Coimisiún na Scrúduithe Stáit State Examinations Commission

MARKING SCHEME

JUNIOR CERTIFICATE EXAMINATION 2004

MATHEMATICS - ORDINARY LEVEL - PAPER 2 (300 marks)

GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions (-3)
- Slips - numerical errors (-1)
- Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled as B1, B2, B3,......, S1, S2, S3,...., M1, M2, etc. Note that these lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), it is essential to note that

- any correct relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2...etc.
4. The same error in the same section of a question is penalised once only.
5. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks only.
6. The phrase "and stops" means that no more work is shown by the candidate.
7. Special notes relating to the marking of a particular part of a question or question with symbol are indicated by an asterisk $*$ under solution box.

QUESTION 1

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 7

Part (a)
10 marks
Att 3
A swimming pool is 50 m in length. Mary swims 25 lengths of the pool.
What distance, in kilometres, does Mary swim?

$$
\begin{aligned}
\text { Distance } & =50 \times 25 \\
& =1250 \mathrm{~m} \\
& =\frac{1250}{1000} \mathrm{~km} \\
& =1.25 \mathrm{~km}
\end{aligned}
$$

* Correct answer without work merits 7 marks

Blunders (-3)

B1 Divides instead of multiplies
B2 Incorrect conversion $\mathrm{m} \rightarrow \mathrm{km}$ or no conversion
Slips (-1)
S1 Numerical slips to a maximum of -3
S2 Leaves as $\frac{1250}{1000} \mathrm{~km}$
Attempts (3 marks)
A1 Converts units and stops

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 Adds or subtracts both numbers and stops

Notes:

$$
\begin{aligned}
& \frac{50}{25}=2 \text { merits } 4 \text { marks }(\mathrm{B} 1+\mathrm{B} 2) \text { but } \frac{50}{25} \text { and stops merits attempt mark } \\
& \frac{25}{50}=\frac{1}{2} \text { merits } 4 \text { marks }(\mathrm{B} 1+\mathrm{B} 2) \text { but } \frac{25}{50} \text { and stops merits attempt mark }
\end{aligned}
$$

A garden is made up of a rectangular lawn that is surrounded by a path.
The garden is 16 m long and 10 m wide. The path is 2 m wide.

Part (b)(i)
10 marks

Att 3

Find, in m^{2}, the area of the garden.

$$
\begin{aligned}
\text { Area } & =1 \times b \\
& =16 \times 10 \\
& =160 \mathrm{~m}^{2}
\end{aligned}
$$

* Correct answer without work merits 7 marks
* Answers must be in relevant boxes

Blunders (-3)
B1 Incorrect relevant formula
B2 Incorrect substitution each time
B3 Mathematical error
Slips (-1)
S1 Numerical slips to a maximum of -3

Attempts (3 marks)

A1 Correct formula and stops
A2 Some correct step and stops
A3 Area $=1+\mathrm{b}$ and continues i.e $16+10$ or $\frac{16}{10}=1.6$ or $\frac{10}{16}=0.625$
A4 Finds area of a relevant section
A5 Indicates some multiplication of relevant numbers

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 $\frac{16}{10}$ or $\frac{10}{16}$ and stops
Notes: $\quad 16 \times 2=32$ or $10 \times 2=20$ merit 7 marks (B2)

Find, in m^{2}, the area of the lawn.

$$
\begin{aligned}
16-2(2) & =12 \\
10-2(2) & =6 \\
\text { Area } & =1 \times \mathrm{b} \\
& =12 \times 6 \\
& =72 \mathrm{~m}^{2}
\end{aligned}
$$

* \quad Correct answer without work merits 2 marks

Blunders (-3)

B1 Incorrect relevant formula
B2 Incorrect substitution each time
B3 Mathematical error
B4 Incorrect calculation of dimension
Slips (-1)
S1 Numerical slips to a maximum of -3

Attempts (2 marks)

A1 Correct formula and stops
A2 Some correct step and stops
A3 Area $=1+\mathrm{b}$ and continues i.e $12+6$
A4 Finds area of a relevant section
A5 Indicates some multiplication of relevant numbers

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 $\quad \frac{16}{2}=8$

Find, in m^{2}, the area of the path.

$$
\begin{aligned}
& 160,72 \\
\text { Area } & =160-72 \\
= & 88 \mathrm{~m}^{2}
\end{aligned}
$$

* Correct answer without work merits 2 marks
* Accept answers from previous parts

Blunders (-3)

B1 Incorrect relevant formula
B2 Incorrect substitution each time
B3 Mathematical error
B4 Adds instead of subtracts
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (2 marks)
A1 Correct formula and stops
A2 Some correct step and stops
A3 \quad Area $=1+\mathrm{b}$ and continues i.e $16+2$
A4 Finds area of a relevant section
A5 Indicates some multiplication of relevant numbers
A6 Indicates subtraction
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

Att 3

How many hours and minutes did it take the train to travel from Galway to Dublin?

* Correct answer without work merits 7 marks

Blunders (-3)
B1 Adds instead of subtracts
B2 Error in converting hr/min
Slips (-1)
S1 Numerical slips to a maximum of -3
Misreadings (-1)
M1 Misreading of time without oversimplication
Attempts (3 marks)
A1 Converts hr/min and stops
A2 Correctly subtracts arbitrary time/s
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

The distance travelled by the train was 240 km .
Calculate the average speed, in $\mathrm{km} / \mathrm{hr}$, for the journey from Galway to Dublin.

2 hrs 30 min	$=2.5 \mathrm{hrs}$
Average speed	$=\frac{D}{T}$
	$=\frac{240}{2.5}$
	$=96 \mathrm{~km} / \mathrm{hr}$

* Correct answer without work merits 2 marks
* Accept candidate's answer from part (i)
* Accept ratio method

Blunders (-3)

B1 Incorrect formula
B2 Error in converting hr/min or no conversion, unless B2 applied in part (i)
B3 No division
B4 Mathematical error
B5 Incorrect substitution each time
Slips (-1)
S1 Numerical slips to a maximum of -3

Attempts (2 marks)

A1 Correct formula and stops
A2 Some correct step and stops
A3 States $1 \mathrm{hr}=60 \mathrm{mins}$ and stops
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

On Tuesday, the train left Galway at 13:05 and travelled to Dublin. The average speed for this journey of 240 km was $100 \mathrm{~km} / \mathrm{hr}$.
At what time did the train arrive in Dublin?

$$
\begin{aligned}
\text { Time for journey } & =\frac{D}{S} \\
& =\frac{240}{100} \\
& =2.4 \mathrm{hrs} \\
& =2 \mathrm{hrs} 24 \mathrm{mins} \\
\text { Arrival time } & =13: 05+2: 24 \\
& =15: 29
\end{aligned}
$$

* Correct answer without work merits 2 marks
* Accept ratio method

Blunders (-3)

B1 Incorrect formula
B2 Error in converting $\mathrm{hr} / \mathrm{min}$ or no conversion, unless B2 applied in part (i) or (ii)
B3 No division
B4 Mathematical error
B5 Uses answer from part (i)
Slips (-1)
S1 Numerical slips to a maximum of -3
S2 Leaves as 13:05 + 2:24
Attempts (2 marks)
A1 Correct formula and stops
A2 Some correct step and stops
A3 States $1 \mathrm{hr}=60 \mathrm{mins}$ and stops

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 6
		Att 3

A circle has a radius of 3.5 cm .

Taking π as $\frac{22}{7}$, calculate the length of the circumference of the circle

$$
\begin{aligned}
\text { Length } & =2 \pi \mathrm{r} \\
& =2 \times \frac{22}{7} \times 3.5 \\
& =22 \mathrm{~cm}
\end{aligned}
$$

* Correct answer without work merits 7 marks

Blunders (-3)

B1 Incorrect relevant formula
B2 Incorrect substitution
B3 Mathematical errors e.g. fraction
B4 $\pi \neq \frac{22}{7}$
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (3 marks)
A1 Correct formula and stops
A2 Some correct step and stops
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

A cube has side of length 2 cm .

Find the volume of this cube in cm^{3}.

$$
\begin{aligned}
\text { Volume of cube } & =1 \times 1 \times 1 \\
& =2 \times 2 \times 2 \\
& =8 \mathrm{~cm}^{3}
\end{aligned}
$$

*

Correct answer without work merits 2 marks.

Blunders (-3)

B1 Incorrect relevant formula
B2 Incorrect substitution
B3 Mathematical error
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (2 marks)
A1 Correct formula and stops
A2 Some correct step and stops
A3 Volume $=1+\mathrm{b}+\mathrm{h}$ and continues i.e. $2+2+2=6$
A4 Some multiplication

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 Answer = 6 without work shown

A rectangular block is built using 18 of these cubes.
Find the volume of the rectangular block in cm^{3}.

| 20 |
| ---: | :--- |
| $=144 \mathrm{~cm}^{3}$ |\quad or | $6 \times 6 \times 4$ |
| ---: |
| $=144 \mathrm{~cm}^{3}$ |

* Accept correct answer without work for 7 marks.
* Accept candidate's answer from part (i)

Blunders (-3)
B1 Volume $=\mathrm{nx} 18, \mathrm{n} \neq$ ans.(i)
B1 Divides instead of multiples
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (3 marks)
A1 Ans.(i) ± 18
A2 Writes down answer from (i) and stops
Worthless (0)
W1 Incorrect answer without work e.g. 26 or 10

This rectangular block is 6 cm long, 6 cm wide and 4 cm high.
Find its surface area in cm^{2}.

$$
\begin{aligned}
\text { Area } & =2(1 \times b+1 \times \mathrm{h}+\mathrm{b} \times \mathrm{h}) \\
& =2(6 \times 6+6 \times 4+6 \times 4) \\
& =2(36+24+24) \\
& =2(84) \\
& =168 \mathrm{~cm}^{2}
\end{aligned}
$$

* Correct answer without work merits 2 marks

Blunders (-3)

B1 Incorrect relevant formula
B2 Incorrect substitution each time
B3 Mathematical error
B4 Omits area of more than one section

Slips (-1)

S1 Numerical slips to a maximum of -3
S2 Omits area of one section only
Attempts (2 marks)
A1 Correct formula and stops
A2 Some correct step and stops
A3 Area $=1+\mathrm{b}$ and continues i.e $6+6$
A4 Finds area of a relevant section and stops
A5 Some multiplication
A6 Finds volume of block e.g. $6 \times 6 \times 4=.144 \mathrm{~m}^{3}$
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

A solid sphere made of lead has radius 6 cm .

Find the volume of the sphere in terms of π.

$$
\text { Qolume of sphere } \begin{aligned}
& =\frac{4}{3} \pi \mathrm{r}^{3} \\
& =\frac{4}{3} \pi(6)^{3} \\
& =\frac{4}{3} \pi(216) \\
& =288 \pi
\end{aligned}
$$

* Correct answer without work merits 7 marks

Blunders (-3)

B1 Incorrect relevant sphere formula
B2 Incorrect substitution
B3 Mathematical error
Slips (-1)
S1 Numerical slips to a maximum of -3
S2 Answer not in terms of π
Attempts (3 marks)
A1 Correct formula and stops
A2 Some correct step and stops
A3 Finds surface area
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

This sphere is melted down and all the lead is used to make a lead cylinder with radius 4 cm
Find the height of the lead cylinder.

$$
\text { Volume }=\pi r^{2} h \quad \begin{aligned}
\text { or Volume } & =288 \pi \quad \text { or } \pi \mathrm{r}^{2} \mathrm{~h}=288 \pi \\
\pi \mathrm{x}(4)^{2} \times \mathrm{h} & =288 \pi \\
16 \mathrm{~h} & =288 \\
\mathrm{~h} & =18 \mathrm{~cm}
\end{aligned}
$$

* Correct answer without work merits 7 marks
* Accept candidate's answer from part (i)

Blunders (-3)
B1 Incorrect relevant cylinder formula
B2 Incorrect substitution
B3 Mathematical error
B4 Error in manipulation of equation
B5 Value of $\pi \neq \frac{22}{7}$ or 3.14 or calculator π

Slips (-1)

S1 Numerical slips to a maximum of -3

Attempts (3 marks)

A1 Correct formula and stops
A2 Some correct step and stops
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

QUESTION 3

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 7
Part (a)	10 marks	Att 3

Find the mode of the numbers: $10,8,12,5,10,12,10,18$.

$$
\text { Mode }=10
$$

Blunders (-3)

B1 Writes mode as 10 and 12
Attempts (3 marks)
A1 Writes 85
A2 Writes 10.625
A3 Writes 8
A4 Writes 12
A5 Rearranges numbers in order

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

All students in a certain class sat a test. The grades that they obtained in the test are shown in the following bar chart.

How many students were in the class?

$$
\begin{aligned}
& 2,4,6,10,5,3 \\
& 2+4+6+10+5+3 \\
= & 30
\end{aligned}
$$

* \quad Correct answer without work merits 7 marks

Blunders (-3)

B1 Omits or includes more than one entry/incorrect entry in addition
B2 Multiplies numbers instead of adds
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Omits or includes one entry/incorrect entry in addition
Attempts (3 marks)
A1 Some addition
A2 Writes down one correct entry

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 \quad Answer $=11$

How many students achieved a grade lower than a grade D ?

2	$\begin{aligned} & 5,3 \\ & 5+3 \\ &= 8 \end{aligned}$

* Correct answer without work merits 5 marks. Special case.
* Accept candidate's values from previous part

Blunders (-3)
B1 Omits or includes more than one entry/incorrect entry in addition
B2 Multiplies numbers instead of adds
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Omits or includes one entry/incorrect entry in addition
S3 Uses one extra entry
Attempts (2 marks)
A1 Any correct step
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

Express the number of students, who achieved a grade A or a grade B , as a percentage of the total number of students in the class.

$$
\text { 对 } \begin{aligned}
2+4 & =6 \\
\frac{6}{30} \times 100 & =20 \%
\end{aligned}
$$

* \quad Correct answer without work merits 2 marks
* Accept candidate's values from part (i)

Blunders (-3)

B1 Omits or includes more than one entry/incorrect entry in addition
B2 Multiplies numbers instead of adds
B3 Omits the 100 or divides by 100
B4 Multiplies by $\frac{30}{100}$
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Omits or includes one entry/incorrect entry in addition
Attempts (2 marks)
A1 Any correct step e.g. indicates x 100

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

The table shows the number of compact discs sold per day in a shop from Monday to Friday of a particular week.

Day	Monday	Tuesday	Wednesday	Thursday	Friday
No. of compact discs sold	25	20	50	35	50

Part (c)(i)
10 marks
Att 3
Draw a trend graph of the data, putting days on the horizontal axis

50

40

30

20

10

* Be lenient with plotting of points

Blunders (-3)

B1 Axes not graduated uniformly (once)
B2 Points not joined or joined in incorrect order
B3 Reorders days axis
Slips (-1)
S1 Each incorrect plot or point omitted
S2 Axes reversed
S3 Draws bar or pie chart

Attempts (3 marks)

A1 Graduated axis or axes only or x and y axes only

Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme) Part (c)(ii)

Calculate the mean number of compact discs sold per day from Monday to Friday.

$$
\begin{aligned}
\text { Average } & =\frac{\Sigma x}{n} \\
& =\frac{25+20+50+35+50}{5} \\
& =\frac{180}{5} \text { or } 36
\end{aligned}
$$

* Correct answer without work merits 2 marks.

Blunders (-3)

B1 Multiplies instead of adds in numerator
B2 Incorrect divisor (divisor of 1 must be shown)
B3 Omits or includes more than one entry/incorrect entry in addition
B4 Inverted fraction

Slips (-1)

S1 Numerical errors to a maximum of -3
S2 Omits or includes one entry/incorrect entry in addition
Attempts (2 marks)
A1 Writes 180 only and stops
A2 Partial addition and stops e.g. numerator $=180$
A3 Idea of mean indicated e.g. $\frac{\sum x}{n}$
A4 "Median is 35 " and stops
A5 Mode = 50 and stops

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
Notes \quad Writes $\frac{5}{180}=36$ merits 2 marks (B4)

The shop was also open on the Saturday of that particular week. The mean number of compact discs sold per day from Monday to Saturday was as 40 .
Calculate the number of compact discs sold on that Saturday.

20	Total number of dics $=40 \times 6=240$	or	$\frac{25+20+50+35+50+x}{6}=40$	
				$\underline{180+x}=40$
				6
				$180+\mathrm{x}=240$
	Number of discs (Saturday $)=240-180$			$\mathrm{x}=240-180$
	$=60$			$\mathrm{x}=60$

* Correct answer without work merits 2 marks.

Blunders (-3)

B1 Multiplies instead of adds in numerator
B2 Incorrect divisor (divisor of 1 must be shown)
B3 Omits or includes more than one entry/incorrect entry in addition
B4 Inverted fraction
B5 Error in manipulation of equation
B6 \quad Total $=n \times 40$ and $n \neq 6$
B7 Adds instead of subtracts
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Omits or includes one entry/incorrect entry in addition
Attempts (2 marks)
A1 Writes $25+20+50+35+50+\mathrm{x}$ only and stops
A2 Partial addition and stops
A3 Idea of mean indicated e.g. $\frac{\sum x}{n}$
A4 Indicates subtraction

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 4 only

QUESTION 4

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 8
Part (c)	20 marks	Att 8

Part (a)

10 marks

Att 3
Calculate the value of x and the value of y in the diagram

$$
\begin{aligned}
x & =70^{\circ} . \\
y & =180^{\circ}-\left(70^{0}+70^{\circ}\right) \\
& =180^{\circ}-140^{\circ} \\
& =40^{0}
\end{aligned}
$$

* Accept correct answer marked/indicated on a diagram
* Accept correct answers and no work

Blunders (-3)

B1 States $\mathrm{y}=70^{\circ}$ and continues
B2 Uses incorrect isosceles triangle
B3 Sum of angles in $\Delta \neq 180^{\circ}$
B4 Mathematical error
Slips (-1)
S1 Numerical errors to a maximum of -3
Attempts (3 marks)
A1 States "straight line angle $=180^{\circ}$ " or similar
A2 States "angle sum of $\Delta=180^{\circ}$ " or similar
A3 Any mention of isosceles Δ
A4 Uses arbitrary value for x or y and continues

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
abcd is a parallelogram.
The diagonals $[a c]$ and $[b d]$ intersect at m.

Part (b)(i)
5 marks
Att 2
The parallelogram $a b c d$ has area $36 \mathrm{~cm}^{2}$.
Write down the area of $\Delta a d c$ and give a reason for your answer.

Area of $\Delta a d c=18 \mathrm{~cm}^{2}$.
Reason: A diagonal bisects the area of a parallelogram.

* Accept correct answer and no work

Blunders (-3)
B1 \quad Area $=n \times 36, n \neq 1 / 2$

Slips (-1)

S1 Correct answer with no reason or incorrect reason
S2 Numerical errors to a maximum of -3

Attempts (2 marks)

A1 Reason only
A2 Correct area formula for triangle or parallelogram
A3 Opposites sides/angles of a parallelogram equal in measure

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

Given that $|\angle a b d|=30^{\circ}$, find $|\angle b d c|$ and give a reason for your answer.

$$
|\angle b d c|=30^{\circ} .
$$

Reason: Alternate angles.

* Accept correct answer marked/indicated on a diagram
* Accept correct answer and no work

Blunders (-3)

B1 Names two other angles equal in measure
Slips (-1)
S1 Correct answer with no reason or incorrect reason

Attempts (2 marks)

A1 Reason only
A2 Opposite angles in parallelogram equal in measure
A3 Any mention of congruence

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

Given that $|a m|=2 \cdot 25 \mathrm{~cm}$, find $|a c|$ and give a reason for your answer.

$$
|a c|=4 \cdot 5 \mathrm{~cm} .
$$

Reason: Diagonals of a parallelogram bisect each other.

* Accept correct answer marked/indicated on a diagram
* Accept correct answer and no work

Blunders (-3)

B1 $\quad|\mathrm{ac}|=\mathrm{n} \times 2.25, \mathrm{n} \neq 2$
Slips (-1)
S1 Correct answer with no reason or incorrect reason
S2 Numerical errors to a maximum of -3
Attempts (2 marks)
A1 Reason only
A2 Mentions midpoint
A3 Any mention of congruence
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

$\|\mathrm{mb}\|=\|\mathrm{md}\|$	or	$\|\mathrm{ab}\|=\|\mathrm{dc}\|$	or	$\|\angle \mathrm{amb}\|=\|\angle \mathrm{cmd}\|$
$\mid \angle$ abm $\|=\|\angle \mathrm{mdc}\|$		$\|\mathrm{am}\|=\|\mathrm{mc}\|$		$\|\mathrm{mb}\|=\|\mathrm{md}\|$
$\|\mathrm{ab}\|=\|\mathrm{dc}\|$		$\|\mathrm{mb}\|=\|\mathrm{md}\|$		$\mid \angle$ abm $\|=\|\angle \mathrm{mdc}\|$
\therefore SAS		$\therefore \mathrm{SSS}$		\therefore ASA

Accept correct answer marked/indicated on a diagram
Blunders (-3)
B1 Each step omitted
Attempts (2 marks)
A1 One correct step
A2 States same shape or all sides the same
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

[ab] is a diameter of a circle with centre c.
d is a point on the circle.
$d c \perp a b$.

Part (c)(i)
Name the image of the $\Delta d c b$
under $\mathrm{S}_{d c}$, the axial symmetry in the line $d c$.

$$
\text { Image }=\Delta d c a
$$

* Accept Δ dca with points in any order
* Accept $\mathrm{d} \rightarrow \mathrm{d}, \mathrm{c} \rightarrow \mathrm{c}, \mathrm{b} \rightarrow \mathrm{a}$
* Accept diagram with correct indication/shading

Blunders (-3)

B1 Each point whose image is not found or incorrectly found but note B2, B3
B2 Correct image of $\Delta \mathrm{dcb}$ under some other axial symmetry (even on extended diagram)
B3 Correct image of some other Δ under S_{dc}
Attempts (2 marks)
A1 Shows some knowledge of axial symmetry and stops
A2 A axial symmetry not related to diagram or question
A3 Correct axial symmetry or translation on some other Δ
A4 States that image is a Δ
Worthless (0)
W1 Diagram reproduced without modification

Given that $|\angle d a c|=45^{\circ}$, write down two other angles equal in measure to $\angle d a c$.
$\angle a d c, \angle b d c$ or $\angle d b c$.

* Accept angle marked/indicated on diagram

Blunders (-3)

B1 Names one other angle equal in measure
B2 Names two other angles equal in measure but not equal to $\mid \angle$ dac \mid
Slips (-1)
S1 Numerical errors to a maximum of - 3
Attempts (2 marks)
A1 States "straight line angle $=180^{\circ}$ " or similar
A2 States "angle sum of $\Delta=180^{\circ}$ " or similar
A3 Any mention of isosceles Δ

Write down $|\angle a d b|$, and give a reason for your answer.
$|\angle a d b|=90^{\circ}$.
Reason: Angle in a semi-circle or $180^{\circ}-45^{\circ}-45^{\circ}=90^{\circ}$.
An angle subtended by a diameter at the circumference is a right angle

* Accept right angle marked/indicated on diagram

Blunders (-3)

B1 Sum of angles in $\Delta \neq 180^{\circ}$

Slips (-1)

S1 Correct answer without reason or incorrect reason

Attempts (2 marks)

A1 States "Angle at centre = twice angle at circle standing on same arc" or similar and stops
A2 States "Straight line angle $=180^{\circ}$ " or similar and stops
A3 States "Angle sum in $\Delta=180^{\circ}$ " or similar
A4 Writes $\mid \angle$ bcd \mid or $\mid \angle$ acd \mid

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 Diagram reproduced without modification

Given that $|a d|=|d b|=2$, show that $|a b|=\sqrt{8}$.
\square
Blunders (-3)
B1 Incorrect Pythagoras Theorem
B2 Mathematical error
B3 Error in manipulation of equation
Slips (-1)
S1 Numerical errors to a maximum of -3
Attempts (2 marks)
A1 A correct step
A2 States Pythagoras Theorem
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 $2+2=4$ or $2+2+2+2=8$
W3 $\sqrt{ } 8=2.82$

QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 6
		Att 3
Part (a)	10 marks	

Write down the co-ordinates of the point a

$$
a=(-2,3)
$$

* No penalty on brackets e.g. $-2,3$
* \quad Accept $x=-2$ and $y=3$ written separately for full marks

Blunders (-3)

B1 Incorrect order in couple, (3,-2)
B2 Incorrect x ordinate if not sign error, subject to B1
B3 Incorrect y ordinate if not sign error, subject to B1
B4 $x=-2$ and stops or $y=3$ and stops

Slips (-1)
S1 Sign error x ordinate
S2 Sign error y ordinate
Attempts (3 marks)
A1 Draws line or segment through -2 and/or 3
Notes:

$(-2,2):$ B3	$(2,-3):$ S1, S2	$(3,2):$ B2, B3
$(-2,0):$ B3	$(2,0):$ S1, B3	$(-3,-2):$ B2, B3
$(2,3):$ S1	$(2,-3):$ S1, S2	$(4,4):$ B2, B3

p is the point $(1,3)$ and q is the point $(3,5)$. Find each of the following:
the midpoint of [pq]

$$
\text { L2 the midpoint of }[p q]=\left(\frac{1+3}{2}, \frac{3+5}{2}\right) \quad \text { or } \quad=\left(\frac{3+1}{2}, \frac{5+3}{2}\right)
$$

* \quad Correct answer without work merits 7 marks
* Accept translation method
* No penalty on brackets e.g. 2, 4 is acceptable

Blunders (-3)

B1 Incorrect formula e.g. error in both signs $\left(\frac{x_{1}-x_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right)$ or $\left(\frac{x_{1}+y_{1}}{2}, \frac{x_{2}+y_{2}}{2}\right)$ or omits divisor 2
B2 Incorrectly treats couples as $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ if not already penalised
B3 Mathematical error e.g. sign rules or incorrect cancellation
B4 Two or more signs incorrect in substitution
B5 Reversal of coordinates i.e. $(4,2)$
B6 One coordinate only worked out
B7 Uses one of the points given and some arbitary point e.g. $(1,3)$ and $(0,0)$

Slips (-1)

S1 Numerical errors to a maximum of -3
S2 Error in one sign in midpoint formula
S3 One incorrect substitution or sign when substituting e.g. $\left(\frac{-1+3}{2}, \frac{3+5}{2}\right)$
S4 Takes $(3,5)$ as midpoint and finds extremity e.g. $(1,3) \rightarrow(3,5) \rightarrow(5,7)$ or takes $(1,3)$ as midpoint and finds extremity e.g. $(3,5) \rightarrow(1,3) \rightarrow(-1,1)$

Attempts (3 marks)

A1 Some correct substitution
A2 Correct midpoint indicated on graph and not named
A3 Point p and/or q plotted reasonably well for this part

Worthless (0)

W1 Uses wrong formula e.g. slope or distance formula
Notes: \quad Answer $=\left(\frac{4}{2}+\frac{8}{2}\right)$ with work shown merits 9 marks: $(\mathrm{S} 2)$
the slope of $[p q]$
the slope of $p q$

$$
\text { or } \quad=\frac{\text { vertical }}{\text { horizontal }}
$$

$$
\begin{array}{llll}
=\frac{5-3}{3-1} & \text { or } & =\frac{3-5}{1-3} & \text { or vertical }
\end{array}=2 \text { horizontal }=28 \text { (} \begin{array}{lll}
=\frac{2}{2} \text { or } 1 & & =\frac{-2}{-2} \text { or } 1
\end{array}
$$

* Correct answer without work merits 2 marks
* Accept correct trigonometric method (i.e. Tan $\theta=\frac{2}{2}$ or 1)

Blunders (-3)

B1 Incorrect slope formula e.g. $\frac{x_{2}-x_{1}}{y_{2}-y_{1}}$ or $\frac{y_{2}+y_{1}}{x_{2}+x_{1}}$ or $\frac{y_{2}-y_{1}}{x_{1}-x_{2}}$ or $\frac{\text { horizontal }}{\text { vertical }}$
or $\operatorname{Tan} \theta=\frac{\text { adjacent }}{\text { opposite }}$ and continues
B2 Incorrectly treats couples as $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ e.g. $\frac{3-1}{5-3}$
B3 Mathematical error e.g. sign rules or $\frac{5}{3} \pm \frac{3}{1}$
B4x2 Uses $\frac{x_{1}-y_{1}}{x_{2}-y_{2}}$ and continues
B5 Gets the slope of op or oq correctly
B6 Error in more than one sign when substituting e.g. $\frac{5+3}{3+1}$ or $\frac{3+5}{1+3}$

Slips(-1)

S1 Numerical errors to a maximum of -3
S2 Error in one sign in slope formula e.g. $\frac{y_{2}-y_{1}}{x_{2}+x_{1}}$
S3 One incorrect substitution or sign when substituting e.g. $\frac{5+3}{3-1}$

Attempts (2 marks)

A1 Tan $\theta=\frac{\text { opposite }}{\text { adjacent }}$ or $m=\frac{\text { vertical }}{\text { horizontal }}$ and stops
A2 Some correct substitution into formula with $x_{2}-x_{1}$ and/or $y_{2}-y_{1}$
A3 Point p and/or q plotted reasonably well for this part
Worthless (0)
W1 Uses wrong formula e.g. midpoint formula
W2 Correct formula only

$$
\mathrm{y}-3=1(x-1) \text { or } \mathrm{y}-5=1(x-3) \text { or } \mathrm{x}-\mathrm{y}+2=0
$$

Blunders (-3)

B1 Incorrect formula e.g. $y+y_{1}=m\left(x+x_{1}\right)$ or $x-x_{1}=m\left(y-y_{1}\right)$
B2 Switches x and y e.g. $\mathrm{y}-1=1(\mathrm{x}-3)$
B3 Mathematical error e.g. sign rules
B4 $\mathrm{y}=\mathrm{x}+\mathrm{c}$ and stops
B5 Uses a point other than $(1,3)$ or $(3,5)$ e.g. $(0,0)$
B6 $m \neq 1$
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Error in one sign in formula
S3 One incorrect sign in substitution
Attempts (2 marks)
A1 Writes $\mathrm{m}=1$ and stops
A2 \quad States $\mathrm{y}=\mathrm{mx} \pm \mathrm{c}$ and stops
Notes:
$3-y_{1}=1\left(1-x_{1}\right)$ merits full marks
Say $7-3=1(5-1)$ merits attempt mark

L is the line $3 x-2 y-12=0$. L cuts the x-axis at the point c.
Find the co-ordinates of the point c.

$$
\text { y } \quad \Rightarrow \quad \begin{aligned}
3 x-2(0)-12 & =0 \\
3 x-12 & =0 \\
3 x & =12 \\
x & =4
\end{aligned}
$$

* Correct answer without work merits 7 marks
* Accept answer given as $x=4$ with work shown

Blunders (-3)
B1 Substitutes $\mathrm{x}=0$ and continues
B2 Mathematical error e.g. sign rules
B3 Error in manipulation of equation
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 $2(0)=2$
Attempts (3 marks)
A1 Substitutes y $=0$ and stops
A2 Writes $\mathrm{y}=0$ and stops
A3 Any correct manipulation of equation
Worthless (0)
W1 Incorrect answer and no work shown

The point $(k, 6)$ is on the line $3 x-2 y-12=0$.
Find the value of k.

$$
\begin{aligned}
& \mathrm{x}=\mathrm{k}, \mathrm{y}=6 \quad \Rightarrow \quad 3(\mathrm{k})-2(6)-12=0 \\
& 3 \mathrm{k}-12-12=0 \\
& 3 \mathrm{k}-24=0 \\
& 3 \mathrm{k}=24 \\
& \mathrm{k}=8
\end{aligned}
$$

* Correct answer without work merits 7 marks
* Accept answer given as $x=8$ with work shown

Blunders (-3)

B1 Substitutes $x=6$ and $y=k \Rightarrow k=3$
B2 Mathematical error e.g. sign rules
B3 Error in manipulation of equation
Slips (-1)
S1 Numerical errors to a maximum of -3

Attempts (3 marks)

A1 Substitutes one value and stops
A2 Draws a line $\mathrm{y}=6$ or states $\mathrm{x}=\mathrm{k}$ and/or $\mathrm{y}=6$ and stops
A3 Some statement similar to "substituting in will satisfy the equation"
A4 Use of arbitrary value e.g. $\mathrm{x}=0$ or $\mathrm{y}=0$ with some correct work
A5 Any correct manipulation of equation and stops e.g. $3 x-2 y=12$
Worthless (0)
W1 Incorrect answer and no work shown

Part (a)	10 marks	Att 4
Part (b)	20 marks	Att 6
Part (c)	20 marks	Att 6
Part (a)(i)	5 marks	Att 2

The right-angled triangle $a b c$
has measurements as shown.

Write down the length of the side opposite the angle A.

Length of the side opposite the angle $\mathrm{A}=5$.

Blunders (-3)
B1 Writes one of other sides
Attempts (2 marks)
A1 Writes [bc] or [cb]
A2 Labels opposite or o correctly on diagram

Write down the value of $\sin \mathrm{A}$, as a fraction.

$$
\operatorname{Sin} \mathrm{A}=\frac{5}{13} .
$$

* Accept $\sin \frac{5}{13}$ for full marks

Blunders (-3)

B1 Incorrect or inverted ratio e.g. $\sin A=\frac{13}{5}$
B2 Gets sin of top angle
Slips (-1)
S1 Gives answer in decimal form (0.3846)
Attempts (2 marks)
A1 Any correct trigonometric ratio written down
A2 Gives answer $=22.6^{\circ}$ exactly or rounded to 23°
A3 Gives answer $=0.0067$
A4 States relevant geometry e.g. 180°
A5 \quad Answer $=0.4067$

In the right-angled triangle $p q r$,

$$
|p q|=10 \text { and }|q r|=4 .
$$

Part (b)(i)

10 marks
Att 3
Find the value of $\cos \angle p q r$.

$$
\mathscr{L} \quad \cos \angle p q r=\frac{4}{10} \text { or } 0.4
$$

* Accept $\cos \frac{4}{10}$ for full marks

Blunders (-3)

B1 Incorrect or inverted ratio e.g. $\cos \angle \mathrm{pqr}=\frac{10}{4}$
B2 Gets cos of top angle
Attempts (3 marks)
A1 Any correct trigonometric ratio written down
A2 Gives answer $=66.42^{0}$ exactly or rounded to 66°
A3 \quad Gives answer $=0.99997$
A4 States relevant geometry e.g. 180°
A5 \quad Answer $=0.3746$ or 0.3584
A6 Reads cos (angle) correctly

$$
|\angle p q r|=66.42^{\circ}=66^{\circ} .
$$

* Correct answer without work merits 10 marks. Special case.
* Accept candidate's answer from part (i) unless W4 applies

Blunders (-3)
B1 Incorrect trigonometric ratios but note W3 below
B2 No decimal point or misplaced decimal point
B3 Incorrectly uses radian or grad mode
B4 Incorrect manipulation of fraction
B5 Error in handling minutes \rightarrow degrees if top angle found first
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Fails to round off or rounds off incorrectly
S3 Obvious slip in reading tables or calculator
Attempts (3 marks)
A1 Any correct trigonometric ratio written down
A2 States theorem of Pythagoras or uses it to find length of third side and stops
A3 Correctly rounds off arbitrary answer from part (i)

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 Diagram reproduced with no modifications
W3 Angle measured with protractor
W4 Value of Sin or $\operatorname{Cos}>1$

An aeroplane, leaves the ground at an angle of 20° to the runway. Its speed is $28 \mathrm{~m} / \mathrm{sec}$.

Part (c)(i)
10marks
Att 3
How far does the aeroplane travel in the first 30 seconds?

$$
\text { 2. Distance } \begin{aligned}
(30 \mathrm{sec}) & =\text { Speed } \mathrm{x} \text { Time } \\
& =28 \times 30 \\
& =840 \mathrm{~m}
\end{aligned}
$$

*

Correct answer without work merits 7 marks
Blunders (-3)
B1 Distance $=\mathrm{n} \times 28, \mathrm{n} \neq 30$ or $\mathrm{n} \times 30, \mathrm{n} \neq 28$
B2 Divides instead of multiplies
Slips (-1)
S1 Numerical errors to a maximum of -3

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 Diagram reproduced with no modifications
W3 Adds or subtracts numbers

What is its height above the ground after the first 30 seconds?
Write your answer to the nearest metre.

Height \quad| $\frac{h}{840}$ | $=\sin 20^{\circ}$ |
| ---: | :--- |
| $\frac{h}{840}$ | $=0.3420201$ |
| h | $=287.29692$ |
| h | $\approx 287 \mathrm{~m}$ |

* Correct answer without work merits 7 marks

Blunders (-3)
B1 Incorrect trigonometric ratios
B2 No decimal point or misplaced decimal point
B3 Incorrectly uses radian or grad mode
B4 Mathematical error
B5 Error in manipulation of equation
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Fails to round off or rounds off incorrectly
S3 Obvious slip in reading tables or calculator
Attempts (3 marks)
A1 Any correct trigonometric ratio written down
A2 Some use of $\mathrm{Sin} / \mathrm{Cos} /$ Tan
A3 States relevant geometry e.g. 180° or Pythagoras
A4 Answer written down from (i)

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 Diagram reproduced with no modifications

