Attempts (3 marks)

- A1 Correct formula with or without substitution and stops.
- Some use of 100 in attempt to find percentage e.g.  $3 \cdot 5\% = \frac{3 \cdot 5}{100}$  or  $1 \cdot 035$  and stops. A2
- A3 14000 + 3.5% and stops.

#### Worthless (0)

# **QUESTION 4**

|            | $\mathbf{x}$                                  |                            |
|------------|-----------------------------------------------|----------------------------|
| Part (a)   | 15(10, 5) marks                               | Att 5(3, 2)<br>Att 5(3, 2) |
| Part (b)   | <b>15(10, 5) marks</b>                        |                            |
| Part (c)   | <b>20(10, 10) marks</b>                       | Att 6(3, 3)                |
| Part(a)(i) | 10 marks                                      | Att 3                      |
| 4(a)(i)    | If $x = 3$ , find the value of : (i) $4x + 5$ |                            |
| Part(a)(i) | 10 marks                                      | Att 3                      |
| Ľ          | 4x + 5 = 4(3) + 5 = 12 + 5 = 17               |                            |

\*

 $12 + 5 \Rightarrow 9$  marks.

#### Blunders (-3)

- B1 Correct answer without work. 🖉
- B2 Leaves 4(3) in the answer.
- B3 Incorrect substitution and continues
- B4 Combines "x's" to "numbers" and continues. e.g. 4x+5=9x=9(3)=27.
- B5 Breaks order i.e. [4(3+5)=32].
- B6 Treats 4(3) as 7 or 43 or similar.

Slips (-1)

S1 Numerical errors to a max of 3.

#### Attempts (3 marks)

- A1 Substitutes for x and stops e.g. 4(3)
- A2 Any correct step.

#### Worthless (0)

W1 Combines "*x*'s"to "numbers" and stops.

Part (a) (ii)

#### 5 marks

Att 2

4(a) (ii) If x = 3, find the value of : (ii)  $2x^2 - 11$ 

| Part (a) (ii) | 5 marks                                                 | Att 2 |
|---------------|---------------------------------------------------------|-------|
| Æ             | $2x^{2} - 11 = 2(3)^{2} - 11 = 2(9) - 11 = 18 - 11 = 7$ |       |

\*  $18 - 11 \Rightarrow 4$  marks.

#### Blunders (-3)

- B1 Correct answer without work. *Æ*
- B2 Leaves 2(9) in the answer.
- B3 Mishandles  $(3)^2$  e.g.  $(3)^2 = 6$ .
- B4 Mishandles  $2(3)^2 e.g \ 2(3)^2 = (6)^2$ .
- B5 Mathematical error. e.g. 18 11 = -7.
- B6 Incorrect substitution and continues.
- B7 Combines "x's "to "numbers" and continues. e.g.  $2x^2 11x = -9x^2$
- B8 Breaks order i.e. [2(9-11)=-4].
- B9 Treats 2(9) as 11 or 29 or similar.

#### Slips (-1)

S1 Numerical errors to a max of 3.

#### Attempts (2 marks)

- A1 Substitutes for x and stops e.g.  $2(3)^2$
- A2 Any correct step.

#### Worthless (0)

W1 Combines " $x^2$ " to "numbers" and stops.

| Part (b) (i) |                        | 10 marks    | Att 3             |
|--------------|------------------------|-------------|-------------------|
| 4(b)         | (i) Solve the equation | 4(5x+6)=84. |                   |
|              |                        |             |                   |
| Part (b) (i) |                        | 10 marks    | Att 3             |
|              | 4(5x+6) = 84           | 4(5x +      | 6) = 84           |
|              | 20x + 24 = 84          | 5 1 6       | _ 84              |
| Ľ            | 20x = 84 - 24          | 5x + 0      | $=$ $\frac{1}{4}$ |
|              | 20x = 60               | 5x + 6      | = 21              |
|              | x = 3                  | 5 <i>x</i>  | = 21 - 6          |
|              |                        | 5 <i>x</i>  | = 15              |
|              |                        | x           | = 3               |
|              |                        |             |                   |

- B1 Correct answer without work.  $\cancel{K}$  e.g. x=3 stated or substituted.
- B2 Error in distributive law and continues, e.g. 20x + 6 = 84 (once only).
- B3 Error in transposition. (each time).
- B4 Combines "x's" to "numbers" and continues. e.g., 20x + 24 = 44x
- B5 Stops at 20x = 60 or similar.

Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 Leaves as  $\frac{60}{20}$  or similar.

#### Attempts (3 marks)

- A1 Any correct step.
- A2 Particular case verified for any value of *x* other than 3.

#### Worthless (0)

W1 Combines "*x*'s" to "numbers" and stops.

| Part (b) (ii) | 5 marks                     | Att 2 |  |
|---------------|-----------------------------|-------|--|
| 4(b) (ii)     | Write in its simplest form  |       |  |
|               | $3x^2 - 2x + 6 - x(2x - 3)$ |       |  |
| Part (b) (ii) | 5 marks                     | Att 2 |  |
|               | $3x^2 - 2x + 6 - x(2x - 3)$ |       |  |
| Ŕ             | $3x^2 - 2x + 6 - 2x^2 + 3x$ |       |  |
|               | $x^2 + x + 6$               |       |  |

- B1 Correct answer without work.
- B2 Error(s) in distribution.
- B3 Combining unlike terms.
- B4 Fails to group or groups incorrectly.
- B5 Treats as  $(3x^2 2x + 6 x)(2x 3)$  and continues.

#### Slips (-1)

S1 Numerical errors to a max of 3.

#### Attempts (2 marks)

- A1 Any correct multiplication.e.g. 3x
- A2 Any correct grouping of terms.
- A3 A correct step.
- A4 Substitutes a value of "x" and continues.

#### Worthless (0)

- W1 Combining unlike terms and stops.
- W2 No attempt at distribution but A2 may apply to subsequent work.

#### Part(c) (i)

#### 10 marks

Att3

4(c) (i) Liam drove from Town A to Town B, a distance of x km. He then drove from Town B to Town C, a distance of (2x + 1) km. The total distance that he drove was 56 km. Find the value of x, correct to the nearest kilometre.

| Part(c) (i) | 10 marks                                                                                                                            | Att3 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| Part(c) (i) | x + 2x + 1 = 56<br>3x + 1 = 56<br>3x = 56 - 1<br>3x = 55<br>$x = \frac{55}{3} \text{ or } 18 \cdot 33333 \text{ or } 18\frac{1}{3}$ | Att3 |
|             | <i>x</i> = 18                                                                                                                       |      |

#### Blunders (-3)

- B1 Correct answer without work. *Æ*
- B2 Error(s) in forming equation for distance travelled.
- B3 Error in grouping terms. e.g. 2x + 1 = 56 and continues.(once only).
- B4 Error in transposition.(each time).
- B5 Combines "x's" to "numbers". e.g. 4x = 56 and continues.
- B6 Stops at 3x = 55 or candidate's equivalent. {S2 also applies}

#### Slips (-1)

S1 Numerical errors to a max of 3.

S2 Leaves as 
$$\frac{55}{3}$$
 or  $18 \cdot 333$  or  $18\frac{1}{3}$  or candidate's equivalent.

Attempts (3 marks)

- A1 Any correct step.
- A2 Illustrates information on a diagram and stops.

Worthless (0)

- W1 Combines "*x*'s" to "numbers" and stops.
- W2 Incorrect answer no work e.g. x = 56.

| Part(c) (ii | )                                     | 10 marks                  | Att3 |
|-------------|---------------------------------------|---------------------------|------|
| 4(c) (ii)   | Solve for <i>x</i> and for <i>y</i> : | 3x + 5y = 13 $x + 2y = 5$ |      |
|             |                                       |                           |      |

| Part(c) (ii)                                                                             | 10 marks                                                                                                            | Att3                                                                                               |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| $x + 5y = 13$ $x + 2y = 5$ $6x + 10y = 26$ $-5x - 10y = -25$ $x = 1$ $\Rightarrow y = 2$ | $3x + 5y = 13$ $\frac{x + 2y = 5}{3x + 5y = 13}$ or $\frac{-3x - 6y = -15}{-y = -2}$ or $y = 2$ $\Rightarrow x = 1$ | II<br>$x = 5 - 2y$ $3(5 - 2y) + 5y = 13$ $15 - 6y + 5y = 13$ $-y = -2$ $y = 2$ $\Rightarrow x = 1$ |

- \* Apply only <u>one</u> blunder deduction (B2 or B3) to any error(s) in establishing the first equation in terms of x only or the first equation in terms of y only.
- \* Finding the second variable is subject to a maximum deduction of (3).

- B1 Correct answers without work.  $\mathscr{K}$  e.g. x=1, y=2. stated or substituted.
- B2 Error(s) in establishing the first equation in terms of x only [x = 1] or the first equation in terms of y only [-y = -2] through elimination by cancellation.
- B3 Error(s) in establishing the first equation in terms of x only [x = 5 2y] or the first equation in terms of y only [5y = 13 3x] through elimination by substitution.
- B4 Errors in transposition in solving the first one variable equation.
- B5 Errors in transposition when finding the second variable.
- B6 Incorrect substitution when finding second variable.
- B7 Finds one variable only.

#### Slips (-1)

S1 Numerical errors to a max of 3

#### Attempts (3 marks)

- A1 Attempt at transposition and stops.
- A2 Multiplies either equation by some number and stops.

# **QUESTION 5**

| Part (a) | 10 marks                     | Att 3             |
|----------|------------------------------|-------------------|
| Part (b) | <b>20</b> (5, 5, 5, 5) marks | Att 8(2, 2, 2, 2) |
| Part (c) | <b>20(5, 5, 10)</b> marks    | Att 7(2, 2, 3)    |

| Part (a) | 10 marks                                                       | Att 3 |
|----------|----------------------------------------------------------------|-------|
| 5(a)     | Find the values of x for which $3x + 2 < 11, x \in \mathbb{N}$ |       |

| Part (a) | 10 marks     | Att 3 |
|----------|--------------|-------|
|          | 3x + 2 < 11  |       |
|          | 3x < 11 - 2  |       |
| X        | 3x < 9       |       |
|          | <i>x</i> < 3 |       |
|          | {0, 1, 2}    |       |

#### Blunders (-3)

- B1 Correct answer without work. 🖉
- B2 Error in transposition. (each time).
- B3 Combining unlike terms.
- B4 Mishandles the direction of inequality e.g. 3x > 9
- B5 Treats inequality as equality and continues. {S3 may apply}
- B6 Combines "x's" to "numbers". e.g., 5x < 11 and continues.
- B7 x < 3 and stops.

#### Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 < taken as  $\leq$ .
- S3 No listing or incorrect listing of values. {Subject to max penalty of 3}.

#### Misreadings (-1)

M1 3x + 2 < 1, and continues.

#### Attempts (3 marks)

- A1 Attempt at transposition and stops.
- A2 Particular case verified.

| Part (b) (i) |            | 5 marks    | Att 2 |
|--------------|------------|------------|-------|
| 5(b) (i)     | Factorise: | 16xy + 11y |       |
| Part (b) (i) |            | 5 marks    | Att 2 |
|              | y          | (16x + 11) |       |

B1 An incorrect factor

B2 Removes factor incorrectly.

Attempts (2 marks)

A1 Indication of common factor. e.g. underline *y* 's and stops.

| Part (b) (ii) |            | 5 marks             | Att 2 |
|---------------|------------|---------------------|-------|
| 5(b) (ii)     | Factorise: | 5x + 10y + ax + 2ay |       |

| Part (b) (i | i)                    | 5 marks |                      | Att 2 |
|-------------|-----------------------|---------|----------------------|-------|
|             | 5x + 10y + ax + 2ay   |         | 5x + 10y + ax + 2ay  |       |
| Ø           | 5(x + 2y) + a(x + 2y) | or      | x(5 + a) + 2y(5 + a) |       |
|             | (5 + a)(x + 2y)       |         | (x + 2y)(5 + a)      |       |
|             |                       | 1       | 0.1 0.11             |       |

\* Accept also (with or without brackets) for 5 marks any of the following

(5 + a) and (x + 2y) {The word **and** is written down.}

(5 + a) or (x + 2y) {The word **or** is written down.}

(5 + a), (x + 2y) {A comma is used}

#### Blunders (-3)

- B1 Correct answer without work. *Æ*
- B2 Stops after first line of correct factorisation. e.g. (5(x + 2y) + a(x + 2y)) or equivalent.
- B3 Error(s) in factorising any pair of terms.
- B4 Incorrect common factor and continues. e.g. 2(ay + 5y) + x(a + 5)

#### Slips (-1)

- S1  $(5+a)\pm(x+2y)$
- S2 Correct first line of factorisation but ends as 5a(x + 2y).

#### Attempts (2 marks)

- A1 Pairing off, or indication of common factors and stops.
- A2 Correctly factorises any pair and stops.

| Part (b) (iii)                                                                                                                        |               | 5 marks                                   | Att 2                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5(b) (iii)                                                                                                                            | Factorise:    | $x^2 - x - 90$                            |                                                                                                                                                                      |
| Part (b) (iii)                                                                                                                        |               | 5 marks                                   | Att 2                                                                                                                                                                |
| $     \begin{array}{r} x^{2} - x - 90 \\     x^{2} + 9x - 10x - 90 \\     x(x + 9) - 10(x + 9) \\     (x - 10)(x + 9)   \end{array} $ |               | $x \rightarrow +9$<br>$x \rightarrow -10$ | $\frac{-(-1)\pm\sqrt{(-1)^2-4(1)(-90)}}{2(1)}$ $\frac{1\pm\sqrt{1+360}}{2} = \frac{1\pm19}{2}$ $\frac{20}{2} = 10  \frac{-18}{2} = -9$ $\Rightarrow (x - 10)(x + 9)$ |
|                                                                                                                                       | $\Rightarrow$ | (x-10)(x + 9)                             |                                                                                                                                                                      |

- \* Accept also (with or without brackets) for 5 marks any of the following (x 10) and (x + 9) {The word **and** is written down.}
  - (x 10) or (x + 9) {The word or is written down.}

(x - 10), (x + 9) {A comma is used}

- B1 Incorrect two term linear factors of  $x^2 x 90$  formed from correct (but inapplicable) factors of  $x^2$  and -90 .e.g (x 45)(x + 2).
- B2 Incorrect factors of  $x^2$ .
- B3 Incorrect factors of -90.
- B4 Correct cross method but factors not shown and stops.
- B5 x(x+9)-10(x+9) or similar and stops.
- B6 Incorrect common factor and continues.
- B7 Incorrect quadratic formula and continues.
- B8 Error in quadratic formula. (each time).
- B9 Answer left as roots.
- B10 Sign error(s) in substituted formula.
- B11 Error in square root or square root ignored.

#### Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 Uses quadratic equation formula, but has wrong sign in factors.

#### Attempts (2 marks)

- A1 Correct quadratic equation formula quoted and stops
- A2 Correct factors of either  $x^2$  or  $\pm 90$ .
- A3 Any correct step.

#### Worthless (0 marks)

- W1  $x^2 x = 90$  or similar and stops.
- W2 Combines "*x*'s"to "numbers" and continues or stops.

| Part  | (b) (iv) 5 marks Att 2                                                                 |
|-------|----------------------------------------------------------------------------------------|
|       | 5(b) (iv) Factorise: $x^2 - 121$                                                       |
| Part  | (b) (iv) 5 marks Att 2                                                                 |
|       | (x-11)(x+11)                                                                           |
| *     | Accept also (with or without brackets) for 5 marks any of the following                |
|       | $(x - 11)$ and $(x + 11)$ {The word <b>and</b> is written down.}                       |
|       | $(x - 11)$ or $(x + 11)$ {The word <b>or</b> is written down.}                         |
|       | $(x - 11), (x + 11)$ {A comma is used}                                                 |
| *     | Quadratic equation formula method is subject to slips and blunders.                    |
| *     | $\left(x - \sqrt{121}\right)\left(x + \sqrt{121}\right)$ merits 5 marks.               |
| Blun  | ders (-3)                                                                              |
| B1    | Incorrect two term linear factors of $x^2$ –121 formed from correct (but inapplicable) |
|       | factors of $x^2$ and $-121.e.g(x-121)(x+1)$ .                                          |
| B2    | Incorrect factors of $x^2$ .                                                           |
| B3    | Incorrect factors of -121.                                                             |
| B4    | (11-x)(11+x).                                                                          |
| B5    | (x - 121)(x + 121).                                                                    |
| B6    | Answer left as roots.                                                                  |
| Slips | (-1)                                                                                   |
| S1    | $(x-11)\pm(x+11)$                                                                      |
| Atter | npts (2 marks)                                                                         |
| A1    | Correct factors of $x^2$ only.                                                         |
| A2    | Correct factors of $\pm 121$ only.                                                     |
| A3    | x or $\pm 11$ appears.                                                                 |
| A4    | $x^2 - 121 = x \cdot x - 11 \cdot 11$ and stops.                                       |
| A5    | Mention of the difference of two squares .e.g. $\{x^2 - (121)^2\}$                     |
| A6    | Correct quadratic equation formula quoted and stops.                                   |
| A7    | $\sqrt{121}$                                                                           |
| Wor   | hless (0 marks)                                                                        |
| W1    | Combines "x's" to "numbers" and continues or stops.                                    |

| Part(c) (i) | 5 marks                                                                                                  | Att2 |
|-------------|----------------------------------------------------------------------------------------------------------|------|
| 5(c)(i)     | Express $\frac{2x-1}{5} + \frac{x+7}{2}$ as a single fraction.<br>Give your answer in its simplest form. |      |
|             |                                                                                                          |      |

| Part(c) (i) | 5 marks            | Att2 |
|-------------|--------------------|------|
|             | 2x - 1 , $x + 7$   |      |
|             |                    |      |
|             | 2(2x-1) + 5(x + 7) |      |
| X           | 10                 |      |
| Xand        | 4x - 2 + 5x + 35   |      |
|             | 10                 |      |
|             | 9x + 33            |      |
|             | 10                 |      |
|             |                    |      |

\* 
$$\frac{2x-1}{5} + \frac{x+7}{2} = \frac{3x+6}{7}$$
 Zero marks.

- B1 Correct answer without work. *Æ*
- B2 Error(s) in distribution. e.g 2(2x 1) = 4x 1.
- B3 Mathematical error e.g. -2 + 35 = -33. 2(-1) = 2.
- B4 Incorrect common denominator and continues.

B5 Incorrect numerator from candidate's denominator e.g.  $\frac{5(2x-1)+2(x+7)}{10}$ .

- B6 No simplification of numerator.
- B7 Omitting denominator.

Slips (-1)

- S1 Drops denominator.
- S2 Numerical error to a max of 3.

S3 Answer not in simplest form. e.g.  $\frac{18x + 66}{20}$ .

Attempts (2 marks)

- A1 10 only or a multiple of 10 only appears.
- A2 Any correct step.

Worthless (0)

W1 
$$\frac{x}{5} + \frac{8x}{2}$$
, or  $\left(\frac{2x-1}{5}\right)\left(\frac{x+7}{2}\right)$  and stops.

| Part(c) (ii) | 5 marks                                                                       | Att2 |
|--------------|-------------------------------------------------------------------------------|------|
| 5(c) (ii)    | Hence, or otherwise, solve the equation $\frac{2x-1}{5} + \frac{x+7}{2} = 6.$ |      |
| Part(c) (ii) | 5 marks                                                                       | Att2 |

| Part( | (1) 5 marks                                 | Att2 |
|-------|---------------------------------------------|------|
|       | $\frac{9x + 33}{10} = 6$                    |      |
|       | 9x + 33 = 60                                |      |
| X     | 9x = 60 - 33                                |      |
|       | 9x = 27                                     |      |
|       | x = 3                                       |      |
| *     | Accent candidates answer from previous work |      |

Accept candidates answer from previous work.

#### Blunders (-3)

- Correct answer without work. *Æ* B1
- B2 Error in transposition. (each time)

Slips (-1)

- Numerical error to a max of 3. **S**1
- Leaves as  $\frac{27}{9}$ . S2

#### Attempts (2 marks)

- Answer from (c) (i) written in this part or worked again in this part. A1
- Any correct step and stops. A2
- A3 Particular case verified.

| Part(c) (iii)                                                                                                                       |                                                  | 10 marl               | ΧS                                                                                                                                            | Att3                 |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 5(c) (iii) Solve t                                                                                                                  | he equation:                                     | $x^{2} + 5x - 3$      | 36 = 0.                                                                                                                                       |                      |
| Part(c) (iii)                                                                                                                       |                                                  | 10 marl               | ΧS                                                                                                                                            | Att3                 |
| $x^{2} + 5x - 36 = 0$<br>$x^{2} + 9x - 4x - 36 = 0$<br>x(x + 9) - 4(x + 9) = 0<br>(x + 9)(x - 4) = 0<br>$\Rightarrow x = -9  x = 4$ | $x \xrightarrow{x} (x+9)(x)$ $\Rightarrow x = -$ | +9<br>-4<br>-4)<br>-9 | $\frac{-(5)\pm\sqrt{(5)^2-4(1)(-36)}}{2(1)}$ $\frac{-5\pm\sqrt{25+144}}{2} = \frac{-5\pm\sqrt{169}}{2}$ $\frac{8}{2} = 4  \frac{-18}{2} = -9$ | $=\frac{-5\pm13}{2}$ |

- B1 Correct answers without work.  $\swarrow$  e.g. x=4, x=-9 stated or substituted.
- B2 Incorrect two term linear factors of  $x^2 + 5x 36$  formed from correct (but inapplicable) factors of  $x^2$  and  $-36 \cdot e.g. (x 12)(x + 3)$
- B3 Incorrect factors of  $x^2$ .
- B4 Incorrect factors of -36.
- B5 Correct cross method and factors not shown and stops. {B8 also applies}
- B6 x(x+9)-4(x+9) or similar and stops. {Note: B8 also applies }.
- B7 Incorrect root(s) from factors.
- B8 No roots given.
- B9 One root only
- B10 Error in quadratic formula. (each time).

Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 Leaves as  $\frac{p}{q}$ .

#### Attempts (3 marks)

- A1 Correct factors of  $x^2$  only
- A2 Correct factors of  $\pm 36$  only.
- A3 Some effort at factorisation.
- A4 Correct quadratic equation formula quoted and stops
- A5 Any correct step.

#### Worthless (0)

W1 Combines unlike terms and continues or stops.

# **OUESTION 6**

| Part (a) | <b>10(5, 5) marks</b>                | Att 4(2, 2)    |
|----------|--------------------------------------|----------------|
| Part (b) | <b>25(15, 10) marks</b>              | Att 8(5, 3)    |
| Part (c) | <b>15(5, 5, 5) marks</b>             | Att 6(2, 2, 2) |
| Part(a)  | 10(5,5) marks                        | Att 4(2,2)     |
| 6(a)     | $P = \{(1,3), (4,6), (5,8), (7,9)\}$ |                |

| O(a)           |                           |       |
|----------------|---------------------------|-------|
| Part(a) Domain | 5 marks                   | Att 2 |
|                | Domain = $\{1, 4, 5, 7\}$ |       |

Slips (-1)

Each correct element omitted and/or each incorrect element included. {See M1} **S**1

*Misreadings* (-1) M1 Correct range. i.e. { 3,6,8,9} given.

Attempts (2 marks) A1 One element of domain. Domain  $\{1 \rightarrow 7\}$ A2

Worthless (0)

W1 No element of the domain appears. {See M1}

| Part(a) Range |       | 5 | marks        | Att 2 |
|---------------|-------|---|--------------|-------|
|               | Range | = | {3, 6, 8, 9} |       |

Slips (-1)

Each correct element omitted and/or each incorrect element included. {See M1} **S**1

Misreadings (-1)

M1 Correct domain. i.e.  $\{1, 4, 5, 7\}$  given.

Attempts (2 marks)

- One element of range. A1
- Range  $\{3 \rightarrow 9\}$ A2

Worthless (0)

W1 No element of the range appears. {See M1}

| Part (b)                                                  |                   | 25(15, 10) marks               |        |     |   |    |    | Att 8 | (5, 3) |
|-----------------------------------------------------------|-------------------|--------------------------------|--------|-----|---|----|----|-------|--------|
| 6(b)                                                      | Draw the graph    | Draw the graph of the function |        |     |   |    |    |       |        |
| $f: x \rightarrow 2 + 3x - x^2$                           |                   |                                |        |     |   |    |    |       |        |
| in the domain $-1 \le x \le 4$ , where $x \in \mathbf{R}$ |                   |                                |        |     |   |    |    |       |        |
| Part (b) Ta                                               | ble               |                                | 15 mai | rks |   |    |    |       | Att 5  |
| X                                                         |                   |                                |        |     |   |    |    |       |        |
| f(-1) =                                                   | $2+3(-1)-(-1)^2=$ | -2                             | x      | -1  | 0 | 1  | 2  | 3     | 4      |
| f(0) =                                                    | $2+3(0)-(0)^2 =$  | 2                              | 2      | 2   | 2 | 2  | 2  | 2     | 2      |
| f(1) =                                                    | $2+3(1)-(1)^2 =$  | 4                              | +3x    | -3  | 0 | 3  | 6  | 9     | 12     |
| f(2) =                                                    | $2+3(2)-(2)^2 =$  | 4                              | $-x^2$ | -1  | 0 | -1 | -4 | -9    | -16    |
| f(3) =                                                    | $2+3(3)-(3)^2 =$  | 2                              | f(x)   | -2  | 2 | 4  | 4  | 2     | -2     |
| f(4) =                                                    | $2+3(4)-(4)^2 =$  | -2                             |        |     |   |    |    |       |        |

| * Error(s) in each row /column attract a maximum deducti | on of 3. |
|----------------------------------------------------------|----------|
|----------------------------------------------------------|----------|

#### Blunders (-3)

Treats  $-x^2$  taken as  $x^2$  and places " $x^2$ " in the table or function... B1

- B2  $-x^2$  taken as -2x all the way. [In row headed  $-x^2$  by candidate]
- **B**3 +3x taken as +3 all the way. [In row headed +3x by candidate]
- 2 calculated as 2*x* all the way.[In row headed 2 by candidate] B4
- B5 Adds in top row when evaluating f(x).
- Omits "2" row or omits "3x" row. B6
- B7 Omits a value in the domain (each time).
- Each incorrect image without work. **B8**

#### Slips (-1)

Numerical errors to a max of 3 in any row / column. **S**1

#### *Misreadings* (-1)

- Misreads "+ 3x" as "-3x" and places "-3x" in the table or function M1
- Misreads "2" as "-2" and places "-2" in the table or function. M2

#### Attempts (5 marks)

- Omits  $-x^2$  row from table or treats  $-x^2$  as  $\pm x$ . A1
- A2 Any effort at calculating point(s).
- A3 Only one point calculated and stops.

10 marks



- \* Accept candidate's values from previous work.
- \* Only <u>one</u> correct point <u>graphed correctly</u>  $\Rightarrow$  Att <u>5</u> + Att <u>3</u>
- \* Correct graph but no table  $\Rightarrow$  full marks i.e. (15+10) marks.
- \* Accept reversed co-ordinates if
  - (i) if axes not labelled or (ii) if axes are reversed to compensate (see B1 below)

#### Blunders (-3)

- B1 Reversed co-ordinates plotted against non-reversed axes (once only) {See 4th \* above}.
- B2 Scale error (once only).
- B3 Points not joined or joined in incorrect order (once only).

#### Slips (-1)

- S1 Each point of candidate graphed incorrectly. {Tolerance  $\pm 0.25$  }
- S2 Each point from table not graphed [See 2nd \* above].

#### Attempts (3 marks)

A1 Graduated axes (need not be labelled).

|                  | Att 2            |                                                          |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                      |                                                                      |                                                                           |
|------------------|------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Given that $y =$ | x + 1, co        | mplete th                                                | e table b                                                                                                                                                                                                                                                                                                                             | elow                                                                                                                                                                                 |                                                                      |                                                                           |
|                  |                  | 5 mar                                                    | ks                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      | Att 2                                                                |                                                                           |
| x                | 0                | 1                                                        | 2                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                    |                                                                      |                                                                           |
| У                | 1                | 2                                                        | 3                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                    |                                                                      |                                                                           |
|                  | Given that $y =$ | Given that $y = x + 1$ , co<br>$x \qquad 0$ $y \qquad 1$ | 5 martGiven that $y = x + 1$ , complete the5 martx01y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1y1 <th colsp<="" td=""><td>5 marksGiven that <math>y = x + 1</math>, complete the table be5 marksx012y123</td><td>5 marksGiven that <math>y = x + 1</math>, complete the table below5 marksx0123y1234</td></th> | <td>5 marksGiven that <math>y = x + 1</math>, complete the table be5 marksx012y123</td> <td>5 marksGiven that <math>y = x + 1</math>, complete the table below5 marksx0123y1234</td> | 5 marksGiven that $y = x + 1$ , complete the table be5 marksx012y123 | 5 marksGiven that $y = x + 1$ , complete the table below5 marksx0123y1234 |

Accept candidate's values without work.

#### Slips(-1)

Each y value omitted or incorrect. **S**1

### Attempts(2marks)

- Any one correct value of y. A1
- Any effort at calculating point where work is shown. A2

| Part(c) (ii) | 5 marks                                                                | Att 2  |
|--------------|------------------------------------------------------------------------|--------|
| 6(c) (ii)    | On the grid below, the graph of the line $y = 3 - x$ is drawn.         |        |
|              | Using your answers from (i), draw the graph of $y = x + 1$ on the same | e grid |
|              |                                                                        |        |



- \* Accept candidate's values from previous work.
- \* Only <u>one</u> point listed and <u>graphed correctly</u>  $\Rightarrow$  Att  $\underline{2}$  + Att  $\underline{2}$

- B1 Reversed co-ordinates (y, x) plotted.
- B2 Points not joined or joined in incorrect order.

#### Slips (-1)

- S1 Each point of candidate graphed incorrectly. {See B1}
- S2 Each point from table not graphed or not contained on the candidate's graph.

#### Attempts (2 marks)

A1 Any straight line drawn.

| Part(c)(iii) Intersection |                                                           | 5 marks                                                                                                                                             | Att2 |  |  |  |
|---------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
| 6(c)(iii                  | ) <u>Use the graphs drawn i</u> of the point of intersect | <u>Use the graphs drawn in 6 (c) (ii)</u> to write down the coordinates of the point of intersection of the two lines $y = 3 - x$ and $y = x + 1$ . |      |  |  |  |
| Part(c)(iii) I            | ntersection                                               | 5 marks                                                                                                                                             | Att2 |  |  |  |
| Æ I                       | Point of intersection = $(1,2)$                           |                                                                                                                                                     |      |  |  |  |

\* Accept previous graph from c (ii).

Blunders(-3)

- B1 Answer not presented in designated box.
- B2 Answer beyond tolerance. {Tolerance  $\pm 0.25$  }.

Attempts(2marks)

- A1 Indicates correctly either *x* or *y* co-ordinate of point of intersection.
- A2 Point of intersection indicated.
- A3 Algebraic evaluation.

*Worthless*(0)

W1 Answers outside of tolerance without graphical indication.