Coimisiún na Scrúduithe Stáit State Examinations Commission

JUNIOR CERTIFICATE EXAMINATION 2006
MATHEMATICS - ORDINARY LEVEL - PAPER 2 MARKING SCHEME

GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions
- Slips- numerical errors
- Misreadings (provided task is not oversimplified)

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5.50$ may be written as $€ 5,50$.

QUESTION 1

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 7
Part (a)	10 marks	Att 3
Multiply 375 m by 4 . Give your answer in kilometres (km).		
(a)	10 marks	Att 3
$\begin{aligned} & 375 \\ & =1 . \end{aligned}$		

Blunders (-3)

B1 Correct answer without work (s).
B2 Incorrect conversion or no conversion.
B3 Incorrect mathematical operation with work and continues
B4 Decimal error

Slips (-1)
S1 Numerical slips to a maximum of -3
S2 Leaves as $\frac{1500}{1000}$
Attempts (3 marks)
A1 Converts to kilometres and stops e.g. 0.375 km
A2 States $1000 \mathrm{~m}=1 \mathrm{~km}$ and stops
A3 Some correct effort at conversion
A4 1500 without work and stops
A5 375×4 and stops.
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.

The gable-end of a house has measurements as shown in the diagram

Part (b) (i)
10 Marks
Att 3
(i) Find, in m^{2}, the area of the bottom rectangular section of the gable-end.
(b) (i)

10 Marks
Att 3
Area of the bottom rectangular section of the gable-end $=7 \times 8=56 \mathrm{~m}^{2}$
Blunders (-3)
B1 Correct answer without work (s).
B2 Incorrect relevant formula e.g. $\frac{1}{2}(7 \times 8)=28$.
B3 $7^{2} \times 8^{2}=3136$
B4 Each incorrect substitution and continues.

Slips (-1)

S1 Numerical slips to a maximum of -3
S2 7×8 and stops.
Attempts (3 marks)
A1 Find perimeter of part or whole correctly or incorrectly with work shown
A2 Correct formula for area and stops e.g. area $=\mathrm{L} \times \mathrm{W}$
A3 Any relevant work e.g. understands the meaning of area

Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.
(ii) Find, in m^{2}, the area of the top triangular section of the gable-end.
(b) (ii)

5 Marks
Att 2

Area of the top triangular section of the gable-end $=\frac{1}{2} \times 8 \times 1 \cdot 5=6 \mathrm{~m}^{2}$

Blunders (-3)

B1 Correct answer without work ($\left.\mathbb{L}^{(}\right)$.
B2 Incorrect relevant formula e.g. $8 \times 1.5=12$.
B3 Incorrect substitution / dimension and continues correctly e.g. Area $=\frac{1}{2}(7 \times 8)$ or Area $=\frac{1}{2}(1 \cdot 5)(1 \cdot 5)$ each time.
B4 Decimal error
B5 Mathematical error.

Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (2 marks)
A1 Some correct step with work and stops
A2 Product of any 2 dimensions with work shown
A3 Area $=\frac{1}{2} \times$ base \times height or similar and stops
A4 Some work involving multiplication by $\frac{1}{2}$

Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.

2 The cost of 5 litres of paint is $€ 23$.
5 litres of this paint will cover an area of $31 \mathrm{~m}^{2}$.
Find the cost of painting the gable-end with this paint.

(b) (iii)

5 Marks
Att 2
2. Area of gable end $=56+6=62 \mathrm{~m}^{2}$

Volume of paint required $=\frac{62}{31} \times 5=101$
Cost $=€ 23 \times 2=€ 46$

* Accept candidates answers from parts (i) and (ii).

Blunders (-3)

B1 Correct answer without work (es).
B2 Incorrect mathematical operation e.g. subtracts the areas
B3 Multiplies 62×23 and continues.
B4 $5 \times 23 \times 2$

Slips (-1)
S1 Numerical slips to a maximum of -3
S2 23×2 and stops.
Attempts (2 marks)
A1 Writes $56+6$ or 62 and stops (be mindful of second *).
A2 Some correct step with work and stops.
A3 Finds cost of 1 litre and / or area covered by 1 litre and stops.

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies.

Peter travelled 50 km to a football match and he returned home by the same route when the match was over.
Peter travelled to the match at an average speed of $60 \mathrm{~km} / \mathrm{h}$.
How many minutes did the journey to the match take?

Part (c) (i)
5 Marks
Att 2
Time $=\frac{50}{60} \times 60=50$ minutes
Do not penalise the same error twice in section (c)

Blunders (-3)

B1 Correct answer without work (\&).
B2 Error in converting hours to minutes or no conversion.
B3 Incorrect relevant formula and continues.
B4 Mathematical error.

Misreadings (-1)

M1 Uses 100 km for journey to match with work.
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (2 marks)
A1 Converts hours to minutes and stops e.g. 1 hour $=60$ minutes.
A2 Correct formula only and stops.
A3 Any relevant work e.g. 1 km in 1 minute and stops.
A4 States
 or similar version.

Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.
(ii) Peter arrived at the match at 17:35.

At what time did he leave from home to travel to the match?
(ii)

10 Marks
Att 3
L $17: 35-0: 50=16: 95-0: 50=16: 45$

* Accept candidates answers from part (i).
* Accept answer in twelve hour clock format.

Blunders (-3)

B1 Correct answer without work (s).
B2 Error in converting hours / minutes or no conversion, unless B2 applied in part (i)
B3 Adds instead of subtracts with work
B4 Correctly subtracts an arbitrary time from 17:35 with work.

Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (3 marks)
A1 States 1 hour $=60$ minutes and stops
A2 Some correct step with work

Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.
(iii) Peter took 75 minutes to travel home from the match.

Calculate the average speed, in km / h, for this journey.
(c) (iii)

5 Marks
Att 2

$$
\text { Average speed }=\frac{50}{1 \cdot 25}=40 \mathrm{~km} / \mathrm{hr} \quad \text { or } \quad \frac{50}{75} \times 60=40 \mathrm{~km} / \mathrm{hr}
$$

* Do not penalise same error twice in section (c).

Blunders (-3)

B1 Correct answer without work (\&).
B2 Incorrect or no conversion of minutes to hours if applicable if not already penalised in parts (i) or (ii).
B3 No division
B4 Mathematical error.
B5 Incorrect relevant formula.
Slips (-1)
S1 Numerical slips to a maximum of -3
Misreadings (-1)
M1 Takes journey as 100 km and continues correctly.

Attempts (2 marks)
A1 Converts minutes / hours and stops
A2 Correct formula and stops.
A3 Any relevant work
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 6
Part (c)	20 marks	Att 7
Part (a)	10 marks	Att 3
(a)	The length of each side of a square tile is 9 cm . What area, in cm^{2}, will 12 of these tiles cover?	

(a)

Area of one tile $=9 \times 9=81 \mathrm{~cm}^{2}$ Area covered by 12 tiles $=81 \times 12=972 \mathrm{~cm}^{2}$

Blunders (-3)

B1 Correct answer without work (\&).
B2 Incorrect relevant formula e.g correct surface area and continues
B3 Incorrect substitution or omission or extra each time
B4 Mathematical error e.g. $9^{2}=18$ and continues
B5 Correctly finds the perimeter and continues.

Slips (-1)

S1 Numerical slips to a maximum of -3
S2 81×12 and stops.
Attempts (3 marks)
A1 Some correct step with work and stops.
A2 Correct formula and stops.
A3 Writes 9×9 or 9×12 and stops

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies.
W2 Use of a formula involving π.
(b) (i) A circular disc has a radius of 5 cm .

Taking π as $3 \cdot 14$, find, in cm^{2}, the area of the disc.

(b) (i)

10 marks
2

$$
\begin{aligned}
& \text { Area of disc }=\pi \mathrm{r}^{2} \\
& =3 \cdot 14 \times 5 \times 5 \\
& =78.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Blunders (-3)

B1 Correct answer without work (S).
B2 Incorrect relevant formula and continues e.g. $2 \pi r$ or a multiple of πr^{2}.
B3 Mathematical error e.g. $5^{2}=10$ and continues.
B4 Incorrect substitution and continues.
B5 $\pi \neq 3.14$ or answer in terms of π
B6 Decimal error.

Slips (-1)
S1 Numerical slips to a maximum of -3

Attempts (3 marks)
A1 Some correct step with work and stops.
A2 Product of two relevant numbers and stops.
A3 Writes 5^{2} and stops
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.
(ii) A rectangular piece of cardboard has measurements as shown. Two circular pieces, each of radius length 5 cm , are cut out of this rectangular piece of cardboard as shown.

Find, in cm^{2}, the area of the remaining piece of cardboard.

(b) (ii)

10 marks
Att 3
2
Area of rectangular piece $=24 \times 12=288$
Area of 2 discs $=78 \cdot 5 \times 2=157$
Area of the remaining piece $=288-157=131 \mathrm{~cm}^{2}$
Accept candidates answer from part (i)
Blunders (-3)
B1 Correct answer without work (\&).
B2 Incorrect relevant formula e.g. $\mathrm{L} \times \mathrm{L}$ and continues
B3 Incorrect mathematical operation
B4 Decimal error.
B5 Uses one disc only.

Slips (-1)
S1 Numerical slips to a maximum of -3
S2 288-157 and stops.

Attempts (3 marks)

A1 Some correct step with work and stops.
A2 Correct formula for area of rectangle and stops.

Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.
(c) A solid metal cylinder has radius 10 cm and height 15 cm

Part (c) (i)
10 Marks
Att 3
(i) Taking π as $3 \cdot 14$, find, in cm^{3}, the volume of the solid metal cylinder.
(c) (i)

10 Marks
Att 3

es \quad| | $V=\pi r^{2} h$ |
| ---: | :--- |
| | $=3.14 \times 10 \times 10 \times 15$ |
| | $=4710 \mathrm{~cm}^{3}$ |

Blunders (-3)

B1 Correct answer without work (s).
B2 Incorrect relevant formula for a cylinder e.g Surface area $2 \pi r h$ or an incorrect multiple of $\pi r^{2} h$ or πr^{2} with work.
B3 Incorrect substitution each time and continues.
B4 Mathematical error e.g. $10^{2}=20$.
B5 $\quad \pi \neq 3 \cdot 14$ or answer in terms of π
B6 Decimal error

Slips (-1)
S1 Numerical slips to a maximum of -3

Attempts (3 marks)
A1 A correct substitution and stops e.g. $3 \cdot 14 \times 10^{2} \times h$.
A2 Any relevant work.
A3 π omitted with or without work.

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies.
(ii) The cylinder was melted down and half of the metal was recast as a rectangular solid.
This rectangular solid has length 15 cm and width 14 cm . Calculate, in cm, its height, correct to one decimal place.

(c) (ii)

5 Marks
Att 2
es $0.5 \times 4710=2355$
$\frac{2355}{(15 \times 14)}=11.2$

* Accept candidates answer from part (i).

Blunders (-3)

B1 Correct answer without work (\&).
B2 Failure to divide volume of metal by 2.
B3 Decimal error.
B4 Incorrect formula for volume of a rectangular solid.
B5 Mathematical error.
Slips (-1)
S1 Numerical slips to a maximum of -3
S2 Incorrect round off or no round off

Attempts (2 marks)

A1 Correct formula for volume of rectangular solid and stops.
A2 Some correct substitution and stops.
A3 15×14 or 210 or 2355 or candidates answer from part (i) and stops.

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies.
(iii) The other half of the metal was recast as a sphere.

This sphere had a surface area of $272 \cdot 57 \pi \mathrm{~cm}^{2}$.
Find, in cm , the radius of the sphere, correct to two decimal places.

(c) (iii)

5 Marks
Att 2
$4 \times \pi \times r^{2}=272 \cdot 57 \pi$
$4 \times r^{2}=272.57$
$r^{2}=68 \cdot 14$
$r=8.254$ or $\sqrt{68 \cdot 14}$
$r=8.25$

Blunders (-3)

B1 Correct answer without work (\&).
B2 Incorrect relevant formula e.g. multiples of πr^{3} or πr^{2} with work.
B3 Decimal error.
B4 Incorrect substitution and continues.
B5 Mathematical error e.g. $r^{2}=68 \cdot 14, r=34 \cdot 07$
Slips (-1)
S1 Numerical slips to a maximum of -3
S2 Incorrect round off or no round off.

Attempts (2 marks)
A1 Some correct step with work.
A2 Effort at trial and error.
A3 Writes $\frac{4710}{2}$ and / or 2355 and stops.

Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.

Part (a)	$\mathbf{1 0}$ marks	Att 3
Part (b)	$\mathbf{2 0}$ marks	Att 7
Part (c)	$\mathbf{2 0}$ marks	Att $\mathbf{7}$
Part (a)	$\mathbf{1 0}$ marks	Att 3

(a)
10 marks
Att 3

Les $\frac{3.2+4.4+4.6+7.8}{4}=5$
Blunders (-3)
B1 Correct answer without work(s).
B2 Multiplies instead of adding.
B3 Decimal error.
B4 Incorrect divisor.
B5 Omits a value each time.
B6 Inverted fraction.
Slips (-1)
S1 Numerical slips to a maximum of -3
S2 $\quad \frac{20}{4}$ and stops.

Attempts (3 marks)
A1 Addition of data only.
A2 Partial addition with work and stops.
A3 Idea of mean indicated e.g. $\frac{\sum x}{n}$ or verbal description.
A4 States " median is 4.5 " and stops.
A5 20 or 4 without work.

Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.
(b) A group of students were surveyed to find their favourite channel from four given TV channels.

The pie chart represents the results of the survey.

Part (b) (i)
10 marks
Att 3
(i) What is the measure of the angle for TG4?
(b) (i)

10 marks
Att 3

* $\quad 360^{\circ}-\left(120^{\circ}+45^{\circ}+135^{\circ}\right)=60^{\circ}$
Do not penalise the same error twice in part (b).

Blunders (-3)

B1 Correct answer without work (\&).
B2 Angle at centre of circle $\neq 360^{\circ}$
B3 No subtraction.
B4 Straight line angle $\neq 180^{\circ}$.

Slips (-1)

S1 Numerical slips to a maximum of -3
S2 Each angle omitted to a maximum of -3
S3 Indicates subtraction i.e. $360^{\circ}-300^{\circ}$ and stops
Attempts (3 marks)
A1 Some Addition.
A2 States "straight angle $=180^{\circ}$ " or similar and stops.
A3 States "angle centre of circle $=360^{\circ}$ " or similar and stops.
A4 Writes $135^{\circ}, 45^{\circ}$ or 120° and stops.
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.
(ii) 12 students replied that RTÉ2 was their favourite channel.

How many students were surveyed?
(b) (ii)

5 marks
Att 2
25 $\begin{aligned} & 45^{\circ}=12 \\ & 1^{\circ}=\frac{12}{45} \quad \underline{O R} \quad 45^{\circ}=\frac{1}{8} \text { of } 360^{\circ} \\ & 360^{\circ}=\frac{12}{45} \times 360=96 \quad 12 \times 8=96\end{aligned}$
Blunders (-3)
B1 Correct answer without work (\&).
B2 Incorrect ratio method.
B3 Mathematical error.
Misreading (-1)
M1 Reads RTÉ1 for RTÉ2 and continues

Slips (-1)

S1 Numerical slips to a maximum of -3
S2 12×8 and stops.
Attempts (2 marks)
A1 Some relevant step.
A2 Writes 45° or 360° and / or $\frac{1}{8}$ and stops.
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.
(iii) How many gave TV3 as their reply?
(b) (iii)

5 marks
Att 2
Les $\frac{120}{360} \times 96=32$

* Accept candidates answer from part (ii).

Blunders (-3)
B1 Correct answer without work (es).
B2 Incorrect ratio method.
B3 Mathematical error.
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (2 marks)
A1 Some relevant step.
A2 Any relevant angle e.g. $120^{\circ}, 360^{\circ}, 45^{\circ}$.
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.
(c) The marks gained in a test by 20 students were

40	30	20	50	40
30	20	40	30	10
50	40	30	10	30
50	20	30	40	20

Part (c) (i)
10 Marks
Att 3
(i) Complete the following frequency table:

Marks	10	20	30	40	50
Number of students					

(c) (i)

10 Marks
Att 3

Marks	10	20	30	40	50
Number of students	2	4	6	5	3

Accept correct answer with no work shown.

Attempts (3 marks)
A1 One correct entry only.
Worthless (0)
W1 Table in question reproduced merits zero marks.
(ii) Draw a bar chart of the data.

* Accept horizontal or vertical bar chart.
* Accept bars of unequal widths.
* Accept " lines " as bars.
* Labelling not required

Blunders (-3)
B1 Axis with student numbers not graduated uniformly.
B2 Reverses variable and frequency when drawn.
B3 Draws a trend graph or pie chart.
Slips (-1)
S1 Each incorrect bar or bar omitted to a maximum of -3.

Attempts (2 marks)

A1 Graduates axis or axes only
(iii) Calculate the mean mark.
(c) (iii)

5 Marks
Att 2

$$
\begin{aligned}
& \quad \text { Mean }=\frac{\sum f x}{\sum f} \\
& =\frac{(2 \times 10)+(4 \times 20)+(6 \times 30)+(5 \times 40)+(3 \times 50)}{2+4+6+5+3} \\
& =\frac{20+80+180+200+150}{20} \\
& =\frac{630}{20} \\
& =31.5
\end{aligned}
$$

Accept candidates values from table.
Blunders (-3)
B1 Correct answer without work (\&).
B2 Multiplies instead of adds in denominator
B3 Adds instead of multiplies in numerator.
B4 Incorrect denominator or no denominator e.g. $\frac{630}{5}$
B5 Inverted fraction
B6 Frequencies omitted in numerator e.g. $\frac{10+20+30+40+50}{20}=\frac{150}{20}$
B7 Omits 2 or more values in numerator.

Slips (-1)

S1 Numerical slips to a maximum of -3
S2 Omits one value in numerator with work.
S3 $\frac{630}{20}$ and stops.
Attempts (2 marks)
A1 Some relevant step e.g. $\sum f$.
A2 Mean $=\frac{\sum f x}{\sum f}$ and stops
A3 A relevant multiplication and stops.
A4 Average of frequencies $\frac{2+4+6+5+3}{5}=\frac{20}{5}=4$
A5 $\frac{10+20+30+40+50}{5}=\frac{150}{5}=30$
A6 630 or 20 without work.

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies.

QUESTION 4

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 7

Part (a)

10 marks
Att 3
Find the value of x and the value of y in the diagram.

(a)

10 marks
Att 3
$x=56^{\circ}$
$y=68^{\circ}$

* Accept correct answer marked / indicated on a diagram.
* Accept correct answers and no work.

Blunders (-3)

B1 States $y=56^{\circ}$ and continues to get $x=68^{\circ}$
B2 Mathematical error.
B3 Uses incorrect isosceles triangle e.g. $56^{\circ} / 62^{\circ} / 62^{\circ}$ without work.
B4 Sum of angles in triangle $\neq 180^{\circ}$.
B5 Finds one correct value only.
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (3 marks)
A1 States "straight line angle $=180^{\circ}$ " or similar.
A2 States "angle sum of triangle $=180^{\circ}$ " or similar.
A3 Any mention of isosceles triangle
A4 Uses arbitrary value for x or y and continues.
Worthless (0)
W1 Incorrect answer without work unless attempt mark or B1 or B3 applies e.g. $x=124^{\circ}$, $y=124^{\circ}$ merits zero marks.
(b) pqrs is a parallelogram.

The diagonals $[s q]$ and $[p r]$ intersect at m.

Part (b) (i)
10 marks
Att 3
(i) The $\Delta p s q$ has area $12 \mathrm{~cm}^{2}$.

Write down the area of the parallelogram pqrs and give a reason for your answer.
(b) (i) 10 marks
(i) Area of parallelogram pqrs $=24 \mathrm{~cm}^{2}$

Reason: Diagonal bisects area

* Accept correct answer and no work.

Blunders (-3)

B1 Area $=n \times 12, n \neq 2$, e.g. $4 \times 12=48$ or $\frac{1}{2} \times 12=6$
Slips (-1)
S1 Numerical slips to a maximum of -3
S2 Correct answer with no reason or incorrect reason.
Attempts (3 marks)
A1 Reason only.
A2 Correct area formula for triangle or parallelogram.
A3 Opposite sides / angles of a parallelogram equal in measure

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies.
(ii) Given that $|s q|=4 \cdot 1 \mathrm{~cm}$, find $|m q|$ and give a reason for your answer.
(b) (ii)

5 marks
Att 2
(ii) $\quad|m q|=2.05$

Reason: Diagonals bisect each other

* Accept correct answer marked / indicated on a diagram.
* Accept correct answer and no work.

Blunders (-3)
B1 $|m q|=n \times 4 \cdot 1, n \neq \frac{1}{2}$

Slips (-1)
S1 Correct answer with no reason or incorrect reason.
Attempts (2 marks)
A1 Reason only.
A2 Any mention of congruence.
A3 Writes $|s m|=|m q|$ and stops.
A4 Writes $|m q|=\frac{1}{2}|s q|$ and stops.

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies.

(b) (iii)

* Accept for 5 marks any correct method of bisection provided all necessary construction lines are drawn.

Misreading (-1)

M1 Bisects incorrect angle and shows relevant construction lines.

Attempts (2 marks)
A1 Some attempt at drawing a circle and or an arc, or joins b to c.
A2 Marks or writes $|a b|=|a c|$.
A3 Line bisecting angle at a correctly shown, with no construction lines.

Part (c)
(c) $[a b]$ and $[d e]$ are diameters of a circle with centre c. $d e \perp a b$.

Part (c) (i)
10 Marks
Att 3
(i)

Write down $|\angle c a d|$.
(c) (i)

10 Marks
Att 3
(i)
$|\angle c a d|=45^{\circ}$

* Accept correct answer with no work.
* Accept correct answer marked / indicated on a diagram.

Blunders (-3)

B1 Sum of the angles in a triangle $\neq 180^{\circ}$.
B2 Mathematical error.
B3 Takes an arbitrary angle for $|\angle a d c|$ and continues.
Slips (-1)
S1 Numerical slips to a maximum of -3 .
Attempts (3 marks)
A1 Writes down or indicates two equal sides.
A2 Writes down or indicates two equal angles.
A3 Write down or indicate $|\angle d c a|=90^{\circ}$.
A4 Clearly indicates $\mid \angle$ cad \mid on the diagram.
A5 States "straight line angle $=180^{\circ}$ " or similar and stops.
A6 States "angle sum in a triangle $=180^{\circ}$ " or similar and stops.
Worthless (0)
W1 Incorrect answer with no work e.g. $|\angle c a d|=90^{\circ}$.
W2 Diagram reproduced without modification.
(c) (ii)

5 Marks
Att 2
Reasons: $\quad|a c|=|c b|$
$|\angle a c d|=|\angle e c b|$
or
$|\angle d a c|=|\angle c e b|$
$|d c|=|c e|$
$|a c|=|c b|$
$|\angle c d a|=|\angle c b e|$

* Accept correct answer marked / indicated on a diagram.

Blunders (-3)
B1 Each step omitted

Attempts (2 marks)
A1 One step correct.
A2 States same shape or ASA, SAS.
A3 States triangles fold onto each other.
A4 Clearly indicates the two required triangles.
[$x w]$ is a diameter of a circle with centre o. z is a point on the circle.

Given $|o w|=5 \mathrm{~cm},|w z|=6 \mathrm{~cm}$, use the Theorem of Pythagoras to find $|x z|$.
(c) (iii)

5 Marks
Att 2

$$
\begin{aligned}
& |x w|^{2}=|z w|^{2}+|x z|^{2} \\
& (10)^{2}=(6)^{2}+|x z|^{2} \\
& 100=36+|x z|^{2} \\
& 64=|x z|^{2} \\
& \sqrt{64} \text { or } 8=|x z|
\end{aligned}
$$

Blunders (-3)

B1 Correct answer without work (s).
B2 Incorrect theorem of Pythagoras.
B3 Mathematical error e.g. $6^{2}=12$.
B4 Takes an arbitrary figure or 5 for $|x w|$ and continues.
B5 Error in manipulation of equation.
Slips (-1)
S1 Numerical slips to a maximum of -3.
Attempts (2 marks)
A1 A correct step.
A2 States theorem of Pythagoras.
A3 States $|x w|=10$ and stops
A4 Marks $|w z|=6$ and / or $|o w|=5$ on the diagram and stops.
A5 5^{2} and $/$ or 6^{2} and $/$ or 10^{2} and stops.
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies.
W2 $5+6=11$.
W3 36 without work.

QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	25 marks	Att 8
Part (c)	15 marks	Att 5
Part (a)	10 marks	Att 3

(a) Write down the coordinates of the point t.

(a)
10 marks
Att 3
(a)
$t=(-2,-1)$

* No penalty on brackets e.g. $-2,-1$.
* Accept $x=-2$ and $y=-1$ written separately for full marks

Blunders (-3)

B1 Incorrect order in couple (-1, -2).
B2 Incorrect x ordinate if not sign error subject to B1
B3 Incorrect y ordinate if not a sign error subject to B1.
B4 $x=-2$ and stops or $y=-1$ and stops.

Slips (-1)

S1 Sign error x ordinate.
S2 Sign error y ordinate.
Attempts (3 marks)
A1 Draws line or segment through -2 and / or -1.
Worthless (0)
W1 -1 on its own with no work.
W2 -2 on its own with no work.

Notes

$(-2,2):$ B3	$(2,1):$ S1,S2	$(1,-2): \mathrm{B} 2, \mathrm{~B} 3$
$(-2,0):$ B3	$(2,0): \mathrm{S} 1, \mathrm{~B} 3$	$(-1,2): \mathrm{B} 2, \mathrm{~B} 3$
$(2,-1):$ S1	$(-1,2): \mathrm{B} 2, \mathrm{~B} 3$	$(4,4): \mathrm{B} 2, \mathrm{~B} 3$

(b) $\quad p$ is the point $(3,5)$ and q is the point $(1,-7)$. Find each of the following:

Part (b) (i)
10 marks
Att 3
(i) the midpoint of $[p q]$
(b) (i)

10 marks
Att 3
es $\left(\frac{3+1}{2}, \frac{5-7}{2}\right)$
$=\left(\frac{4}{2}, \frac{-2}{2}\right)$
$=(2,-1)$

* Accept translation method.
* No penalty on brackets.

Blunders (-3)

B1 Correct answer without work (es).
B2 Incorrect formula e.g. error in both signs $\left(\frac{x_{1}-x_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right)$ or $\left(\frac{x_{1}+y_{1}}{2}, \frac{x_{2}+y_{2}}{2}\right)$ or omits divisor 2.
B3 Incorrectly treats couples as $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$.
B4 Two or more signs incorrect in substitution.
B5 Reversal of coordinates i.e. ($-1,2$) with work.
B6 One ordinate only worked out correctly.
B7 Uses one of the points given and some arbitrary point e.g. $(3,5)$ and $(0,0)$ and continues.
Slips (-1)
S1 Numerical errors to a maximum of -3 .
S2 Error in one sign in midpoint formula and continues.
S3 One incorrect substitution or sign when substituting e.g. $\left(\frac{-1+3}{2}, \frac{-7+5}{2}\right)$ and continues
S4 Takes $(3,5)$ as midpoint and finds extremity e.g. $(1,-7) \rightarrow(3,5) \rightarrow(5,17)$ or takes $(1,-7)$ as midpoint and finds extremity e.g. $(3,5) \rightarrow(1,-7) \rightarrow(-1,-19)$

Attempts (3 marks)

A1 Some correct substitution
A2 Correct midpoint indicated on graph and not named (if named first B1 applies)
A3 Point p and / or q plotted reasonably well for this part.
A4 Labels p and / or q with $\left(x_{1}, y_{1}\right)$ and stops.
Worthless (0)
W1 Use wrong formula e.g. slope or distance formula.
W2 Writes midpoint formula and stops.

(ii) the slope of $p q$

(b) (ii)

10 marks
Att 3
(ii) $\left(\frac{-7-5}{1-3}\right)$

$$
=6 \text { or } \frac{12}{2} \text { or } \frac{-12}{-2}
$$

* Accept correct trigonometric method i.e. $\tan \theta=\frac{12}{2}$.

Blunders (-3)

B1 Correct answer without work (s).
B2 Incorrect slope formula e.g. $\frac{x_{2}-x_{1}}{y_{2}-y_{1}}$ or $\frac{y_{2}+y_{1}}{x_{2}+x_{1}}$ or $\frac{y_{2}-y_{1}}{x_{1}-x_{2}}$ or $\frac{x_{1}-y_{1}}{x_{2}-y_{2}}$ or $\frac{\text { horizontal }}{\text { vertical }}$ or $\tan \theta=\frac{\text { adjacent }}{\text { opposite }}$ and continues.
B3 Incorrectly treats couples as $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ if not already penalised e.g. $\frac{3-5}{1+7}$ or

$$
\frac{5-3}{-7-1}
$$

B4 Mathematical error e.g. sign rules.
B5 Gets the slope of op or oq correctly
B6 Error in more than one sign when substituting.

Slips (-1)

S1 Numerical errors to a maximum of -3.
S2 Error in one sign in slope formula e.g. $\frac{y_{2}-y_{1}}{x_{2}+x_{1}}$.
S3 One incorrect substitution or sign when substituting.

Attempts (3 marks)

A1 $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$ or $m=\frac{\text { vertical }}{\text { horizontal }}$ and stops.
A2 Some correct substitution into formula with $x_{2}-x_{1}$ and / or $y_{2}-y_{1}$
A3 Points p and / or q plotted reasonably well for this part.
A4 Identifies $\left(x_{1}, y_{1}\right)$ and / or $\left(x_{2}, y_{2}\right)$ in this part.
Worthless (0)
W1 Use wrong formula e.g. midpoint formula.
W2 States given formula only.
(iii) the equation of the line $p q$.
(b) (iii)

5 marks
Att 2
(iii)
$(y-5)=6(x-3)$

* Accept candidates slope from previous section.

Blunders (-3)
B1 Correct answer without work (S).
B2 Incorrect formula e.g. $y+y_{1}=m\left(x+x_{1}\right)$ or $\left(x-x_{1}\right)=m\left(y-y_{1}\right)$
B3 Switches x and y e.g. $y-3=6(x-5)$
B4 Mathematical error.
B5 $y=6(x+c)$ and stops
B6 Uses a point other than $(3,5)$ and $(1,-7)$ e.g. $(0,0)$.
B7 $m \neq 6$
Slips (-1)
S1 Numerical errors to a maximum of -3.
S2 Error in one sign in formula.
S3 One incorrect substitution or sign when substituting point.
Attempts (2 marks)
A1 Writes $m=6$ and stops.
A2 States $y=m x \pm c$ and stops
A3 $-7-5=6(1-3)$, substitutes both points.
Note
$5-y_{1}=6\left(3-x_{1}\right)$ merits full marks.
(c) (i) L is the line $7 x-2 y+14=0$.
L cuts the x-axis at $a,(-2,0)$ and the y-axis at b.
By letting $x=0$, find the coordinates of b.
(c) (i)

10 Marks
Att 3
2. $x=0$

7(0) $-2 y+14=0$
$-2 y=-14$
$y=7$
$(0,7)$

* Accept answer given as $y=7$ with work shown

Blunders (-3)

B1 Correct answer without work (
B2 Substitutes $y=0$ and continues.
B3 Mathematical error.
B4 Incorrect substitution and continues.

Slips (-1)

S1 Numerical slips to a maximum of -3 .
S2 $\quad 7(0)=7$
S3 Stops at $\frac{14}{2}$ or $\frac{-14}{-2}$ with work.
Attempts (3 marks)
A1 Substitutes $x=0$ and stops.
A2 Any correct manipulation of equation and stops e.g. $7 x-2 y=-14$.
A3 Substitutes $(-2,0)$ into given equation.
Worthless (0)
W1 Incorrect answer with no work unless attempt mark applies.
(ii) Find the image of the point a, under S_{Y}, the axial symmetry in the y-axis.
(c) (ii) 5 Marks
Att 2
(ii)
$(2,0)$

Accept correct answer without work.
Blunders (-3)
B1 Writes answer as $(0,2)$.

Attempts (2 marks)
A1 Draws x and y axes.
A2 Effort at finding image graphically.
Worthless (0)
W1 Incorrect answer with no work unless attempt mark applies.
W2 Substitutes $y=0$ into equation and finds $x=-2$

QUESTION 6

Part (a) (i)
10 Marks
Att 3
(i) Write down the length of the side opposite the angle A.

(i)
 10 Marks
 Att 3

(i) Length of the side opposite the angle A = 24

* Correct answer with no work merits full marks.
* Indicates 24 only in diagram, accept " o " or "opposite" for 10 marks.

Blunders (-3 marks)

B1 Writes down the length of the hypotenuse e.g. 25

Misreadings (-1)

M1 Treats angle A as the angle at point a giving 7 as the answer.
Attempts (3 marks)
A1 Any mention of a correct trigonometric ratio.
A2 Writes [ab] or [ba] or [bc] or [cb].
Worthless (0)
W1 Incorrect answer with no work unless attempt mark applies.
W2 Gives more than one answer.

(a)(ii)

(ii) $\frac{24}{7}$

* Correct answer with no work merits full marks.
* Accept consistent error from part (i)
* Accept $\tan \frac{24}{7}$ for full marks.

Blunders (-3)

B1 Incorrect or inverted ratio e.g. $\tan A=\frac{7}{24}$.
B2 Gets tan of angle bac (check is not consistent error from (i)).

Misreadings (-1)

M1 If a(i) not attempted and $\frac{7}{24}$ given as the answer.
Slips (-1)
S1 Answer $=3.4285$ (answer not a fraction)
Attempts (2 marks)
A1 Any correct trigonometric ratio written down in answer box.
A2 Only gives answer $=73^{\circ}$ or rounded to 74° or 16° for this part.
A3 Only gives answer $=0.0599113$ i.e. $\tan \frac{24}{7}$
Worthless (0)
W1 Incorrect answer with no work unless attempt mark applies.
(b) In the right-angled triangle pqr,

$$
|p q|=12 \text { and }|\angle q p r|=60^{\circ} .
$$

Part (b) (i)

10 marks
Att 3
(i)

Write down the value of $\cos 60^{\circ}$.
b) (i)

10 marks
Att 3
(i)
0.5

* Correct answer with no work merits full marks.
* Accept $\cos \frac{1}{2}$ for full marks.

Blunders (-3)

B1 Gives $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$ or 0.866 as the answer.
B2 Finds $\tan 60$ or $\sin 60$ and continues.
B3 $\cos 60=\frac{p r}{12}$, or $\frac{p r}{12}$ on its own and stops.
B4 Uses radian or grad mode on calculator.

	RAD	GRAD
$\operatorname{Cos} 60$	-0.952	0.5877

Attempts (3 marks)

A1 Writes $\cos 60=\frac{p r}{p q}$, or $\frac{p r}{p q}$ on its own and stops.
A2 Gives $\angle p q r=30^{\circ}$ and stops.
A3 Any correct trigonometric ratio written down.
A4 Correctly marks hypotenuse or opposite or adjacent on diagram and stops - first part of question.
A5 Some correct step.
Worthless (0)
W1 Incorrect answer with no work unless attempt mark or B4 applies.

Part (b) (ii)
10 marks
Att 3
2. $\cos 60=\frac{|p r|}{12} \quad$ or $\quad 0.5=\frac{|p r|}{12}$
$12 \cos 60=|p r| \quad$ or $\quad 12 \times 0.5=|p r|$
$6=|p r|$

* Accept candidates answer from part (i).

Blunders (-3)
B1 Correct answer without work (s).
B2 Error in forming equation e.g. $\frac{12}{x}=0.5$ and continues.
B3 Error in transposing equation.
Slips (-1 marks)
S1 Numerical slips to a maximum of -3 .
Attempts (3 marks)
A1 Correct scale diagram.
A2 Any correct step e.g. $\frac{x}{12}$ and stops.
A3 $\operatorname{Cos} 60$ or 0.5 or any correct trigonometric ratio.
Worthless (0)
W1 Incorrect answer with no work unless attempt mark applies.
W2 Answer $=3 \mathrm{~cm}$ (measured from examination paper).
(c) Claire is at the point c on the top of a cliff.
The point b is at the base of the cliff. The height of the cliff is 35 m , as shown in diagram.
She wishes to find $|b a|$, the distance from the base of the cliff to the base of the lighthouse.

She measured $\angle d c a$ and found it to be 41°.

$c d$ is parallel to $b a$.

Part (c) (i)
(i)

Find $|\angle b a c|$.
(c) (i)

10 Marks
Att 3
(i)

* Correct answer with no work merits full marks.

Blunders (-3)
B1 Gives answer as 49° with work.
B2 3 angles of triangle $\neq 180^{\circ}$.
B3 Mathematical error.
Slips (-1 marks)
S1 Numerical slips to a maximum of -3 .
Attempts (3 marks)
A1 "3 angles of a triangle $=180^{\circ} "$ and stops.
A2 Finds $\angle a c b=49^{\circ}$ and stops
A3 Writes or indicates $\angle d c b=90^{\circ}$.
A4 Any relevant step.
A5 Correct trigonometric ratio and stops.
Worthless (0)
W1 Incorrect answer with no work unless attempt mark applies.

LS (ii) Find, to the nearest metre, $|b a|$, the distance from the base of the cliff to the base of the lighthouse
(c) (ii)

5 Marks
Att 2
25. $\begin{array}{ll}\tan 41=\frac{35}{|b a|} \\ & |b a| \tan 41=35 \\ & |b a|=\frac{35}{\tan 41} \\ & |b a|=40 \mathrm{~m}\end{array}$

Accept candidates answer from part (i).

Blunders (-3)

B1 Correct answer without work (\&).
B2 Incorrect trigonometric ratio.
B3 Decimal error.
B4 Mathematical error.
B5 Uses radian or grad mode on calculator.
B6 Incorrect transposition.

	RAD	GRAD
Tan 49	-3.1729	0.9690
Tan 41	0.1606	0.7508

Slips (-1 marks)

S1 Numerical slips to a maximum of -3 .
S2 Fails to round off or rounds off incorrectly.
S3 Obvious slip in reading tables or calculator.
S4 Calculates $|a c|$ correctly.

Attempts (2 marks)

A1 Any correct trigonometric ratio written down.
A2 Some use of $\sin / \mathrm{cos} / \tan$.
A3 Finds the third angle of the triangle and stops - must be in the answer box.
A4 correct scale diagram.
A5 Any relevant step.
Worthless (0)
W1 Incorrect answer with no work unless attempt mark applies.
W2 $|b a|=6 \mathrm{~cm}$, measured off examination paper.

