

JUNIOR CERTIFICATE EXAMINATION 2006 MATHEMATICS - ORDINARY LEVEL - PAPER 2 MARKING SCHEME

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips- numerical errors (-1)
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

QUESTION 1

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 7
Part (a)	10 marks	Att 3
Multiply 375 m by	4.	
Give your answer i	n kilometres (km).	
(a)	10 marks	Att 3
K		
375 m by 4 = 1500	m	
= 1.5 km		

Blunders (-3)

- B1 Correct answer without work (\mathscr{L}) .
- B2 Incorrect conversion or no conversion.
- B3 Incorrect mathematical operation with work and continues
- B4 Decimal error

Slips (-1)

S1 Numerical slips to a maximum of -3

S2 Leaves as $\frac{1500}{1000}$

Attempts (3 marks)

- A1 Converts to kilometres and stops e.g. 0.375 km
- A2 States 1000 m = 1 km and stops
- A3 Some correct effort at conversion
- A4 1500 without work and stops
- A5 375×4 and stops.

Worthless (0)

Part (b)	20 marks (10, 5, 5)	Att 7 (3, 2, 2)
The gable-end of a house has meas	surements as shown in the diagram 7 m	Att 7 (3, 2, 2)
	<> 8 m →	

Part	(b) (i)	10 Marks	Att 3
(i)	Find, in m ² , the area	of the bottom rectangular section of the gable	e-end.

(b) (i) 10 Marks	Att 3
Ŕ	Area of the bottom rectangular section of the gable-end = $7 \times 8 = 56 \text{ m}^2$	

- B1 Correct answer without work (\mathbb{A}) .
- B2 Incorrect relevant formula e.g. $\frac{1}{2}(7 \times 8) = 28$.
- B3 $7^2 \times 8^2 = 3136$
- B4 Each incorrect substitution and continues.

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 7×8 and stops.

Attempts (3 marks)

- A1 Find perimeter of part or whole correctly or incorrectly with work shown
- A2 Correct formula for area and stops e.g. area = $L \times W$
- A3 Any relevant work e.g. understands the meaning of area

Worthless (0)

Area of the top triangular section of the gable-end = $\frac{1}{2} \times 8 \times 1 \cdot 5 = 6 \text{ m}^2$

Blunders (-3)

Ø

- B1 Correct answer without work (\mathscr{L}) .
- B2 Incorrect relevant formula e.g. $8 \times 1.5 = 12$.

B3 Incorrect substitution / dimension and continues correctly e.g. Area = $\frac{1}{2}(7 \times 8)$ or Area

$$= \frac{1}{2}(1\cdot 5)(1\cdot 5)$$
 each time.

B4 Decimal error

B5 Mathematical error.

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (2 marks)

- A1 Some correct step with work and stops
- A2 Product of any 2 dimensions with work shown
- A3 Area = $\frac{1}{2}$ × base × height or similar and stops

A4 Some work involving multiplication by $\frac{1}{2}$

Worthless (0)

Part	t (b) (iii)	5 Marks	Att 2
Q	The cost of 5 litres of paint is €23. 5 litres of this paint will cover an area Find the cost of painting the gable-en	a of $31m^2$. Ind with this paint.	
(h) (iii)	5 Marks	Att 2
(ii) (i	Area of gable end = $56 + 6 = 62 \text{ m}^2$		1100 2
	Volume of paint required = $\frac{62}{31} \times 5 =$	= 10 <i>l</i>	
	Cost = €23 × 2 = €46		
*	Accept candidates answers from parts	s (i) and (ii).	

- B1 Correct answer without work (\mathbb{A}) .
- B2 Incorrect mathematical operation e.g. subtracts the areas
- B3 Multiplies 62×23 and continues.
- B4 $5 \times 23 \times 2$

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 23×2 and stops.

Attempts (2 marks)

- A1 Writes 56+6 or 62 and stops (be mindful of second *).
- A2 Some correct step with work and stops.
- A3 Finds cost of 1 litre and / or area covered by 1 litre and stops.

Worthless (0)

Part ((c)
--------	-----

20 marks (5, 10, 5)

Att 7 (2, 3, 2)

Peter travelled 50 km to a football match and he returned home by the same route when the match was over. Peter travelled to the match at an average speed of 60 km/h. How many minutes did the journey to the match take?

Part (c) (i)	5 Marks	Att 2
\swarrow Time = $\frac{50}{60} \times 60 = 50$ minutes		

Do not penalise the same error twice in section (c)

Blunders (-3)

- B1 Correct answer without work (\mathscr{A}) .
- B2 Error in converting hours to minutes or no conversion.
- B3 Incorrect relevant formula and continues.
- B4 Mathematical error.

Misreadings (-1)

M1 Uses 100km for journey to match with work.

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (2 marks)

- A1 Converts hours to minutes and stops e.g. 1 hour = 60 minutes.
- A2 Correct formula only and stops.
- A3 Any relevant work e.g. 1 km in 1 minute and stops.

Worthless (0)

Part	t (c) (ii)	10 Marks	Att 3
(ii)	Peter arrived at the match at 17:35.		
	At what time did he leave from hom	e to travel to the match?	
(ii)		10 Marks	Att 3

* Accept candidates answers from part (i).

* Accept answer in twelve hour clock format.

Blunders (-3)

- B1 Correct answer without work (\mathscr{L}) .
- B2 Error in converting hours / minutes or no conversion, unless B2 applied in part (i)
- B3 Adds instead of subtracts with work
- B4 Correctly subtracts an arbitrary time from 17:35 with work.

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

- A1 States 1 hour = 60 minutes and stops
- A2 Some correct step with work

Worthless (0)

Part	(c) (iii)	5 Marks	Att 2
(iii)	Peter took 75 minutes to travel home Calculate the average speed, in km/h,	from the match. for this journey.	
(c) (i	ii)	5 Marks	Att 2

Ľ				
	Average speed = $\frac{50}{1 \cdot 25} = 40$	km/hr	<u>or</u>	$\frac{50}{75} \times 60 = 40$ km/hr

* Do not penalise same error twice in section (c).

Blunders (-3)

- B1 Correct answer without work (\mathbb{A}) .
- B2 Incorrect or no conversion of minutes to hours if applicable if not already penalised in parts (i) or (ii).
- B3 No division
- B4 Mathematical error.
- B5 Incorrect relevant formula.

Slips (-1)

S1 Numerical slips to a maximum of -3

Misreadings (-1)

M1 Takes journey as 100km and continues correctly.

Attempts (2 marks)

- A1 Converts minutes / hours and stops
- A2 Correct formula and stops.
- A3 Any relevant work

Worthless (0)

QUESTION 2

Part (a)	10 marks	A	tt 3
Part (b)	20 marks	A	tt 6
Part (c)	20 marks	A	tt 7
Part (a)	10 marks	A	Att 3
(a)	The length of each side of a square tile is 9 cm. What area, in cm^2 , will 12 of these tiles cover?	←9 cm →	

(a)	10 marks	Att 3
Ŕ		
	Area of one tile $= 9 \times 9 = 81 \text{ cm}^2$	
	Area covered by 12 tiles = $81 \times 12 = 972 \text{ cm}^2$	

Blunders (-3)

- B1 Correct answer without work (\mathscr{L}) .
- B2 Incorrect relevant formula e.g correct surface area and continues
- B3 Incorrect substitution or omission or extra each time
- B4 Mathematical error e.g. $9^2 = 18$ and continues
- B5 Correctly finds the perimeter and continues.

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 81×12 and stops.

Attempts (3 marks)

- A1 Some correct step with work and stops.
- A2 Correct formula and stops.
- A3 Writes 9×9 or 9×12 and stops

- W1 Incorrect answer without work unless attempt mark applies.
- W2 Use of a formula involving π .

Part (b) (i)	10 marks	Att 3
(b) (i)	A circular disc has a radius of 5 cm.	
Taking	$g\pi$ as 3.14 , find, in cm ² , the area of the disc.	<u>5cm</u>

(b) (i)	10 marks	Att 3
Ŕ		
	Area of disc = πr^2	
	$=3.14\times5\times5$	
	$= 78.5 \text{ cm}^2$	

- B1 Correct answer without work (\mathscr{L}) .
- B2 Incorrect relevant formula and continues e.g. $2\pi r$ or a multiple of πr^2 .
- B3 Mathematical error e.g. $5^2 = 10$ and continues.
- B4 Incorrect substitution and continues.
- B5 $\pi \neq 3.14$ or answer in terms of π
- B6 Decimal error.

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

- A1 Some correct step with work and stops.
- A2 Product of two relevant numbers and stops.
- A3 Writes 5^2 and stops

Worthless (0)

Part	(b) (ii)	10 marks	Att 3
(ii)	A rectangular piece of cardboard has measurements as shown. Two circular pieces, each of radius length 5 cm, are cut out of this rectangular piece of cardboard as shown.	24 cm	↑ 12 cm
	Find, in cm^2 , the area of the remaining	ng piece of cardboard.	

(b) (i	i) 10 marks	Att 3
Ø		
	Area of rectangular piece = $24 \times 12 = 288$	
	Area of 2 discs = $78 \cdot 5 \times 2 = 157$	
	Area of the remaining piece = $288 - 157 = 131 \text{ cm}^2$	
*	Accept candidates answer from part (i)	

Accept candidates answer from p

Blunders (-3)

- B1 Correct answer without work (\mathbb{A}) .
- B2 Incorrect relevant formula e.g. $L \times L$ and continues
- B3 Incorrect mathematical operation
- B4 Decimal error.
- B5 Uses one disc only.

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 288–157 and stops.

Attempts (3 marks)

- A1 Some correct step with work and stops.
- A2 Correct formula for area of rectangle and stops.

Worthless (0)

20 marks (10, 5, 5)

(c) A solid metal cylinder has radius 10 cm and height 15 cm

Part (c) (i	10 Marks	Att 3
(i)	Taking π as 3.14, find, in cm ³ , the volume of the solid metal cylinder.	
(a)	10 Morths	A 44 - 2

(c) (1)	10 Marks	Att 3
Ŕ	$V = \pi r^2 h$	
	$= 3.14 \times 10 \times 10 \times 15$	
	$= 4710 \text{ cm}^3$	

Blunders (-3)

- B1 Correct answer without work (\mathscr{L}) .
- B2 Incorrect relevant formula for a cylinder e.g Surface area $2\pi rh$ or an incorrect multiple of $\pi r^2 h$ or πr^2 with work.
- B3 Incorrect substitution each time and continues.
- B4 Mathematical error e.g. $10^2 = 20$.
- B5 $\pi \neq 3.14$ or answer in terms of π
- B6 Decimal error

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

- A1 A correct substitution and stops e.g. $3 \cdot 14 \times 10^2 \times h$.
- A2 Any relevant work.
- A3 π omitted with or without work.

Worthless (0)

Part	(c) (ii) 5 Marks	Att 2
(ii)	The cylinder was melted down and half of the metal was recast as a rectangular solid. This rectangular solid has length 15 cm and width 14 cm. Calculate, in cm, its height, correct to one decimal place.	$\leftarrow 15 \text{ cm} \rightarrow k^{14} \text{ cm}$

(c) (ii)	5 Marks	Att 2

* Accept candidates answer from part (i).

Blunders (-3)

- B1 Correct answer without work (\mathscr{L}) .
- B2 Failure to divide volume of metal by 2.
- B3 Decimal error.
- B4 Incorrect formula for volume of a rectangular solid.
- B5 Mathematical error.

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Incorrect round off or no round off

Attempts (2 marks)

- A1 Correct formula for volume of rectangular solid and stops.
- A2 Some correct substitution and stops.
- A3 15×14 or 210 or 2355 or candidates answer from part (i) and stops.

Worthless (0)

Part	(c) (iii)	5 Marks	Att 2
(iii)	The other half of the metal was recast This sphere had a surface area of 272 Find, in cm, the radius of the sphere,	as a sphere. 57π cm ² . correct to two decimal places.	

 (c) (iii)
 5 Marks
 Att 2

 \swarrow $4 \times \pi \times r^2 = 272 \cdot 57\pi$ $4 \times r^2 = 272 \cdot 57$
 $r^2 = 68 \cdot 14$ $r = 8 \cdot 254$ or $\sqrt{68 \cdot 14}$
 $r = 8 \cdot 25$ $\sqrt{68 \cdot 14}$

Blunders (-3)

- B1 Correct answer without work (\mathbb{A}) .
- B2 Incorrect relevant formula e.g. multiples of πr^3 or πr^2 with work.
- B3 Decimal error.
- B4 Incorrect substitution and continues.
- B5 Mathematical error e.g. $r^2 = 68 \cdot 14$, $r = 34 \cdot 07$

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Incorrect round off or no round off.

Attempts (2 marks)

- A1 Some correct step with work.
- A2 Effort at trial and error.
- A3 Writes $\frac{4710}{2}$ and / or 2355 and stops.

Worthless (0)

QUESTION 3

Part (a)10 marksAtPart (b)20 marksAt	
Part (b)20 marksAt	tt 3
	tt 7
Part (c)20 marksAt	tt 7
Part (a) 10 marks At	tt 3
(a) Find the mean of the numbers: 3.2 , 4.4 , 4.6 , and 7.8 .	

(a)	10 marks	Att 3
Ľ	$\frac{3.2 + 4.4 + 4.6 + 7.8}{4} = 5$	

Blunders (-3)

- B1 Correct answer without work (\mathscr{A}) .
- B2 Multiplies instead of adding.
- B3 Decimal error.
- B4 Incorrect divisor.
- B5 Omits a value each time.
- B6 Inverted fraction.

Slips (-1)

S1 Numerical slips to a maximum of -3

S2 $\frac{20}{4}$ and stops.

Attempts (3 marks)

- A1 Addition of data only.
- A2 Partial addition with work and stops.
- A3 Idea of mean indicated e.g. $\frac{\sum x}{n}$ or verbal description.
- A4 States "median is 4.5" and stops.
- A5 20 or 4 without work.

Worthless (0)

Part	(b)	20 marks (10, 5, 5)	Att 7 (3, 2, 2)
(b)	A group of students were survey to find their favourite channel from four given TV channels. The pie chart represents the resu of the survey.	llts	RTÉ1 TG4 135° 120° 45° RTÉ2 TV3

Part (b	(i) 10 marks	Att 3
(i)	What is the measure of the angle for TG4?	

(b) (i) 10 marks	Att 3
Ø	$360^{\circ} - (120^{\circ} + 45^{\circ} + 135^{\circ}) = 60^{\circ}$	
*	Do not penalise the same error twice in part (b).	

- B1 Correct answer without work (\mathbb{A}) .
- B2 Angle at centre of circle $\neq 360^{\circ}$
- B3 No subtraction.
- B4 Straight line angle $\neq 180^{\circ}$.

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Each angle omitted to a maximum of -3
- S3 Indicates subtraction i.e. $360^{\circ} 300^{\circ}$ and stops

Attempts (3 marks)

- A1 Some Addition.
- A2 States "straight angle = 180° " or similar and stops.
- A3 States "angle centre of circle = 360° " or similar and stops.
- A4 Writes 135° , 45° or 120° and stops.

Worthless (0)

Part (b) (ii)

5 marks

Att 2

(ii) 12 students replied that RTÉ2 was their favourite channel. How many students were surveyed?

(b) (ii)	5 marks	Att 2
	$45^{\circ} = 12$ 1	
Ŕ	$1^{\circ} = \frac{12}{45}$ $\frac{OR}{45^{\circ}} = \frac{1}{8} of 360^{\circ}$	
	$360^\circ = \frac{12}{45} \times 360 = 96 12 \times 8 = 96$	

Blunders (-3)

- B1 Correct answer without work (\mathbb{A}) .
- B2 Incorrect ratio method.
- B3 Mathematical error.

Misreading (-1)

M1 Reads RTÉ1 for RTÉ2 and continues

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 12×8 and stops.

Attempts (2 marks)

- A1 Some relevant step.
- A2 Writes 45° or 360° and / or $\frac{1}{8}$ and stops.

Worthless (0)

(iii)

How many gave	e TV3 as their reply?

(b) (iii)	5 marks	Att 2
Ľ	$\frac{120}{360} \times 96 = 32$	

* Accept candidates answer from part (ii).

Blunders (-3)

- B1 Correct answer without work (*Æ*).
- B2 Incorrect ratio method.
- B3 Mathematical error.

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (2 marks)

- A1 Some relevant step.
- A2 Any relevant angle e.g. 120°, 360°, 45°.

Worthless (0)

Part (c)				20 marl	ks (10, 5, 5)	Att 7 (3, 2, 2)
(c)	The marks	s gaine				
	40	30	20	50	40	
	30	20	40	30	10	
	50	40	30	10	30	
	50	20	30	40	20	

Part (c	e) (i)		10 Mark	S			Att 3
	(i) Complete	the follow	ving freque	ency table:			
	Marks Number of students	10	20	30	40	50	-

(c) (i)	10 Marks						Att 3
	Marks	10	20	30	40	50	
	Number of students	2	4	6	5	3	

Accept correct answer with no work shown. *

Attempts (3 marks) A1 One correct entry only.

Worthless (0)

W1 Table in question reproduced merits zero marks.

(ii) Draw a bar chart of the data.

- * Accept horizontal or vertical bar chart.
- * Accept bars of unequal widths.
- * Accept " lines " as bars.
- * Labelling not required

Blunders (-3)

- B1 Axis with student numbers not graduated uniformly.
- B2 Reverses variable and frequency when drawn.
- B3 Draws a trend graph or pie chart.

Slips (-1)

S1 Each incorrect bar or bar omitted to a maximum of -3.

Attempts (2 marks)

A1 Graduates axis or axes only

(iii) Calculate the mean mark.

(c) (i	iii) 5 Marks	Att 2
Ŕ	Mean = $\frac{\sum fx}{\sum fx}$	
	$\sum_{i=1}^{n} f$	
	$=\frac{(2\times10)+(4\times20)+(6\times30)+(5\times40)+(3\times50)}{2}$	
	2+4+6+5+3	
	$=\frac{20+80+180+200+150}{20}$	
	620	
	$=\frac{0.00}{20}$	
	-31.5	
*	Accept candidates values from table	
Blune	ders (-3)	
B1	Correct answer without work (<i>Æ</i>).	
B2	Multiplies instead of adds in denominator	
B3	Adds instead of multiplies in numerator. 630	
B 4	Incorrect denominator or no denominator e.g5	
B5	Inverted fraction	
	$10 \pm 20 \pm 30 \pm 40 \pm 50$ 150	
B6	Frequencies omitted in numerator e.g. $\frac{10+20+30+40+30}{20} = \frac{130}{20}$	
B7	Omits 2 or more values in numerator.	
Slips	(-1)	
S1	Numerical slips to a maximum of -3	
52	630	
S3	$\frac{333}{20}$ and stops.	
Atten	npts (2 marks)	
A1	Some relevant step e.g. $\sum f$.	
	$\sum fx$	
A2	Mean = $\frac{2}{\sum f}$ and stops	
A3	A relevant multiplication and stops.	
A /	Average of frequencies $2+4+6+5+3=20=4$	
A4	Average of frequencies $\frac{5}{5} = \frac{5}{5} = 4$	
A5	$\frac{10+20+30+40+50}{10} = \frac{150}{10} = 30$	
	5 5 5	
A6	630 or 20 without work.	

Worthless (0)

QUESTION 4

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 7

(a)	10 marks	Att 3
$x = 56^{\circ}$	$y = 68^{\circ}$	

- * Accept correct answer marked / indicated on a diagram.
- * Accept correct answers and no work.

Blunders (-3)

- B1 States $y = 56^{\circ}$ and continues to get $x = 68^{\circ}$
- B2 Mathematical error.
- B3 Uses incorrect isosceles triangle e.g. $56^{\circ}/62^{\circ}/62^{\circ}$ without work.
- B4 Sum of angles in triangle $\neq 180^{\circ}$.
- B5 Finds one correct value only.

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

- A1 States "straight line angle = 180° " or similar.
- A2 States "angle sum of triangle = 180° " or similar.
- A3 Any mention of isosceles triangle
- A4 Uses arbitrary value for x or y and continues.

Worthless (0)

W1 Incorrect answer without work unless attempt mark or B1 or B3 applies e.g. $x = 124^{\circ}$, $y = 124^{\circ}$ merits zero marks.

Part (b) (i	10 marks	Att 3
(i)	The Δpsq has area 12 cm ² .	
	Write down the area of the parallelogram pqrs and give a reason for your a	nswer.

(b) (i	i) 10 marks	Att 3
(i)	Area of parallelogram $pqrs = 24 \text{ cm}^2$	
	Reason: Diagonal bisects area	

* Accept correct answer and no work.

Blunders (-3)

B1 Area =
$$n \times 12$$
, $n \neq 2$, e.g. $4 \times 12 = 48$ or $\frac{1}{2} \times 12 = 6$

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Correct answer with no reason or incorrect reason.

Attempts (3 marks)

- A1 Reason only.
- A2 Correct area formula for triangle or parallelogram.
- A3 Opposite sides / angles of a parallelogram equal in measure

Worthless (0)

Part	(b) (ii)	5 marks	Att 2			
(ii)	(ii) Given that $ sq = 4.1$ cm, find $ mq $ and give a reason for your					
	answer.					
(b) (i	Att 2					
(ii)	mq = 2.05					
	Reason: Diagonals bisect each oth	er				
*	Accept correct answer marked / in	dicated on a diagram.				
.1.		1				
*	Accept correct answer and no wor	K.				

B1
$$|mq| = n \times 4 \cdot 1, \ n \neq \frac{1}{2}$$

S1 Correct answer with no reason or incorrect reason.

Attempts (2 marks)

A1 Reason only.

- A2 Any mention of congruence.
- A3 Writes |sm| = |mq| and stops.
- A4 Writes $|mq| = \frac{1}{2}|sq|$ and stops.

Worthless (0)

Part (b) (iii)	5 marks	Att 2
(iii)	Bisect the given angle $\angle bac$ without using a protractor.	/
Ŕ	Show all construction lines.	
	a	

* Accept for 5 marks any correct method of bisection provided all necessary construction lines are drawn.

Misreading (-1)

M1 Bisects incorrect angle and shows relevant construction lines.

Attempts (2 marks)

- A1 Some attempt at drawing a circle and or an arc, or joins b to c.
- A2 Marks or writes |ab| = |ac|.
- A3 Line bisecting angle at *a* correctly shown, with no construction lines.

Part (c) (i)	10 Marks	Att 3
(i)	Write down $ \angle cad $.	

(c) (i)	10 Marks	Att 3
(i)	$ \angle cad = 45^{\circ}$	

- * Accept correct answer with no work.
- * Accept correct answer marked / indicated on a diagram.

- B1 Sum of the angles in a triangle $\neq 180^{\circ}$.
- B2 Mathematical error.
- B3 Takes an arbitrary angle for $|\angle adc|$ and continues.

Slips (-1)

S1 Numerical slips to a maximum of -3.

Attempts (3 marks)

- A1 Writes down or indicates two equal sides.
- A2 Writes down or indicates two equal angles.
- A3 Write down or indicate $|\angle dca| = 90^{\circ}$.
- A4 Clearly indicates $|\angle cad|$ on the diagram.
- A5 States "straight line angle = 180° " or similar and stops.
- A6 States "angle sum in a triangle = 180° " or similar and stops.

- W1 Incorrect answer with no work e.g. $|\angle cad| = 90^\circ$.
- W2 Diagram reproduced without modification.

Fart (C) (II)	5 Warks	
(i)	Show that $\triangle acd$ and $\triangle bce$ are congruent.	

(c) (ii)	5 Marks		Att 2
Reasons: $ ac = cb $	or	$\left \angle dac \right = \left \angle ceb \right $	
$ \angle acd = \angle ecb $		ac = cb	
dc = ce		$\left \angle cda \right = \left \angle cbe \right $	

Accept correct answer marked / indicated on a diagram.

Blunders (-3)

*

B1 Each step omitted

Attempts (2 marks)

- A1 One step correct.
- A2 States same shape or ASA, SAS.
- A3 States triangles fold onto each other.
- A4 Clearly indicates the two required triangles.

Part (c) (iii)	5 Marks	Att 2
(iii) Given $ ow = 5$	[<i>xw</i>] is a diameter of a circle with centre <i>o</i> . <i>z</i> is a point on the circle. <i>x</i> v	w

(c) (iii)	5 Marks	Att 2
Ľ	$\left xw\right ^2 = \left zw\right ^2 + \left xz\right ^2$	
	$(10)^2 = (6)^2 + xz ^2$	
	$100 = 36 + xz ^2$	
	$64 = \left xz \right ^2$	
	$\sqrt{64} \text{ or } 8 = xz $	

- B1 Correct answer without work (\mathscr{A}) .
- B2 Incorrect theorem of Pythagoras.
- B3 Mathematical error e.g. $6^2 = 12$.
- B4 Takes an arbitrary figure or 5 for |xw| and continues.
- B5 Error in manipulation of equation.

Slips (-1)

S1 Numerical slips to a maximum of -3.

Attempts (2 marks)

- A1 A correct step.
- A2 States theorem of Pythagoras.
- A3 States |xw| = 10 and stops
- A4 Marks |wz| = 6 and / or |ow| = 5 on the diagram and stops.
- A5 5^2 and / or 6^2 and / or 10^2 and stops.

- W1 Incorrect answer without work unless attempt mark applies.
- W2 5+6=11.
- W3 36 without work.

QUESTION 5				
Part (a)	10 marks	Att 3		
Part (b)	25 marks	Att 8		
Part (c)	15 marks	Att 5		

Part (a)		10 marks								A	tt 3	;	
(a)	Write down the coordinates					3			$\overline{+}$		_		
	of the point <i>t</i> .					2					_		_
						1						┿	_
			-3-	 2 •	-1	1	•	1		2		3	_
				 ı		2	•		_				
						3							

(a)	10 marks	Att 3
(a)	t = (-2, -1)	

- * No penalty on brackets e.g. -2,-1.
- * Accept x = -2 and y = -1 written separately for full marks

- B1 Incorrect order in couple (-1, -2).
- B2 Incorrect x ordinate if not sign error subject to B1
- B3 Incorrect y ordinate if not a sign error subject to B1.
- B4 x = -2 and stops or y = -1 and stops.

Slips (-1)

- S1 Sign error x ordinate.
- S2 Sign error y ordinate.

Attempts (3 marks)

A1 Draws line or segment through -2 and / or -1.

- W1 -1 on its own with no work.
- W2 -2 on its own with no work.

(-2,2):B3	(2,1):S1,S2	(1,-2):B2,B3
(-2,0):B3	(2,0):S1,B3	(-1,2):B2,B3
(2,-1):S1	(-1,2):B2,B3	(4,4):B2,B3

I uI u (<i>D</i>)

(b) p is the point (3, 5) and q is the point (1, -7). Find each of the following:

Part (b) (i)	10 marks	Att 3
Ŕ	(i) the midpoint of $[pq]$	
(b) (i)	10 marks	Att 3
$(\frac{3+1}{2}, \frac{5-7}{2})$		
$=(\frac{4}{2},\frac{-2}{2})$		
=(2,-1)		

* Accept translation method.

* No penalty on brackets.

Blunders (-3)

- B1 Correct answer without work (\mathbb{A}) .
- B2 Incorrect formula e.g. error in both signs $\left(\frac{x_1 x_2}{2}, \frac{y_1 y_2}{2}\right)$ or $\left(\frac{x_1 + y_1}{2}, \frac{x_2 + y_2}{2}\right)$ or omits divisor 2

omits divisor 2.

- B3 Incorrectly treats couples as (x_1, x_2) and (y_1, y_2) .
- B4 Two or more signs incorrect in substitution.
- B5 Reversal of coordinates i.e. (-1,2) with work.
- B6 One ordinate only worked out correctly.
- B7 Uses one of the points given and some arbitrary point e.g. (3,5) and (0,0) and continues.

Slips (-1)

- S1 Numerical errors to a maximum of -3.
- S2 Error in one sign in midpoint formula and continues.
- S3 One incorrect substitution or sign when substituting e.g. $\left(\frac{-1+3}{2}, \frac{-7+5}{2}\right)$ and continues
- S4 Takes (3,5) as midpoint and finds extremity e.g. $(1,-7) \rightarrow (3,5) \rightarrow (5,17)$ or takes (1,-7) as midpoint and finds extremity e.g. $(3,5) \rightarrow (1,-7) \rightarrow (-1,-19)$

Attempts (3 marks)

- A1 Some correct substitution
- A2 Correct midpoint indicated on graph and not named (if named first B1 applies)
- A3 Point *p* and / or *q* plotted reasonably well for this part.
- A4 Labels p and / or q with (x_1, y_1) and stops.

- W1 Use wrong formula e.g. slope or distance formula.
- W2 Writes midpoint formula and stops.

Att 3

(ii) 🗷	the slope of pq	
(b) (ii)	10 marks	Att 3
(ii) Z	$\left(\frac{-7-5}{1-3}\right)$	
	$=6 \ or \ \frac{12}{2} \ or \ \frac{-12}{-2}$	
	1	2

* Accept correct trigonometric method i.e. $\tan \theta = \frac{12}{2}$.

Blunders (-3)

B1 Correct answer without work (\mathscr{A}) .

B2 Incorrect slope formula e.g.
$$\frac{x_2 - x_1}{y_2 - y_1}$$
 or $\frac{y_2 + y_1}{x_2 + x_1}$ or $\frac{y_2 - y_1}{x_1 - x_2}$ or $\frac{x_1 - y_1}{x_2 - y_2}$ or $\frac{horizontal}{vertical}$
or $\tan \theta = \frac{adjacent}{opposite}$ and continues.

B3 Incorrectly treats couples as (x_1, x_2) and (y_1, y_2) if not already penalised e.g. $\frac{3-5}{1+7}$ or

 $\frac{5-3}{-7-1}$

- B4 Mathematical error e.g. sign rules.
- B5 Gets the slope of *op* or *oq* correctly
- B6 Error in more than one sign when substituting.

Slips (-1)

S1 Numerical errors to a maximum of -3.

S2 Error in one sign in slope formula e.g. $\frac{y_2 - y_1}{x_2 + x_1}$.

S3 One incorrect substitution or sign when substituting.

Attempts (3 marks)

A1
$$\tan \theta = \frac{opposite}{adjacent}$$
 or $m = \frac{vertical}{horizontal}$ and stops.

- A2 Some correct substitution into formula with $x_2 x_1$ and / or $y_2 y_1$
- A3 Points p and / or q plotted reasonably well for this part.
- A4 Identifies (x_1, y_1) and / or (x_2, y_2) in this part.

- W1 Use wrong formula e.g. midpoint formula.
- W2 States given formula only.

Part (b) (iii)

5 marks

Att 2

(iii) \swarrow the equation of the line pq.

(b) (iii)	5 marks	Att 2
(iii)	(y-5) = 6(x-3)	

* Accept candidates slope from previous section.

Blunders (-3)

- B1 Correct answer without work (\mathscr{L}) .
- B2 Incorrect formula e.g. $y + y_1 = m(x + x_1)$ or $(x x_1) = m(y y_1)$
- B3 Switches x and y e.g. y-3 = 6(x-5)
- B4 Mathematical error.
- B5 y = 6(x+c) and stops
- B6 Uses a point other than (3,5) and (1,-7) e.g. (0,0).
- B7 $m \neq 6$

Slips (-1)

- S1 Numerical errors to a maximum of -3.
- S2 Error in one sign in formula.
- S3 One incorrect substitution or sign when substituting point.

Attempts (2 marks)

- A1 Writes m = 6 and stops.
- A2 States $y = mx \pm c$ and stops
- A3 -7-5 = 6(1-3), substitutes both points.

Note

 $5 - y_1 = 6(3 - x_1)$ merits full marks.

Part	t (c) (i)	10 Marks	Att 3
(c)	(i)	<i>L</i> is the line $7x-2y+14 = 0$. <i>L</i> cuts the <i>x</i> -axis at <i>a</i> , (-2, 0) and the <i>y</i> -axis at <i>b</i> . By letting $x = 0$, find the coordinates of <i>b</i> .	
(c) (i	i)	10 Marks	Att 3
Ø	x = 0)	
	7(0)	-2y+14=0	
	-2y	= -14	
	y = 7	7	
	(0, 7)		
*	(0,7)		
T	Acce	pt answer given as $y = 7$ with work shown	
Blun	ders (-	.3)	
B1	Corre	ect answer without work (<i>Z</i>).	
B2	Subst	titutes $y = 0$ and continues.	
B3	Math	ematical error.	
B4	Incor	rect substitution and continues.	
Slips	s (-1)		
S1	Num	erical slips to a maximum of -3.	
S2	7(0)	= 7	
S3	Stops	s at $\frac{14}{2}$ or $\frac{-14}{-2}$ with work.	
Atter	mpts (3	3 marks)	
A1	Subst	titutes $x = 0$ and stops.	
A2	Any	correct manipulation of equation and stops e.g. $7x - 2y = -14$.	
	C 1		

A3 Substitutes (-2, 0) into given equation.

Worthless (0)

Part (c) (ii)

5 Marks

(ii) Find the image of the point a, under S_y , the axial symmetry in the y-axis.

(c) (ii)	5 Marks	Att 2
(ii)	(2,0)	

* Accept correct answer without work.

Blunders (-3)

B1 Writes answer as (0,2).

Attempts (2 marks)

- A1 Draws *x* and *y* axes.
- A2 Effort at finding image graphically.

Worthless (0)

W1 Incorrect answer with no work unless attempt mark applies.

W2 Substitutes y = 0 into equation and finds x = -2

Att 2

QUESTION 6

	X ========		
Part (a)	15 marks	Att 5	
Part (b)	20 marks	Att 6	
Part (c)	15 marks	Att 5	
Part (a)	15 marks (10, 5)	Att 5 (3, 2)	
(a) The right-angled triangle <i>abc</i> has measurements as shown.		$ \begin{array}{c} 24 \\ \hline \\ 25 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	

Part	(a) (i) 10 Marks	Att 3
	(i) Write down the length of the side opposite the angle A.	
(i)	10 Marks	Att 3
(i)	Length of the side opposite the angle $A = 24$	
*	Correct answer with no work merits full marks.	
*	Indicates 24 only in diagram, accept "o" or "opposite" for 10 marks.	
<i>Blun</i> B1	<i>ders</i> (-3 marks) Writes down the length of the hypotenuse e.g. 25	

Misreadings (-1)

M1 Treats angle *A* as the angle at point *a* giving 7 as the answer.

Attempts (3 marks)

- A1 Any mention of a correct trigonometric ratio.
- A2 Writes [ab] or [ba] or [bc] or [cb].

- W1 Incorrect answer with no work unless attempt mark applies.
- W2 Gives more than one answer.

Part	(a)	(ii)
------	-----	-------------

(ii)

5 Marks

Write down the value of tan A, as a fraction.

(a)(ii)	5 Marks	Att 2
(ii)	$\frac{24}{7}$	

Att 2

* Correct answer with no work merits full marks.

* Accept consistent error from part (i)

* Accept $\tan \frac{24}{7}$ for full marks.

Blunders (-3)

B1 Incorrect or inverted ratio e.g. $\tan A = \frac{7}{24}$.

B2 Gets tan of angle *bac* (check is not consistent error from (i)).

Misreadings (-1)

M1 If a(i) not attempted and $\frac{7}{24}$ given as the answer.

Slips (-1)

S1 Answer = 3.4285 (answer not a fraction)

Attempts (2 marks)

- A1 Any correct trigonometric ratio written down in answer box.
- A2 Only gives answer = 73° or rounded to 74° or 16° for this part.

A3 Only gives answer = 0.0599113 i.e. $\tan \frac{24}{7}$

Worthless (0)

Part (b)	20 marks (10, 10)	Att 6 (3, 3)
(b)	In the right-angled triangle pqr , $ pq = 12$ and $ \angle qpr = 60^{\circ}$.	12 q

Part (b) (i)	10 marks	Att 3
(i)	Write down the value of cos 60°.	

b) (i)	10 marks	Att 3
(i)	0.5	

- * Correct answer with no work merits full marks.
- * Accept $\cos\frac{1}{2}$ for full marks.

B1 Gives $\cos 30^\circ = \frac{\sqrt{3}}{2}$ or 0.866 as the answer.

- B2 Finds tan 60 or sin 60 and continues.
- B3 $\cos 60 = \frac{pr}{12}$, or $\frac{pr}{12}$ on its own and stops.
- B4 Uses radian or grad mode on calculator.

r	DID	CDAD
	RAD	GRAD
Cos 60	-0.952	0.5877

Attempts (3 marks)

- A1 Writes $\cos 60 = \frac{pr}{pq}$, or $\frac{pr}{pq}$ on its own and stops.
- A2 Gives $\angle pqr = 30^{\circ}$ and stops.
- A3 Any correct trigonometric ratio written down.
- A4 Correctly marks hypotenuse or opposite or adjacent on diagram and stops first part of question.
- A5 Some correct step.

Worthless (0)

Part (b) (ii)	10 marks	Att 3
(ii)	Calculate pr .	

Part	t (b) (ii)		10 marks	Att 3
Ø	$\cos 60 = \frac{ pr }{12}$	or	$0.5 = \frac{ pr }{12}$	
	$12\cos 60 = pr $	or	$12 \times 0.5 = pr $	
	6 = pr			
*	Accept candidate	es ans	wer from part (i)	

Accept candidates answer from part (i).

Blunders (-3)

- Correct answer without work (\mathbb{A}) . **B**1
- Error in forming equation e.g. $\frac{12}{x} = 0.5$ and continues. B2
- B3 Error in transposing equation.

Slips (-1 marks)

Numerical slips to a maximum of -3. **S**1

Attempts (3 marks)

Correct scale diagram. A1

Any correct step e.g. $\frac{x}{12}$ and stops. A2

A3 Cos 60 or 0.5 or any correct trigonometric ratio.

- W1 Incorrect answer with no work unless attempt mark applies.
- W2 Answer = 3 cm (measured from examination paper).

Part	(c) 1:	5 marks (10, 5)	Att 5 (3, 2)
(c)	Claire is at the point <i>c</i> on the top of a cliff. The point <i>b</i> is at the base of the cliff The height of the cliff is 35 m, as shown in diagram. She wishes to find $ ba $, the distance from the base of the cliff to the base of the lighthouse. She measured $\angle dca$ and found it to be 41°. <i>cd</i> is parallel to <i>ba</i> .	$\frac{c}{41^{\circ}}$	

Part (c) (i)	10 Marks	Att 3
(i)	Find $ \angle bac $.	

(c) (i)	10 Marks	Att 3
(i)	41°	

* Correct answer with no work merits full marks.

Blunders (-3)

- B1 Gives answer as 49° with work.
- B2 3 angles of triangle $\neq 180^{\circ}$.
- B3 Mathematical error.

Slips (-1 marks)

S1 Numerical slips to a maximum of -3.

Attempts (3 marks)

- A1 "3 angles of a triangle = 180° " and stops.
- A2 Finds $\angle acb = 49^{\circ}$ and stops
- A3 Writes or indicates $\angle dcb = 90^{\circ}$.
- A4 Any relevant step.
- A5 Correct trigonometric ratio and stops.

Worthless (0)

Part (c) (ii)

5 Marks

Find, to the nearest metre, |ba|, the distance from the base of (ii) Ľ the cliff to the base of the lighthouse

(c) (ii)	5 Marks	Att 2
Ŕ	$\tan 41 = \frac{35}{ ba }$	
	ba tan 41 = 35	
	$ ba = \frac{35}{\tan 41}$	
	$ ba = 40 \mathrm{m}$	
* Accent car	ndidates answer from nart (i)	

Accept candidates answer from part (i).

Blunders (-3)

- B1 Correct answer without work (\mathscr{L}) .
- B2 Incorrect trigonometric ratio.
- B3 Decimal error.
- B4 Mathematical error.
- B5 Uses radian or grad mode on calculator.
- B6 Incorrect transposition.

Slips (-1 marks)

- **S**1 Numerical slips to a maximum of -3.
- S2 Fails to round off or rounds off incorrectly.
- S3 Obvious slip in reading tables or calculator.
- S4 Calculates |ac| correctly.

Attempts (2 marks)

- Any correct trigonometric ratio written down. A1
- Some use of sin/cos/tan. A2
- A3 Finds the third angle of the triangle and stops – must be in the answer box.
- correct scale diagram. A4
- Any relevant step. A5

Worthless (0)

- Incorrect answer with no work unless attempt mark applies. W1
- |ba|=6 cm, measured off examination paper. W2

Tan 49 -3.1729 0.9690 Tan 41 0.1606 0.7508		RAD	GRAD
Tan 41 0 1606 0 7508	Tan 49	-3.1729	0.9690
1 1 1 0.1000 0.7500	Tan 41	0.1606	0.7508

Att 2