MARKING SCHEME

JUNIOR CERTIFICATE EXAMINATION 2005

MATHEMATICS – ORDINARY LEVEL – PAPER 2

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 Slips- numerical errors (-1)
 - Misreadings(provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

	QUESTION 1	
Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 7
Part (a)	10 marks	Att 3

Subtract 500	g from	5640 g.	and	give	vour	answer in kg
Subtract 500	5 110111	5010 5,	unu	5110	your	uno voi ming

(a)
$$5640 \text{ g} - 500 \text{ g} = 5140 \text{ g}$$
 or $500 \text{ g} = 0.5 \text{ kg}$ or $5640 \text{ g} = 5.640 \text{ kg}$
 7
 3
 $5140 \text{ g} = \frac{5140}{1000} = 5.140 \text{ kg}$
 9 10
 $5.640 \text{ kg} - 0.5 \text{ kg} = 5.140 \text{ kg}$
 7 10

Ø

* Correct answer without work merits 7 marks

Blunders (-3)

- B1 Incorrect conversion or no conversion
- B2 Incorrect mathematical operation with work and continues
- B3 Place value or decimal error when subtracting eg gives 640 g in method 1 or has more than one decimal point in a figure
- B4 Fails to subtract method 2
- B5 Incorrect order of subtraction

Slips (-1)

- S1 Numerical slips to a maximum of -3 but note B3
- S2 Leaves as $\frac{5140}{1000}$ kg method 1

Attempts (3 marks)

- A1 Converts one number correctly and stops eg 0.5 kg
- A2 States 1000g =1 kg and stops
- A3 Some correct effort at conversion
- A4 5140 without work and stops

Worthless (0)

Cormac went by car from Limerick to Cork, a journey of 100 km. He travelled at an average speed of 80 km/hr.

Part (b) (i)

10 marks

(i) How many hours and minutes did it take Cormac to complete the journey?

Correct answer without work merits 7 marks *Æ*

Blunders (-3)

- B1 Incorrect relevant formula and continues
- B2 Mathematical error
- B3 Error in converting hours to minutes or no conversion

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

- A1 Converts hours to minutes and stops
- A2 Correct formula only and stops
- A3 Any relevant work eg 1.25 without work

Worthless (0)

	Part (b) (ii)	5 marks	Att 2		
(ii)	Cor	mac left Limerick at 11:15. At what time did he arrive in Cork?			
X	(ii)	11:15 +1:15 = 12:30 or 'Half past 12'			
*		er without work merits 2 marks 🖄 late's answer from part (i)			
Blund	lers (-3)				
B1	Subtracts inste	ead of adding with work			
B2 B3		Correctly adds arbitrary time to 11:15 with work Incorrect or no conversion of minutes to hours, if applicable			
D 5		conversion of minutes to nours, if applicable			
<i>Slips</i> (S1		ps to a maximum of –3			

Attempts (2 marks) A1 States 1hour = 60 minutes and stops

Worthless (0)W1 Incorrect answer without work

Part (b) (iii)	5 marks	Att 2
(iii)	Cormac's car used 1 litre of petrol for every 16 km travelled. On that	t day
	petrol cost 99 cent per litre. Find the cost of the petrol used on Corm	ac's
	journey from Limerick to Cork. Give your answer to the nearest eur	[.] 0.

(iii) Litres used
$$=\frac{100}{16} = 6.25$$

Cost = $6.25 \times 99c = 618.75c = €6.1875 = €6$ or Cost = $6.25 \times €0.99 = €6.1875 = €6$

- * Correct answer without work merits 2 marks *Æ*
- * Accept conversion of cent to euro without work if correct

Blunders (-3)

- B1 Incorrect calculation of litres
- B2 Incorrect calculation of cost
- B3 Incorrect conversion of cents to euro or no conversion
- B4 Uses arbitrary number of litres and continues

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Fails to round off, or rounds off incorrectly or early rounding off.

Attempts (2 marks)

- A1 Calculates number of litres used with work and stops
- A2 Any relevant work eg 16+16+16
- A3 States 1 euro = 100c and stops

Worthless (0)

_	Part (c)	(i) 10 marks	Att 3
	(i)	Find, in metres, the length of the perimeter of the field.	

Æ	(i) $110 \text{ m} + 75 \text{ m} + 80 \text{ m} + 25 \text{ m} + 30 \text{ m} + 100 \text{ m} = 420 \text{ m}$ 7 10	Method 1
Ŕ	P = 2(L) + 2(W) = 2(100) + 2(110) = 200 + 220 = 420 m 3 7 9 10	Method 2

* Correct answer without work merits 7 marks *Æ*

Blunders (-3)

- B1 Missing or extra segment apply once only (Method 1)
- B2 Incorrect relevant formula eg L + W (Method 2)
- B3 Incorrect substitution/dimension apply once only (Method 2)

```
Slips (-1)
```

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

- A1 Finds any missing dimension(s) on diagram and stops (accept for this part only)
- A2 Finds area of part or whole with work
- A3 Any relevant work eg understands the meaning of perimeter
- A4 Correct formula for perimeter and stops

Worthless (0)

Part (c) (ii)	5 marks	Att 2
(ii)	Find, in m^2 , the area of the field.	

K $A = L \times W$ (ii) 2 Area = $110 \times 100 \text{ m}^2 - 25 \times 80 \text{ m}^2$ A = $110 \times 75 \text{ m}^2 + 25 \times 30 \text{ m}^2 \text{ A} = 75 \times 80 \text{ m}^2 + 30 \times 100 \text{ m}^2$ 2 $= 8250 \text{m}^2 + 750 \text{m}^2$ $= 11000 \text{m}^2 - 2000 \text{m}^2$ $= 6000 \text{m}^2 + 3000 \text{m}^2$ 4 $= 9000 \text{m}^2$ $= 9000 \text{m}^2$ =9000 m² 5 5 5

* Correct answer without work merits 2 marks *Æ*

Blunders (-3)

- B1 Incorrect relevant formula eg L×L and continues
- B2 Missing or extra rectangle in any of the above methods
- B3 Incorrect decimal point
- B4 Incorrect substitution/dimension

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Fails to add or subtract areas of rectangles

Attempts (2 marks)

- A1 Some correct step with work and stops
- A2 Product of any two dimensions with work shown
- A3 Area = $L \times W$ and stops
- A4 Finds perimeter correctly or incorrectly with work shown

Worthless (0)

	Part (c) (iii)	5 marks		Att 2		
(iii)	Mary bough How much	00 per hectare.				
٨	🗹 (iii) 9000m	$n^2 = \frac{9000}{10000} = 0.9$ hectares	2			
	Cost =	0.9 × €20 000 = €18 000	5			
*	Correct answer witho	ut work merits 2 marks 🔊				
*	Accept candidate's ar	nswer from part (ii)				
*	Note: Special S2					
Blund	ers (-3)					
B1	Error in converting m ^{2} to hectares or no conversion, but see S2					
B2	6					
Slips ((-1)					

- Numerical slips to a maximum of -3**S**1
- Only converts to ares with work ie divides by 100 S2

- *Attempts (2 marks)* A1 9000 ×€20 000
- States 100 m² = 1 are or 1 hectare = 100 ares A2

Worthless (0)

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 8

Att 3

Part (a) 10 marks

Calculate the volume of the box in cm^3

l 🖉	(a)	Volume = $L \times W \times H$	3	
		$=20\times50\times5$	7	
		$= 5000 \text{ cm}^3$	10	

* Correct answer without work merits 7 marks 🖄

Blunders (-3)

- B1 Incorrect formula eg correct Surface Area
- B2 Incorrect substitution or omission or extra, each time
- B3 Incorrect decimal point

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

- A1 Some correct step with work and stops
- A2 Correct formula only and stops
- A3 Writes 20×50 or 20×5 or 5×50 and stops

Worthless (0)

- W1 Incorrect answer without work
- W2 Adds 20 +5 + 50 only

The front wheel of a bicycle has a diameter of 56 cm.

(b) (i)

(i)

5 marks

Att 2

Calculate, in cm, the length of the radius of the wheel.

(i) Radius =
$$\frac{\text{Diameter}}{2} = \frac{56}{2} = 28 \text{ cm}$$

2 4 5

* Correct answer without work merits 2 marks 🖄

* Do not penalise same error twice in part (b)

Blunders (-3)

X

- B1 Divides by incorrect number with work
- B2 Decimal error

Slips (-1)

S1 Numerical slips to a maximum of -3

S2 Leaves as $\frac{56}{2}$

Attempts (2 marks)

A1 States 'Diameter = $2 \times$ radius' and stops

Worthless (0)

Part (b) (ii)	5 marks	Att 2
(ii)	Calculate, in cm, the length of the circumference of the w Take π as $\frac{22}{7}$.	vheel.

Ľ	(ii) Length = $2\pi r$	2	or	Length $= \pi d$	2	
	$=2\times\frac{22}{7}\times28$	2		$=\frac{22}{7}\times 56$	2	
	= 176 cm	5		= 176 cm	5	

- * Correct answer without work merits 2 marks *Æ*
- * Accept candidate's answer from part (i)

Blunders (-3)

Г

- B1 Incorrect relevant formula eg area disc or incorrect multiple of πr or πd
- B2 Incorrect r unless penalised in (i)
- B3 Correct substitution and stops

B4
$$\pi \neq \frac{22}{7}$$
 or answer in terms of π

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (2 marks)

A1 Multiplies *r* correctly by any number except 1 or 2π with work shown

Worthless (0)

Part b(iii)

10 marks

(iii) How far does the bicycle travel when the wheel makes 250 complete turns? Give your answer in metres.

×	(iii) Distance = 250×17	76 3	or	176 cm = 1.76 m	3
	= 44 000 cm	7		Distance = 250 x1.76	7
	= 440 m	10		= 440 m	10

- * Correct answer without work merits 7 marks *Æ*
- * Accept candidate's answer from part (ii)

Blunder (-3)

- B1 Incorrect conversion or no conversion
- B2 Division instead of multiplication
- B3 Multiplies their circumference by incorrect figure unless clearly a misreading
- B4 Decimal error
- B5 Multiplies an arbitrary number by 250 with work shown and continues

Slips (-1)

- S1 Numerical slip to a maximum of -3
- S2 Leaves as $\frac{44000}{100}$

Attempts (3 marks)

- A1 Convert 176 cm to metres and stops first step of scheme
- A2 Any relevant work eg 44 000 without work or brings down answer from (ii)

Worthless (0)

Part (c) (i)	5 marks	Att 2
(i)	Find the volume of the cylinder in terms of π .	

<i>K</i> (i)	Volume = $\pi r^2 h = \pi \times 4^2 \times 14$	2
	$= \pi \times 16 \times 14$	2
	$= \pi \times 224 \text{cm}^3$	5

A solid cylinder has radius 4 cm and height 14 cm.

* Correct answer without work merits 2 marks *Æ*

Blunders (-3)

Г

- B1 Incorrect relevant formula eg surface area $2\pi rh$ or incorrect multiple of, $\pi r^2 h$ or πr^2 , with work.
- B2 Incorrect substitution
- B3 Mathematical error eg $4^2 = 8$
- B4 Not in terms of π , substitutes in a value

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (2 marks)

A1 Any relevant work

Worthless (0)

(ii)

Find the curved surface area of the cylinder in terms of π .

l Z	(ii) Surface area = $2 \pi rh$	2	
	$= 2 \times \pi \times 4 \times 14$	2	
	$=112 \times \pi \text{ or} 112 \pi \text{ cm}^2$	5	

* Correct answer without work merits 2 marks *Æ*

Blunders (-3)

- B1 Incorrect relevant formula eg multiple of $\pi r^2 h$ or πr^2 or incorrect multiple of $2\pi r$, with work
- B2 Incorrect substitution
- B3 Mathematical error eg adds instead of multiplying in formula
- B4 Not in terms of π , substitutes in a value if not penalised already

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (2 marks)

A1 Any relevant work eg 112 without work

Worthless (0)

Part (c) (iii)

5 marks

Att 2

(iii)

Find the total surface area of the cylinder in terms of π .

Ŕ	(iii)Total surface area = Curved surface ar	rea +2×Area Disc(Area Top +Bottom)2	
	$= [112 \pi] + 2 \pi r^2$	2	
	$= [112 \pi] + 2 \times \pi \times 4^2$	2	
	$= 112 \pi + 32 \pi$	4	
	$= 144 \pi$	5	

- * Correct answer without work merits 2 marks 🖄
- * Accept candidate's answer from part (ii)

Blunders (-3)

- B1 Incorrect relevant formula must relate to cylinder or circle, with work
- B2 Incorrect substitution
- B3 Mathematical error
- B4 Not in terms of π , substitutes in a value, if not penalised already

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Only includes area of one disc

Attempts (2 marks)

- A1 Finds area of one disc only with work
- A2 Some correct step and stops eg states total surface area = curved + plus top and/or bottom
- A3 Answer part (ii) carried forward
- A4 Mentions Top and/or bottom

Worthless (0)

Pa	rt (c) (iv)	5 marks	Att 2
(iv)	A sphere has the same surface area of the abo Find, in cm, the radius	•	

×	(iv) Surface area sphere =4 πr^2	2
	$4\pi r^2 = 144\pi$	2
	$4r^2 = 144$	2
	$r^2 = \frac{144}{4}$	2
	$r^2 = 36$ r = 6 or $\sqrt{36}$	2
	$r = 6 \text{ or } \sqrt{36}$	5

- * Correct answer without work merits 2 marks *K*
- * Accept candidate's answers from parts (ii) and (iii)

Blunders (-3)

- B1 Incorrect relevant formula eg multiples of $\frac{4}{3}\pi r^3$, $\pi r^2 h$, $2\pi r h$, $2\pi r$ or πr^2 with work
- B2 Incorrect substitution
- B3 Mathematical error eg transposing error

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (2 marks)

- A1 First line of scheme
- A2 Some correct step eg answer from (iii) carried forward
- A3 Effort at trial and error

Worthless (0)

QUESTION 3

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 7

Part (a)	10 marks	Att 3
(a)	Find the mean of the numbers: 4, 6, 7, 12, 16.	

٤ (a)	Mean $=\frac{\Sigma x}{n}$	3
	$=\frac{4+6+7+12+16}{5}$	7
	$=\frac{45}{5}=9$	10
	(9 marks)	

* Correct answer without work merits 7 marks *Æ*

Blunders (-3)

- B1 Multiplies instead of adds
- B2 Incorrect divisor except 1
- B3 Omits a variable each time
- B4 Inverted fraction

Slips (-1)

S1 Numerical slips to a maximum of -3

S2 $\frac{45}{5}$ and stops

Attempts (3 marks)

- A1 Addition of data only
- A2 Partial addition with work and stops

A3 Idea of mean indicated e.g. $\frac{\sum x}{n}$ or verbal description

- A4 "Median is 7" and stops
- A5 45 or 5 without work

Worthless (0)

Part (b) (i)	5 marks	Att 2
(i)	Which of the given months had the highest rainfall?	
(i)	February	

Blunders (-3)

B1 Fails to identify month ie states highest is 100mm and stops

Attempts (2 marks)

- A1 Lists the values but does not identify February
- A2 Any list of months which includes February

_	Part (b) (ii)	10 marks	Att 3
	(ii)	What was the total rainfall, in mm, for the given six months?	

* Correct answer without work merits 7 marks $\cancel{\&}$

Blunders (-3)

- B1 Omits more than one entry
- B2 Fails to find total
- B3 Multiplies the numbers instead of adding

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Omits or fails to list one entry in addition

Misreadings (-1)

M1 Incorrect entry, once only if consistent

Attempts (3 marks)

- A1 Lists the values
- A2 Any relevant step

Worthless (0)

Part (b) (iii)

(iii) What percentage of the total rainfall for the given six months fell in the month of April?

(iii) April = 70
Total = 350
Method 1 Method 2
% April =
$$\frac{70}{350} \times 100$$
 or April: $\frac{70}{350} = \frac{1}{5}$ 2
= 20% $\frac{1}{5} = 20\%$ 5

- * Correct answer without work merits 2 marks *Æ*
- * Accept candidate's answer from part (ii)

Blunders (-3)

B1	Multiplies by $\frac{350}{100}$ or similar
----	--

B2 Mathematical or decimal error

B3 Incorrect fraction in Method 2 $\frac{1}{5} \neq 20 \%$

B4 Omits 100 in Method 1, stops at 0.2

Slips (-1)

S1 Numerical slips to a maximum of –3

Attempts (2 marks)

A1 Some correct step and stops eg identifies April =70

Worthless (0)

A survey was taken of 40 students, who owned mobile phones, to find out the Number of text messages they sent on a particular day. The table shows the results of the survey.

Number of text messages	0	1	2	3	4	5
Number of students	3	5	7	5	14	6

Part (c) (i)	10 marks	Att 3
(i)	Draw a bar chart of the data.	

- * Accept 'lines' as bars
- * Accept bars of unequal widths
- * Labelling not require
- Blunders (-3)
- B1 Axis with student numbers not graduated uniformly
- B2 Reverses variable and frequency when drawing
- B3 Draws a trend graph or pie chart

Slips (-1)

S1 Each incorrect bar or bar omitted

Attempts (3 marks)

A1 Graduates axis or axes only.

What was the modal number of text messages sent on that day?

(ii)

(ii)

4

Blunders (-3)

B1 Gives 5 as answer

B2 Calculates mean correctly

Slips (-1)

S1 Gives 14 as answer

Attempts (2 marks)

A1 Any correct step

Worthless (0)

W1 Incorrect answer unless specified

(iii)

Calculate the mean number of text messages sent on that day

(iii) Mean
$$= \frac{\sum fx}{\sum f}$$

 $= \frac{(3 \times 0) + (5 \times 1) + (7 \times 2) + (5 \times 3) + (14 \times 4) + (6 \times 5)}{3 + 5 + 7 + 5 + 14 + 6}$
or $= \frac{0 + 5 + 14 + 15 + 56 + 30}{40}$
 $= \frac{120}{40} = 3$
2

.

Blunders (-3)

- B1 Multiplies instead of adds in denominator
- Adds instead of multiplies in numerator B2
- 120 Incorrect denominator or no denominator e.g. B3 6
- Inverted fraction B4

B5 Frequencies omitted in numerator e.g.
$$\frac{0+1+2+3+4+5}{40} = \frac{15}{40}$$

B6 Omits two or more values in numerator

Slips (-1)

Numerical slips to a maximum of -3 **S**1

S2 3(0) = 3

S3 Omits one value in numerator- with work S4

 $\frac{120}{40}$ and stops

Attempts (2 marks)

A1 Mean =
$$\frac{\sum fx}{\sum f}$$
 and stops

A2 A relevant multiplication shown and stops

A3 Some correct work e.g. Σf

A4 Average of frequencies e.g.
$$\frac{3+5+7+5+14+6}{6} = \frac{40}{6} = 6.667$$

A5
$$\frac{0+1+2+3+4+5}{6} = 2.5$$

A6 40 or 120 without work Worthless (0)

OUESTION 4

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 8
Part (c)	20 marks	Att 8

Part	(a) 10 marks	Att 3
(a)	Construct a triangle <i>pqr</i> with $ pq = 8$ cm , $ qr = 10$ cm and $ <$ pqr $ = 30^{\circ}$	
	Label your diagram clearly.	

- Accept any units or any triangle in which |pq|:|qr| = 8:10 = 4:5*
- Accept base other than [*pq*] *
- Examiners must measure candidate's work *
- Tolerance, lines ± 5 mm, or as appropriate, angle $\pm 5^{\circ}$: *

Blunders (-3)

- **B**1 Each incorrect length ie outside tolerance
- Incorrect angle ie outside tolerance B2

Slips (-1)

- **S**1 No labels or incorrect labels on diagram
- S2 r marked but fails to join p to r

Attempts (3 marks)

A1 Pilot triangle diagram drawn

Notes: One side correctly drawn and labelled merits 4 marks

Angle of 30 $^{\circ}$ constructed with q marked merits 4 marks – no sides measured

Part (b) (i)	5 marks	Att 2
(i)	Name an angle equal in measure to $\angle abc$.	
	Give a reason for your answer.	
(i)	Name of angle: $\angle cab$ or $\angle bac$ or $\angle eac$ or $\angle dac$	4
Rea	son: Angles opposite equal sides are equal in measure. Angles at the base of an isosceles triangle are equal Base angles of an isosceles triangle are equal	5

Blunder (-3)

B1 States $\angle acb$ - incorrect angle in the isosceles triangle

Slips (-1)

- S1 Correct answer without reason or incorrect reason
- S2 Marks 58° or shades $\angle cab$ on diagram but fails to name may be subject to S1 also
- S3 Names as $\angle a$

Attempts (2marks)

- A1 Correctly finds any other angle in the triangle(s)
- A2 States the three angles in a triangle sum to 180°

Part (b) (ii)

(ii) Given that $|\angle abc| = 58^\circ$, find $|\angle cbd|$ and give a reason for your answer.

(ii)
$$|\angle cbd| = [180^{\circ} -58^{\circ}] = 122^{\circ}$$

Reason: A straight angle measures 180° Equals $\angle cab + \angle acb$ - accept even if $\angle acb$ not found Accept $180^{\circ} - 58^{\circ}$ rewritten

Blunders (-3)

B1 Straight angle $\neq 180^{\circ}$

Slips (-1)

- S1 Correct answer without reason or incorrect reason
- S2 Numerical slips to a maximum of -3

Attempts (2 marks)

- A1 Mentions a straight angle equals 180° and stops or mentions 180°
- A2 Mentions a relevant theorem

Part (b) (iii)	5 marks	Att 2
(iii)	Given that $ ab = 10$ cm and $ ce = 8$ cm, find the area of Δabc .	

	(iii)	Area = $\frac{1}{2} \times base \times height$	2	
		$= \frac{1}{2} \times 10 \times 8$	2	
		$= 40 \text{cm}^2$	5	

* Correct answer without work merits 2 marks *Æ*

Blunders (-3)

- B1 Incorrect relevant formula eg missing the $\frac{1}{2}$
- B2 Incorrect substitution
- B3 Mathematical error

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (2 marks)

A1 States formula for the area of a triangle and stops

A2 Any relevant work eg $\frac{10}{2} = 5$

Worthless (0)

	5 marks	Att 2
$= \Delta bce \text{ or } \Delta ace$ $ \angle ace = \angle bce $ $ ac = bc $ $ \angle cae = \angle cbe $ $[ASA]$	$e \equiv \Delta bce \text{or} \Delta ace \equiv ac = bc $ $ \angle ace = \angle bce $ $ ce = ce $ [SAS]	Δbce $ \angle aec = \angle ceb 90^{\circ} 2$ $ ac = bc 2$ $ ce = ce 5$ [RHS] Not required
	Show that Δace and $\equiv \Delta bce \text{or } \Delta ace$ $ \angle ace = \angle bce $ $ ac = bc $ $ \angle cae = \angle cbe $	<i>ce</i> is the bisector of $\angle acb$. Show that $\triangle ace$ and $\triangle bce$ <i>are</i> congruent. $\equiv \Delta bce \text{ or } \triangle ace \equiv \Delta bce \text{ or } \triangle ace \equiv \angle ac = \angle bc $ $ ac = bc \qquad \angle ace = \angle bce $ $ \angle cae = \angle cbe \qquad ce = ce $

Blunders (-3)

Each step omitted B1

Attempts (2)

- One correct step A1
- States same shape or ASA or SAS or RHS only States triangles "fold" onto each other A2
- A3

0

h

а

L

d

[*ac*] and [*bd*] are diameters of a circle with centre *o*. *L* is a line touching the circle at the point *b* only.

Part (c) (i)

5 marks

Att 2

С

(i) Name the image of Δ and under S_o, the central symmetry in the point o.

(i)	
(1)	

 $\Delta aod \rightarrow \Delta cob$

* Accept $\Delta \ cob$ with points in any order

* Accept $a \rightarrow c, o \rightarrow o, d \rightarrow b$

* Accept diagram with indication /shading (First use)

Blunders (-3)

- B1 Each point whose image is not found or incorrectly found
- B2 Image not a triangle eg a line or quadrilateral

Attempts (2 marks)

- A1 Shows some knowledge of central symmetry and stops
- A2 States that image is a Δ eg draws a triangle in the answers box
- A3 Image of one point found correctly $eg in " \rightarrow " approach$

Worthless (0)

W1 Diagram reproduced without modification

	Part (c) (ii)	5 marks	Att 2
(ii)	What is the name given to a line the circle at one point only?	, such as the line <i>L</i> , that touches	

Tangent or Tan

Attempts	(2	marks)	
T T	1		

(ii)

- A1 Mentions 90°
- A2 States "Is perpendicular to radius"

Part (c) (iii)	5 marks	Att 2
(iii)	Write down $ \angle abc $, and give a reason for your answer.	

(iii)
$$|\angle abc| = 90^{\circ}$$
 or $|\angle abc| =$ Right Angle or Perpendicular Symbol
Reason: Angle in a semi circle / half circle or similar

Slips (-1)

S1 Correct answer without reason or incorrect reason

Attempts (2 marks)

- A1 States is equal to $|\angle adc|$ or any right angle in the circle
- A2 States "Angle at centre =twice angle at circle standing on same arc" or similar
- A3 180° on its own

Worthless (0)

W1 Incorrect answer unless A3

(iv) Given that $ ad = 4$, $ dc = 3$, use the Theorem of Pythagoras to find $ ac $.	(iv)	Given that $ ad = 4$, $ dc = 3$, use the Theorem of Pythagoras to find $ ac $.
--	------	---

Ø	(iv)	$ ac ^2 = 3^2 + 4^2$	2		
		=9+16	2		
		= 25	2		
		$ ac = \sqrt{25}$	5		
		= 5			

* Correct answer without work merits 2 marks 🖄

Blunders (-3)

- B1 Incorrect Pythagoras' Theorem or incorrect application
- B2 Mathematical error eg $3^2 \neq 9$
- B3 Error in manipulation of equation

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (2 marks)

- A1 A correct step
- A2 States Pythagoras Theorem
- A3 Correctly identifies |ac| as the hypotenuse in the answer box

Worthless (0)

- W1 Incorrect answer without work
- W2 |ac| = 3 + 4 = 7

QUESTION 5		
Part (a)	10 marks	Att 4
Part (b)	25 marks	Att 8
Part (c)	15 marks	Att 7

- * No penalty if *a* and *b* are not labelled
- * No penalty if *x* and *y* axes reversed if consistent

or

* (1,2) and (-3,-2) plotted 5 marks + 5 marks

. . -

* (2,1) and (-2,-3) plotted 5 marks + 5 marks

Slips (-1)

S1 One point correct but axes reversed for other point eg (2,1) and (-3,-2) plotted

Attempts (2 marks)

A1 Plots any incorrect point subject to S1

Part (b)

25 Marks (10,10,5)

Att 8 (3,3,2)

p is the point (2,1) and q is the point (4,3). Find each of the following:

Part (b)(i)	10 marks	Att 3
(i)	the length of [<i>pq</i>]	

X	(i)	the length of $[pq] = \sqrt{(4-2)^2 + (3-1)^2}$ or	$=\sqrt{(2-4)^2}$ +	$(1-3)^2$ 3
		$=\sqrt{(2)^2+(2)^2}$	$= \sqrt{(-2)^2} +$	$(-2)^2$ 7
		$=\sqrt{4+4}$	$=\sqrt{4+4}$	9
		$=\sqrt{8}$	$=\sqrt{8}$	10

- * Correct answer without work merits 7 marks *Æ*
- * Accept correct use of Pythagoras
- * Blunders apply only once per section *Blunders (-3)*
- B1 Incorrect formula e.g. $\sqrt{(x_2 x_1)^2 (y_2 y_1)^2}$ or $\sqrt{(x_2 + x_1)^2 + (y_2 + y_1)^2}$ or omits $\sqrt{}$ or omits squares
- B2 Incorrectly treats couples as (x_1, x_2) and (y_1, y_2)
- B3 Mathematical error e.g. sign rules
- B4 Two or more signs incorrect in substitution

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Error in one sign in $(x_2 x_1)$ or $(y_2 y_1)$ in formula
- S3 One incorrect substitution or sign when substituting

Misreadings (-1)

M1 Uses points a and b from part (a) once only for section (b)

Attempts (3 marks)

- A1 Any relevant step eg subtraction shown
- A2 Points p and/or q plotted reasonably well for this part
- A3 States Theorem of Pythagoras and stops
- A4 Correct graphical solution –unless clearly Pythagoras
- A5 Identifies (x_1, y_1) and /or (x_2, y_2) outside the box allow here only

Worthless (0)

W1 Uses wrong formula e.g. midpoint formula

Part b (ii)	10 marks	Att 3
(ii)	the slope of <i>pq</i>	

🛋 (ii)	the slope of <i>pq</i>	$m = \frac{y_2 - y_1}{x_2 - x_1}$	0	$= \frac{vertical}{horizontal}$	3
	$=\frac{3-1}{4-2}$	or $=\frac{1-3}{2-4}$	or	vertical = 2 horizontal = 2	7
	$=\frac{2}{2}$ or 1	$=\frac{-2}{-2}$ or	1	$=\frac{2}{2}$ or 1	10

* Accept correct trigonometric method (i.e. $Tan \theta = \frac{2}{2}$)

B1 Incorrect slope formula e.g.
$$\frac{x_2 - x_1}{y_2 - y_1} or \frac{y_2 + y_1}{x_2 + x_1} or \frac{y_2 - y_1}{x_1 - x_2} or \frac{x_1 - y_1}{x_2 - y_2} or$$

 $\frac{horizontal}{vertical}$ or Tan $\theta = \frac{adjacent}{opposite}$ and continues

- B2 Incorrectly treats couples as (x_1, x_2) and (y_1, y_2) if not already penalised e.g. $\frac{3-4}{1-2} or \frac{4-3}{2-1}$.
- B3 Mathematical error e.g. sign rules
- B4 Gets the slope of *op* or *oq* correctly
- B5 Error in more than one sign when substituting

Slips (-1)

S1 Numerical slips to a maximum of -3

S2 Error in one sign in slope formula e.g.
$$\frac{y_2 - y_1}{x_2 + x_1}$$

S3 One incorrect substitution or sign when substituting

Attempts (3 marks)

A1 Tan
$$\theta = \frac{opposite}{adjacent}$$
 or $m = \frac{vertical}{horizontal}$ and stops

- A2 Some correct substitution into formula with $x_2 x_1$ and/or $y_2 y_1$
- A3 Points *p* and/or *q* plotted reasonably well for this part

A4 Identifies (x_1, y_1) and/or (x_2, y_2) in this part

Worthless (0)

- W1 Uses wrong formula e.g. midpoint formula
- W2 States given formula, only

Part	t (b) (iii)	5 marks	Att 2
(iii)	The	equation of pq	
E (1	iii) $y-1 = 1(x-2)$ or 5	y - 3 = 1(x - 4) 5	
* Corr	ect answer without work merits	2 marks 🛋	
	ept candidate's slope from previo		
Blunders (-3	3)		
	rrect formula e.g. $y + y_1 = m(x + y_1)$	$-x_1$) or $x - x_1 = m(y - y_1)$	
B2 Swit	the x and y e.g. $y - 4 = 1(x - 3)$)	
	Mathematical error		
•	y = x + c and stops		
	s a point other than $(2,1)$ or $(4, 3)$) e.g. (0,0)	
B6 <i>m</i> ≠	1		
Slips (-1)			
S1 Num	nerical slips to a maximum of -3		
C2 E	Emerican energian in formal.		

- S2 Error in one sign in formula
- S3 One incorrect substitution or sign when substituting

Attempts (2 marks)

- A1 Writes m = 1 and stops
- A2 States $y = mx \pm c$ and stops
- A3 3-1=1(4-2) substitutes both points

Note: $1-y_1 = 1(2-x_1)$ merits full marks

15 marks (5,5,5)

L is the line 2x + 3y - 10 = 0. *L* cuts the *x*- axis at the point *c*.

Part (c) (i)5 marksAtt 2

(i) By letting y = 0, find the co-ordinates of the point *c*.

(i)	2x + 3y - 10 = 0	
	2x + 3(0) - 10 = 0	2
	2x - 10 = 0	
	2x = 10	2
x =	$\frac{10}{2} = 5$	5
4	(marks)	

- * Correct answer without work merits 2 marks 🖄
- * Accept answer given as x = 5 with work shown
- Blunders (-3)
- B1 Substitutes x = 0 and continues
- B2 Mathematical error

Ø

B3 Incorrect substitution and continues

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 3(0) = 3
- S3 Stops at $\frac{10}{2}$ with work

Attempts (2 marks)

- A1 Substitutes y = 0 and stops
- A2 Any correct manipulation of equation and stops

Worthless (0)

Part (c) (ii)	5 marks	Att 2
(ii)	Show that the point $(8, -2)$ is on the line <i>L</i> .	
(11)	Show that the point $(8, -2)$ is on the line <i>L</i> .	

Ø	(ii)	L	2x + 3y - 10 = 0		
			2(8) + 3(-2) - 10 = 0	2	
			16 - 6 - 10 = 0	2	
			10-10=0	5	

* Correct answer without work merits 2 marks *Æ*

Blunders (-3)

- B1 Incorrect substitution and continues eg switches *x* and *y*
- B2 Mathematical error

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (2 marks)

- A1 Substitutes one correct value and stops
- A2 Identifies (8, -2) as (x, y) x=8 and/or y =-2 or plots point
- A3 Any correct transposition of equation and stops eg 2x + 3y = 10

Part (c)	(iii)	5 marks		Att 2		
(iii)	ii) The point $(k, 6)$ is on the line L. Find the value of k.					
[1		
X	(iii)	L 2x + 3y - 10 = 0				
		2(k)+3(6)-10 = 0	2			
		2k + 18 - 10 = 0	2			
		2k = -8	2			
		$k = \frac{-8}{2} = -4$	5			
		(4marks)				

* Correct answer without work merits 2 marks *Æ*

Blunders (-3)

- B1 Substitutes x = 6 and y = k and continues
- B2 Mathematical error
- B3 Incorrect transposition eg k = -8-2

Slips (-1)

S1 Numerical slips to a maximum of -3

S2 $\frac{-8}{2}$ with work and stops

Misreadings (-1)

M1 Reads as 2x + 3y + 10 = 0 and continues

Attempts (2 marks)

- A1 Substitutes one value correctly and stops
- A2 States x = k and/or y = 6 and stops or plots (?, 6)
- A3 Some statement similar to "substituting in will satisfy the equation"
- A4 Use of arbitrary value e.g. x = 0 or y = 0 with some correct work
- A5 Any correct transposition of equation, in this part, and stops eg 2x + 3y = 10

Worthless (0)

	QUESTION 6	
Part (a)	15 marks	Att 5
Part (b)	20 marks	Att 7
Part (c)	15 marks	Att 5

Part (a)	15 marks (10, 5)	Att (3, 2)
The right - angle has measuremen	ts as shown.	17 8 15 b
Part (a) (i)	10 mortes	۸++ 3

Part (a) (i)	10 marks	Att 3
(i)	Write down the length of the side adjacent to the angle A	

(i)	Length of the side adjacent to the angle $A = 15$	

* Indicates 15 only on diagram, accept "a" or "adj", for 10 marks

Blunders (-3)

B1 Writes one of the other sides

Attempts (3marks)

- A1 Any mention of a correct trigonometric ratio
- A2 Writes [*ab*] or [*ba*]

Pa	art (a) (ii) 5 marks	Att 2
(ii)	Write down the value of cos A, as a fraction	
(ii)	$\cos A = \frac{15}{17}$	
*	Accept consistent error from (i)	
*	Accept $\cos \frac{15}{17}$ for full marks	
Blund	lers (-3)	
B1	Incorrect or inverted ratio e.g. $\cos A = \frac{17}{15}$	
B2	Gets cos of top angle (check is not consistent error from (i))	

Slips (-1)

Answer = 0.8823 (answer not fraction) **S**1

Attempts (2 marks)

- A1
- Any correct trigonometric ratio written down in answer box Only gives answer = 28° exactly or rounded to 28° for this part A2
- Only gives answer = 0.999881422 ie $\cos(15/17)$ A3

Part (b)	20 Marks (5, 10, 5)	Att 7 (2, 3, 2)
In the right angled triangled $ pq = 12$ and $ \angle pqr = 3$		12 37° r
Part (b) (i)	5 marks	Att 2

(i)

Using the diagram, write down the value of sin 37° as a fraction.

(i)
$$\sin 37^\circ = \frac{x}{12}$$

* Accept sin
$$\frac{x}{12}$$
 for full marks

* Accept $\sin 37^{\circ} = \frac{|pr|}{|pq|} = \frac{x}{|pq|}$ Modulus not required

Blunders (-3)

B1 Incorrect or inverted ratio eg
$$\frac{x}{|qr|}$$

Slips (-1) S1 21 for 12

Attempts (2 marks)

- A1 Any correct trigonometric ratio written down
- A2 Correctly marks hypotenuse or opposite or adjacent on diagram and stops –first part of question

A3 0.6018 or 0.6 or $\frac{6}{10}$

Worthless (0)

W1 Incorrect answer unless attempt mark applies

Part (b) (ii) 10 marks	Att 3
(ii)	Using your calculator, write down the value of sin 37° correct to one decimal place	
(ii)	$\sin 37^{\circ} = 0.6018$ 9	
	= 0.6 10	

* Accept correct answer without work

Blunders (-3)

- B1 Incorrect decimal point or no decimal point
- B2 Uses radian (-0.6435) or grad mode (0.5490) on calculator

Slips (-1)

- S1 Fails to round off or rounds off incorrectly
- S2 Obvious slip in reading tables or calculator

Attempts (3 marks)

A1 cos or tan of 37° (0.7986 or 0.7535)

Worthless (0)

W1 Incorrect answer unless attempt mark applies

Part (b) (iii)				5 marks		Att 2
(iii)	Hence find <i>x</i> , the value of $ pr $					
	~1		Y			
	X	(iii)	$\frac{x}{12}$	= 0.6	2	
			x	= 12×0.6	2	
				= 7.2	5	

- * Correct answer without work merits 2 marks *Æ*
- * Accept candidate's answers from parts (i) and (ii)

Blunders (-3)

B1 Error in forming equation eg $\frac{12}{x} = 0.6$ and continues

- B2 Error in transposing equation
- B3 Error in decimal point
- B4 Mathematical error

Slips (-1)

- S1 Numerical slips to a maximum of -3
- S2 Gives answer as 7.0 only with work shown

Attempts (2 marks)

- A1 Correct scale diagram
- A2 First step of scheme and stops
- A3 Any correct step

Worthless (0)

- W1 Incorrect answer without work
- W2 x = 4 cm (measured from examination paper)

Part (c) (ii)	5 marks	Att 2
(ii)	Hence, calculate $ ab $, the width of the river. Give your answer correct to the nearest metre.	

<i>Æ</i> (ii)	$\frac{ ab }{ ac } = \tan 25^{\circ}$	or	$\frac{ ac }{ ab } = \tan 65^{\circ}$	2
	$\frac{ ab }{45} = 0.4663$		$\frac{45}{ ab } = 2.1445$	2
	$ ab = 0.4663 \times 45$ = 20.98		$ ab = \frac{45}{2.1445}$ = 20.98	2 4
	= 21 m		= 21 m	5

Rad

Tan 25° -0.1335

Tan 65° -1.4700

Grad

0.4142

1.63185

- * Correct answer without work merits 2 marks *Æ*
- * Accept candidate's answer from part (i)

Blunders (-3)

- B1 Incorrect trigonometric ratio
- B2 No decimal point or misplaced decimal point
- B3 Uses radian or grad mode on calculator
- B4 Mathematical error
- B5 Incorrect transposition

Slips	(-1)
1	()

- S1 Numerical slips to a maximum of -3
- S2 Fails to round off or rounds off incorrectly
- S3 Obvious slip in reading tables or calculator
- S4 Calculates |bc| correctly

Attempts (2 marks)

- A1 Any correct trigonometric ratio written down
- A2 Some use of Sin/Cos/Tan
- A3 Finds the third angle of the triangle and stops must be in answer box
- A4 Correct scale diagram
- A5 Any relevant step

Worthless (0)

- W1 Incorrect answer without work
- W2 |ab| = 4.5 cm, measured off examination paper.