Coimisiún na Scrúduithe Stáit State Examinations Commission

MARKING SCHEME

JUNIOR CERTIFICATE EXAMINATION 2003

MATHEMATICS - ORDINARY LEVEL - PAPER 2 (300 marks)

GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions (-3)
- Slips - numerical errors (-1)
- Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled as B1, B2, B3,......, S1, S2, S3,...., M1, M2, etc. Note that these lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), it is essential to note that

- any correct relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2...etc.
4. The same error in the same section of a question is penalised once only.
5. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks only.
6. The phrase "and stops" means that no more work is shown by the candidate.
7. Special notes relating to the marking of a particular part of a question or question with symbol are indicated by an asterisk $*$ under solution box.

QUESTION 1

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 7
Part (a)	10 marks	Att 3

A ribbon of length 2.5 m is cut into two pieces. One piece measures 97 cm . What is the length of the other piece?

$$
\begin{aligned}
& 2.5 \mathrm{~m}=250 \mathrm{~cm} \\
& \text { or } \\
& 97 \mathrm{~cm}=0.97 \mathrm{~m} \\
& \text { Length }=250-97 \\
& =153 \mathrm{~cm} \\
& \text { Length }=2.5-0.97 \\
& =1.53 \mathrm{~m}
\end{aligned}
$$

* Correct answer without work merits 7 marks
* Answer $=94.5$ without work merits 4 marks

Blunders (-3)

B1 Incorrect conversion $\mathrm{m} \rightarrow \mathrm{cm}$ or $\mathrm{cm} \rightarrow \mathrm{m}$ or no conversion
B2 Divides 2.5 m by 2 and continues
B3 Adds instead of subtracts
Slips (-1)
S1 Numerical slips to a maximum of -3
S2 Leaves as $250-97$ or $2.5-0.97$

Misreadings (-1)

M1 Takes 2.5 m as ratio 2:5 and continues
Attempts (3 marks)
A1 Converts units and stops
A2 Divides either number by 2 and stops
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 Multiplies or divides both numbers
Notes: $\quad 99.5$ with work merits 4 marks (B1 + B3)
99.5 without work merits 0 marks

A person travels 48 km to work in the morning and returns home by the same route in the evening.
It takes 45 minutes to travel to work. Calculate the average speed in $\mathrm{km} / \mathrm{hr}$.

Speed	$=\frac{D}{T}$		
	$=\frac{48}{3 / 4}$ or $\frac{48}{0.75}$	or	
	$=64 \mathrm{~km} / \mathrm{hr}$		

* Correct answer without work merits 2 marks
* May use ratio method
* Do not penalise same error twice in section (b)

Blunders (-3)

B1 Incorrect relevant formula
B2 No division
B3 Mathematical error
B4 Error in converting $\mathrm{hr} / \mathrm{min}$ or no conversion
Slips (-1)
S1 Numerical slips to a maximum of -3
S2 $\frac{96}{45}$
Attempts (2 marks)
A1 Converts $\mathrm{min} / \mathrm{hr}$ or km / m and stops
A2 Correct formula only and stops
A3 Any relevant work
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

The person returns home at an average speed of $72 \mathrm{~km} / \mathrm{hr}$.
How many minutes does the journey home take?

$$
\begin{aligned}
\text { Time } & =\frac{D}{S} \\
& =\frac{48}{72} \text { or } 0 . \dot{6} \text { hr or } \frac{2}{3} \mathrm{hr} \\
& =40 \mathrm{mins}
\end{aligned}
$$

* Correct answer without work merits 2 marks
* Accept candidate's answer from part (i)
* Accept ratio method

Blunders (-3)

B1 Incorrect formula
B2 No division
B3 Mathematical error
B4 Error in converting $\mathrm{hr} / \mathrm{min}$ or no conversion, unless B4 applied in part (i)
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (2 marks)
A1 States $1 \mathrm{hr}=60 \mathrm{mins}$ and stops
A2 Correct formula only and stops
A3 Divides by 48
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

At what time should the person leave work in order to arrive home at 20:15?

$$
\begin{array}{rlrl}
\text { Time } & =20: 15-0: 40 & \text { or } & \\
& =19: 75-0: 40 \\
& =19: 35 & & =19: 35
\end{array}
$$

* Correct answer without work merits 7 marks
* Accept candidate's answer from part (ii)
* Accept answer in 12 hr clock format

Blunders (-3)
B1 Adds instead of subtracts
B2 Error in converting $\mathrm{hr} / \mathrm{min}$ or no conversion, unless B4 applied in part (i)
B3 Correctly subtracts arbitrary time other than answer (b) (ii)
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (3 marks)
A1 Converts hr/min and stops
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

A small pizza has diameter 20 cm . A large pizza has diameter 30 cm .
What is the area of the base of a small pizza, to the nearest cm^{2}.

	$=\pi r^{2}$
	$=3.14 \times 10^{2}$
	$=314 \mathrm{~cm}^{2}$

* Correct answer without work merits 7 marks
* Do not penalise same error twice in part (c)

Blunders (-3)
B1 Incorrect relevant formula e.g. $2 \pi \mathrm{r}^{2}, 2 \pi \mathrm{r}$
B2 Incorrect substitution
B3 Mathematical error e.g. $10^{2}=20$
B4 Value of π which does not give correct answer when rounded off
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Incorrect round off or no round off

Attempts(3)

A1 Some correct step and stops e.g. $\mathrm{r}=10$
A2 Product of two dimensions

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
Notes $\quad 20 \times 20$, or 20×30 merit attempt mark 400 or 600 without work merit 0 marks

What is the area of the base of a large pizza, to the nearest cm^{2}.

Area	$=\pi r^{2}$
	$=3.14 \times 15^{2}$
	$=706 \cdot 5$
	$\approx 707 \mathrm{~cm}^{2}$

* Correct answer without work merits 2 marks

Blunders (-3)
B1 Incorrect relevant formula
B2 Incorrect substitution
B3 Mathematical error e.g. $15^{2}=30$
B4 Value of π which does not give correct answer when rounded off
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Incorrect round off or no round off

Attempts(2)

A1 Some correct step and stops
A2 Product of two dimensions
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

What is the difference in area between one large pizza and two small pizzas?

1 large	$=707$
2 small	$=2 \times 314=628$
Difference	$=707-628=79 \mathrm{~cm}^{2}$

* Correct answer without work merits 2 marks
* Accept answers from previous parts

Blunders (-3)

B1 Adds instead of subtracts

Slips (-1)
S1 Numerical slips to a maximum of -3
S2 Uses area for 1 small pizza or 2 large pizzas

Attempts (2 marks)
A1 Indicates subtraction

Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 6
Part (c)	20 marks	Att 7
		Att 3

A ball, in the shape of a sphere, has radius 7 cm .
Taking π as $\frac{22}{7}$, calculate the surface area of the ball.

Area	$=4 \pi r^{2}$
	$=4 \times \frac{22}{7} \times 7^{2}$
	$=616 \mathrm{~cm}^{2}$

* Correct answer without work merits 7 marks

Blunders (-3)
B1 Incorrect relevant formula e.g. $2 \pi \mathrm{r}^{2}$
B2 Incorrect substitution
B3 Mathematical error e.g. $7^{2}=14$
B4 $\quad \pi \neq \frac{22}{7}$
Slips (-1)
S1 Numerical errors to a maximum of -3
Attempts (3 marks)
A1 Some correct step and stops
A2 Correct formula only and stops
A3 Relevant addition to a diagram e.g. r shown on diagram
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

An athletics track has a total length of 400 m . The track is made up of two parallel sides, $[a b]$ and $[c d]$, and two semi-circular ends as shown.
The diameters of the ends, $[a c]$ and $[b d]$, measure 28 m each.

Taking π as $\frac{22}{7}$, calculate the length of one of the semi-circular ends.

Length	$=\pi r$
	$=\frac{22}{7} \times 14$
	$=44 \mathrm{~m}$

* Correct answer without work merits 7 marks
* Do not penalise same error twice in part (b)
* If answer in part (i) >400 accept order of subtraction in part (ii)

Blunders (-3)

B1 Incorrect relevant formula
B2 Incorrect substitution
B3 Mathematical errors e.g. fraction
B4 $\quad \pi \neq \frac{22}{7}$
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (3 marks)
A1 Some correct step
A2 $r=14$ only and stops
A3 Correct formula only and stops
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

Calculate the length of the side $[a b]$.

2 ends $=44 \times 2=88$	
$2\|a b\|=400-88=312$	
$\|a b\|$	$=\frac{312}{2}$ or 156 m

* Correct answer without work merits 7 marks
* Accept answer from part (i)

Blunders (-3)
B1 Adds instead of subtracts
B2 Omits division by 2
B3 Uses one length only
B4 Uses 28 instead of answer (i) and continues
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (3 marks)
A1 Some subtraction from 400
A2 Division by 2 or multiplication by 2
A3 Any correct step
A4 Writes 200 and stops
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
Notes $\quad 400-28$ and stops merits attempt mark
$400-28$ and finishes correctly merits 4 marks

A rectangular carton full of fruit juice measures 12 cm by 6 cm by 33 cm . Find the volume of juice in the carton.

$$
\begin{aligned}
\text { Volume } & =1 \times \mathrm{bxh} \\
& =12 \times 6 \times 33 \\
& =2376 \mathrm{~cm}^{3}
\end{aligned}
$$

* Correct answer without work merits 4 marks. Special case

Blunders (-3)

B1 Incorrect relevant formula
B2 Incorrect substitution
B3 Mathematical error
Slips (-1)
S1 Numerical slips to a maximum of -3

Attempts (2 marks)

A1 Correct formula and stops
A2 Some correct substitution and stops
A3 Volume $=1+b+h$ and continues i.e $12+6+33=51$
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 Answer = 51 without work shown
Notes: $\quad 12^{3}=1728$ or $6^{3}=216$ or $33^{3}=35937$ merit 2 marks

The juice fills 18 cylindrical glasses exactly. Find the volume of each glass.

* Accept correct answer without work for full marks. Special case.
* Accept candidate's answer from part (i)

Blunders (-3)

B1 Multiplies instead of divides
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (2 marks)
A1 2376 ± 18
A2 Writes down answer from (i) and stops
Worthless (0)
W1 Incorrect answer without work e.g. 2394 or 2358

The radius of each glass is 3 cm . Calculate the height of each glass, correct to the nearest cm .

Volume $=\pi r^{2} h \quad$or Volume $=132$ $3 \cdot 14 \times(3)^{2} \times h$ $=132$$\quad$ or $\pi \mathrm{r}^{2} \mathrm{~h}=132$	
$h=\frac{132}{3 \cdot 14 \times 9}$	$=4 \cdot 67 \approx 5 \mathrm{~cm}$

* Correct answer without work merits 7 marks
* Accept candidate's answer from part (ii)

Blunders (-3)

B1 Incorrect relevant cylinder formula
B2 Incorrect substitution
B3 Mathematical error
B4 Transposing error
B5 Value of π which does not give correct answer when rounded off
Slips (-1)
S1 Numerical slips to a maximum of -3
S2 Incorrect round off or no round off

Attempts (3 marks)

A1 A correct substitution and stops e.g. $3.14 \times 3^{2} \times \mathrm{h}$
A2 Uses answer from (ii) e.g. $\frac{132}{3}$

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

QUESTION 3

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 8
Part (c)	20 marks	Att 7
		Att 3

Three children are aged 2, 5 and 11 years. Calculate their average age.

$$
\text { Qus Average } \begin{aligned}
& =\frac{\Sigma x}{n} \\
& =\frac{2+5+11}{3} \\
& =\frac{18}{3} \text { or } 6
\end{aligned}
$$

* Correct answer without work merits 9 marks. Special case.

Blunders (-3)

B1 Multiplies instead of adds e.g. $\frac{110}{3}$
B2 Incorrect divisor
B3 Omits a variable
B4 Inverted fraction

Slips (-1)
S1 Numerical errors to a maximum of -3

Attempts (3 marks)
A1 Writes 18 only and stops
A2 Partial addition and stops
A3 Idea of mean indicated e.g. $\frac{\sum x}{n}$
A4 "Median is 5" and stops
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

Notes \quad Writes $\frac{3}{18}=6$ merits 7 marks (B4)
Writes $\frac{3}{18}$ only merits attempt mark

Each student in a class studies one of the four languages: French, German, Spanish and Italian. The pie-chart represents the number of students that study each language.

What is the measure of the angle for German?

$$
\begin{array}{rlrl}
\text { Angle for German } \begin{aligned}
\left(150^{\circ}+60^{\circ}+30^{\circ}\right) & \text { or } 240^{\circ} \Rightarrow 360^{\circ}-240^{\circ}
\end{aligned}=120^{\circ} \\
\text { or } & 180^{\circ}-60^{\circ} & =120^{\circ}
\end{array}
$$

* Accept correct answer with no work
* Do not penalise same error twice in part (b)

Blunders (-3)

B1 Angle centre of circle $\neq 360^{\circ}$
B2 No subtraction
B3 Straight line angle $\neq 180^{\circ}$
Slips (-1)
S1 Numerical slips to a maximum of -3
S2 Each angle omitted to a maximum of -3
S3 Indicates sustraction i.e. $360^{\circ}-240^{\circ}$

Attempts (2 marks)

A1 Some addition
A2 States "Angle sum in triangle $=180^{\circ}$ " or similar
A3 States "Angle centre of circle $=360^{\circ}$ " or similar
A4 States "Straight line angle $=180^{\circ}$ " or similar
A5 Writes 60° or 30° or 150° and stops

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

10 students study French. How many students study Italian?

Number studying Italian	$=10=2$			
or or	$150^{\circ}=10$			
150°	$=10$			
1°	$=\frac{10}{150}$		$30^{\circ}=2$	
30°	$=$	$\frac{10}{150} \times 30$	$=$	2

* Accept correct answer with no work shown

Blunders (-3)
B1 Error in ratio method
B2 Mathematical error
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (2 marks)
A1 Some use of relevant data
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

How many students are in the class?

$$
\begin{aligned}
& \text { Number of students in the class } \quad 10,2,4,8 \Rightarrow 10+2+4+8=24 \\
& \text { or } 150^{\circ}=10 \quad \text { or } 30^{\circ}=2 \\
& 1^{\circ}=\frac{10}{150} \quad 1^{\circ}=\frac{2}{30} \\
& 360^{\circ}=\frac{10}{150} \times 360 \quad 360^{\circ}=\frac{2}{30} \times 360 \\
& =24=24
\end{aligned}
$$

* Accept correct answer with no work shown
* Accept candidate's answer from previous parts

Blunders (-3)
B1 Incorrect ratio method
B2 Mathematical error
B3 Omits more than one entry in addition
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Omits one entry in addition or one incorrect entry
Attempts (2 marks)
A1 Some addition
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

How many students do not study Spanish?

| | | | |
| :---: | :---: | :---: | :---: | :---: |
| Number of students not studying Spanish | 4 | \Rightarrow | $24-4=20$ |
| or | 360° | $=$ | 24 |
| | 60° | $=$ | 4 |
| Not Spanish | | $=$ | 20 |
| | | | |

* Accept any correct ratio method
* Accept correct answer with no work shown
* Accept candidate's answer from previous parts

Blunders (-3)

B1 Incorrect ratio method
B2 Gives answer for number studying Spanish
Attempts (2 marks)
A1 Any correct step
A2 Any relevant angle within scheme
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

The following gives the number of days that each of 30 pupils was absent during May:

1	0	2	3	1	0	0	4	5	5
6	5	3	2	0	5	1	0	4	5
3	2	3	6	5	4	3	6	6	0

Complete the following distribution table:

Number of days absent	0	1	2	3	4	5	6
Number of pupils	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{4}$

Slips (-1)
S1 Each incorrect or omitted frequency

Calculate the mean number of days absent per pupil during May.

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
& =\frac{(6 \times 0)+(3 \times 1)+(3 \times 2)+(5 \times 3)+(4 \times 3)+(6 \times 5)+(4 \times 6)}{6+3+3+5+3+6+4} \\
\text { or } & =\frac{0+3+6+15+12+30+24}{30} \\
& =\frac{90}{30} \text { or } 3
\end{aligned}
$$

* Correct answer without work merits 2 marks
* Accept candidate's values from table

Blunders (-3)
B1 Multiplies instead of adds in denominator e.g. $\frac{90}{19440}$
B2 Adds instead of multiplies in numerator e.g. $\frac{51}{30}$
B3 Incorrect denominator or no denominator e.g. $\frac{90}{7}$
B4 Inverted fraction
B5 Frequencies omitted in numerator e.g. $\frac{0+1+2+3+4+5+6}{30}=\frac{21}{30}$
B6 Omits two or more values in numerator
$\mathrm{B} 3+\mathrm{B} 5 \quad \frac{0+1+2+3+4+5+6}{7}$
Slips (-1)
S1 Numerical slips to a maximum of -3
S2 $\quad 6(0)=6$
S3 Omits one value in numerator

Attempts (2 marks)
A1 Mean $=\frac{\sum f x}{\sum f}$ and stops
A2 A relevant multiplication and stops
A3 Some correct work e.g. Σf
A4 Average of frequencies e.g. $\frac{6+3+3+5+3+6+4}{7}=\frac{30}{7}=4.3$
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

What percentage of the pupils were absent for three days or more?

$$
\text { Q1 } \begin{array}{ll}
\text { Number absent } & =5+3+6+4 \text { or } 18 \\
\text { Percentage } & =\frac{18}{30} \times 100=60 \%
\end{array}
$$

* Correct answer without work merits 2 marks
* Accept candidate's values from table

Blunders (-3)
B1 More than 3 days e.g. $13 \Rightarrow 43.3 \%$
B2 Exactly 3 days e.g. $5 \Rightarrow 16.7 \%$
B3 Less than 3 days e.g. $12 \Rightarrow 40 \%$
B4 Not more than 3 days e.g. $17 \Rightarrow 56.7 \%$
B5 Omits the 100 or divides by 100
B6 Multiplies by $\frac{30}{100}$ e.g 5.4%
Slips (-1)
S1 Numerical errors to a maximum of -3
Attempts (2 marks)
A1 Any correct step e.g. indicates x 100

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 8
Part (c)	20 marks	Att 8
		Att 3

Construct a triangle $p q r$ with $|p q|=10 \mathrm{~cm},|p r|=9 \mathrm{~cm}$ and $|q r|=7 \mathrm{~cm}$.
Label your diagram clearly.

* Accept base other than [pq]
* \quad Tolerance of $\pm 2 \mathrm{~mm}$ on sides
* Examiners must measure candidate's work

Blunders (-3)

B1 Each incorrect length i.e. outside tolerance
B2 Failure to complete triangle
Slips (-1)
S1 No labels on diagram
S2 Units other than cm

Attempts (3 marks)

A1 Pilot diagram drawn
Notes: \quad One side correct with labels merits 4 marks
$a b c d$ is a square. The midpoints of the sides are f, g, h and k as shown.
The diagonals intersect at o.

Name the image of $\Delta d k o$ under:
S_{o}, the central symmetry in the point o

$\Delta d k o$	\rightarrow	$\Delta b g o$

* Accept Δ bgo with points in any order
* \quad Accept $\mathrm{d} \rightarrow \mathrm{b}, \mathrm{k} \rightarrow \mathrm{g}, \mathrm{o} \rightarrow \mathrm{o}$
* Accept diagram with correct indication/shading

Blunders (-3)

B1 Each point whose image is not found or incorrectly found but note B2, B3, B4
B2 Correct image of $\Delta \mathrm{dko}$ under some other central symmetry (even on extended diagram)
B3 Correct image of Δ dko under some axial symmetry or translation
B4 Correct image of some other Δ under S_{0}

Attempts (2 marks)

A1 Shows some knowledge of central symmetry and stops
A2 A central symmetry not related to diagram or question
A3 Correct axial symmetry or translation on some other Δ
A4 States that image is a Δ
Worthless (0)
W1 Diagram reproduced without modification

Name the image of $\Delta d k o$ under:
$\mathrm{S}_{h f}$, the axial symmetry in the line $h f$

$\Delta d k o$	\rightarrow	$\Delta c g o$

* Accept Δ cgo with points in any order
* Accept d $\rightarrow \mathrm{c}, \mathrm{k} \rightarrow \mathrm{g}, \mathrm{o} \rightarrow \mathrm{o}$
* Accept diagram with correct indication/shading

Blunders (-3)

B1 Each point whose image is not found (or incorrectly found) but note B2, B3, B4
B2 Correct image of $\Delta \mathrm{dko}$ under some other axial symmetry (even on extended diagram)
B3 Correct image of $\Delta \mathrm{dko}$ under some central symmetry or translation
B4 Correct image of some other Δ under $\mathrm{S}_{h f}$, unless S1 applies
Slips (-1)
S1 Names image of answer part (i)

Attempts (2 marks)

A1 Shows some knowledge of axial symmetry and stops
A2 An axial symmetry not related to diagram or question
A3 Correct central symmetry or translation on some other Δ
A4 States that image is a Δ
Worthless (0)
W1 Diagram reproduced without modification

Notes:
S1
(ii) gives image of answer (b) (i) $\Rightarrow 4$ marks
(iii) gives image of answer (b) (ii) $\Rightarrow 5$ marks [Do not penalise twice]
(iv) gives image of answer (b) (iii) $\Rightarrow 5$ marks [Do not penalise twice]

Name the image of $\Delta d k o$ under:
$\mathrm{S}_{d b}$, the axial symmetry in the line $d b$
$\underset{\sim}{L} \Delta d k o \quad \rightarrow \quad \Delta d h o$

* Accept Δ dho with points in any order
* Accept d $\rightarrow \mathrm{d}, \mathrm{k} \rightarrow \mathrm{h}, \mathrm{o} \rightarrow \mathrm{o}$
* Accept diagram with correct indication/shading

Blunders (-3)

B1 Each point whose image is not found (or incorrectly found) but note B2, B3, B4
B2 Correct image of Δ dko under some other axial symmetry (even on extended diagram)
B3 Correct image of $\Delta \mathrm{dko}$ under some central symmetry or translation
B4 Correct image of some other Δ under $\mathrm{S}_{d b}$, unless S1 applies
Slips (-1)
S1 Names the image of answer part (ii)

Attempts (2 marks)

A1 Shows some knowledge of axial symmetry and stops
A2 An axial symmetry not related to diagram or question
A3 Correct central symmetry or translation on some other Δ
A4 States that image is a Δ
Worthless (0)
W1 Diagram reproduced without modification
W2 Answer given as ac

Name the image of $\Delta d k o$ under:
$\mathrm{S}_{a c}$, the axial symmetry in the line $a c$.

\mathscr{L}	$\Delta d k o$	\rightarrow	$\Delta b f o$

* Accept Δ bfo with points in any order
* Accept d $\rightarrow \mathrm{b}, \mathrm{k} \rightarrow \mathrm{f}, \mathrm{o} \rightarrow \mathrm{o}$
* Accept diagram with correct indication/shading

Blunders (-3)

B1 Each point whose image is not found (or incorrectly found) but note B2, B3, B4
B2 Correct image of $\Delta \mathrm{dko}$ under some other axial symmetry (even on extended diagram)
B3 Correct image of $\Delta \mathrm{dko}$ under some central symmetry or translation
B4 Correct image of some other Δ under $\mathrm{S}_{a c}$, unless S1 applies
Slips (-1)
S1 Names the image of answer part (iii)

Attempts (2 marks)

A1 Shows some knowledge of axial symmetry and stops
A2 An axial symmetry not related to diagram or question
A3 Correct central symmetry or translation on some other Δ
A4 States that image is a Δ
Worthless (0)
W1 Diagram reproduced without modification

Notes: \quad Answer $=\mathrm{db}$ merits 2 marks as b is correct ($*$ accept any order $)$
$[a b]$ is a diameter of the circle with centre c.
d is a point on the circle as shown.

Write down $|\angle a d b|$, and give a reason for your answer.

$$
\begin{array}{ll}
|\angle a d b|= & 90^{\circ} \\
\text { Reason: } & \\
\text { Angle in semi-circle or similar }
\end{array}
$$

* Accept right angle marked/indicated on diagram

Slips (-1)
S1 Correct answer without reason or incorrect reason
S2 Fills 55° on diagram as \angle adc and stops
Attempts (2 marks)
A1 States "Angle at centre = twice angle at circle standing on same arc" or similar and stops
A2 States "Straight line angle $=180^{\circ}$ " or similar and stops
A3 States "Angle sum in $\Delta=180^{\circ}$ " or similar
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 Diagram reproduced without modification

Given that $|\angle b d c|=35^{\circ}$, name another angle of 35°, and give a reason for your answer.

Name of angle:	\angle cbd or \angle abd
Reason:	Isosceles triangle or similar

* Accept angle marked/indicated on diagram

Blunders (-3)
B1 Names two other angles equal in measure
B2 Names $|\angle \mathrm{dcb}|=35^{\circ}$
Slips (-1)
S1 Correct answer without reason or incorrect reason
Attempts (2 marks)
A1 Reason only
Worthless (0)
W1 \quad Names $\mid \angle$ acd $\mid=35^{\circ}$

Write down $|\angle a c d|$, and give a reason for your answer.

$\|\angle a c d\|=$	70°
Reason:	
	$\|\angle d c b\|=110^{\circ}$ and straight line $=180^{\circ}$

* Accept correct answer marked/indicated on a diagram
* Accept correct answer and no work
* Accept candidate's answer from part (ii) but note W2

Blunders (-3)

B1 Shows $|\angle d c b|=110^{\circ}$ and stops
B2 \quad States $|\angle a c d|=2|\angle \mathrm{bdc}|$ or $2|\angle \mathrm{cb} d|$ and stops
B3 Sum of angles in $\Delta \neq 180^{\circ}$
B4 Error in transposition
B5 Uses $|\angle \mathrm{dcb}|=35^{\circ}$ and continues
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Correct answer with no reason or incorrect reason

Attempts (2 marks)

A1 States "straight line angle $=180^{\circ}$ " or similar
A2 States "angle sum of $\Delta=180^{\circ "}$ " or similar
A3 Any mention of isosceles Δ or exterior angle

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 Gives $\mid \angle$ acd $\mid=35^{\circ}$ in part (ii) and repeats answer in (iii)

Write down $|\angle c a d|$, and give a reason for your answer.

$\|\angle c a d\|=55^{\circ}$			
Reason:	$180^{\circ}-70^{\circ}$	$=$	
	$110^{\circ} \div 2$	$=50^{\circ}$	

* Accept correct answer marked/indicated on a diagram
* Accept correct answer and no work
* Accept candidate's answers from previous parts

Blunders (-3)

B1 Shows $|\angle d c b|=110^{\circ}$ and stops
B2 \quad States $|\angle a c d|=2|\angle \mathrm{bdc}|$ or $2|\angle \mathrm{cb} d|$ and stops
B3 Sum of angles in $\Delta \neq 180^{\circ}$
B4 Error in transposition
B5 Uses $|\angle \mathrm{dcb}|=35^{\circ}$ and continues
Slips (-1)
S1 Numerical errors to a maximum of -3
S1 Correct answer with no reason or incorrect reason

Attempts (2 marks)

A1 States "straight line angle $=180^{\circ}$ "
A2 States "angle sum of $\Delta=180^{\circ}$ "
A3 Any mention of isosceles Δ or exterior angle
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 6
		Att 3

Write down the coordinates of the point a.

Part (a)
10 marks
Att 3

$$
a(-3,2)
$$

* No penalty on brackets e.g. $-3,2$
* Accept $x=-3$ and $y=2$ written separately for full marks

Blunders (-3)

B1 Incorrect order in couple, (2,-3)
B2 Incorrect x ordinate if not sign error, subject to B1
B3 Incorrect y ordinate if not sign error, subject to B1
B4 $x=-3$ and stops or $y=2$ and stops

Slips (-1)
S1 Sign error x ordinate
S2 Sign error y ordinate
Attempts (3 marks)
A1 Draws line or segment through -3 and/or 2
Notes:

$$
\begin{array}{ll}
(-3,3): ~ B 3 ~ & (3,-2): S 1, ~ S 2 \\
(-3,0): ~ B 3 ~ & (3,0): S 1, ~ B 3
\end{array}
$$

$(2,3): B 2$, B3
$(-2,-3): B 2, B 3$
$(4,4):$ B2, B3
p is the point $(3,4)$ and q is the point $(-1,1)$. Find each of the following: the slope of $p q$

$$
\begin{aligned}
& \text { the slope of } p q \\
& \text { or } \quad=\frac{\text { vertical }}{\text { horizontal }} \\
& =\frac{1-4}{-1-3} \quad \text { or } \quad=\frac{4-1}{3--1} \quad \text { or vertical }=3 \quad \text { horizontal }=4 \\
& =\frac{-3}{-4} \text { or } \frac{3}{4} \quad=\frac{3}{4} \quad=\frac{3}{4}
\end{aligned}
$$

* Correct answer without work merits 7 marks
* Accept correct trigonometric method (i.e. $\operatorname{Tan} \theta=\frac{3}{4}$)

Blunders (-3)

B1 Incorrect slope formula e.g. $\frac{x_{2}-x_{1}}{y_{2}-y_{1}}$ or $\frac{y_{2}+y_{1}}{x_{2}+x_{1}}$ or $\frac{y_{2}-y_{1}}{x_{1}-x_{2}}$ or $\frac{\text { horizontal }}{\text { vertical }}$
or $\operatorname{Tan} \theta=\frac{\text { adjacent }}{\text { opposite }}$ and continues
B2 Incorrectly treats couples as $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ e.g. $\frac{1--1}{4-3}$ or $\frac{4-3}{1--1}$
B3 Mathematical error e.g. sign rules or $\frac{1}{-1} \pm \frac{4}{-3}$
B4x2 Uses $\frac{x_{1}-y_{1}}{x_{2}-y_{2}}$ and continues
B5 Gets the slope of op or oq correctly
B6 Error in more than one sign when substituting e.g. $\frac{1+4}{-1+3}$ or $\frac{4+1}{3+-1}$
Slips(-1)
S1 Numerical errors to a maximum of -3
S2 Error in one sign in slope formula e.g. $\frac{y_{2}-y_{1}}{x_{2}+x_{1}}$
S3 One incorrect substitution or sign when substituting e.g. $\frac{1+4}{-1-3}$
Attempts (3 marks)
A1 Tan $\theta=\frac{\text { opposite }}{\text { adjacent }}$ or $m=\frac{\text { vertical }}{\text { horizontal }}$ and stops
A2 Some correct substitution into formula with $x_{2}-x_{1}$ and/or $y_{2}-y_{1}$
A3 Point p and/or q plotted reasonably well for this part
Worthless (0)
W1 Uses wrong formula e.g. midpoint formula
W2 Correct formula only

$$
\text { the midpoint of } \begin{aligned}
{[p q] } & =\left(\frac{-1+3}{2}, \frac{1+4}{2}\right) & \text { or } & =\left(\frac{3+-1}{2}, \frac{4+1}{2}\right) \\
& =\left(\frac{2}{2}, \frac{5}{2}\right) \text { or }\left(1,2^{1 / 2}\right) & & =\left(\frac{2}{2}, \frac{5}{2}\right) \text { or }\left(1,2^{1 / 2}\right)
\end{aligned}
$$

* \quad Correct answer without work merits 2 marks
* Accept translation method
* No penalty on brackets e.g. $1,2 \frac{1}{2}$ is acceptable

Blunders (-3)

B1 Incorrect formula e.g. error in both signs $\left(\frac{x_{1}-x_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right)$ or $\left(\frac{x_{1}+y_{1}}{2}, \frac{x_{2}+y_{2}}{2}\right)$ or omits divisor 2
B2 Incorrectly treats couples as $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ if not already penalised
B3 Mathematical error e.g. sign rules or incorrect cancellation
B4 Two or more signs incorrect in substitution
B5 Reversal of coordinates i.e. $\left(2^{1} / 2,1\right)$
B6 One coordinate only worked out
B7 Uses one of the points given and some arbitary point e.g. $(3,4)$ and $(0,0)$
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Error in one sign in midpoint formula
S3 One incorrect substitution or sign when substituting e.g. $\left(\frac{-1-3}{2}, \frac{1+4}{2}\right)$
S4 Takes $(-1,1)$ as midpoint and finds extremity e.g. $(3,4) \rightarrow(-1,1) \rightarrow(-5,-2)$ or takes $(3,4)$ as midpoint and finds extremity e.g. $(-1,1) \rightarrow(3,4) \rightarrow(7,7)$

Attempts (2 marks)

A1 Some correct substitution
A2 Correct midpoint indicated on graph named or not
A3 Point p and/or q plotted reasonably well for this part
Worthless (0)
W1 Uses wrong formula e.g. slope or distance formula
Notes: \quad Answer $=\left(\frac{2}{2}+\frac{5}{2}\right)$ with work shown merits 4 marks: $(\mathrm{S} 2)$
the length of $[p q]=\sqrt{(-1-3)^{2}+(1-4)^{2}}$

or $\sqrt{(-4)^{2}+(-3)^{2}}$

$=\sqrt{16+9}=\sqrt{25}$ or 5

$$
\text { or } \begin{array}{ll}
& =\sqrt{(3--1)^{2}+(4-1)^{2}} \\
& \text { or } \sqrt{(3+1)^{2}+(4-1)^{2}} \\
& \text { or } \sqrt{(4)^{2}+(3)^{2}} \\
& =\sqrt{16+9}=\sqrt{25} \text { or } 5
\end{array}
$$

* Correct answer without work merits 2 marks
* Accept correct use of Pythagoras

Blunders (-3)

B1 Incorrect formula e.g. $\sqrt{\left(x_{2}-x_{1}\right)^{2}-\left(y_{2}-y_{1}\right)^{2}}$ or $\sqrt{\left(x_{2}+x_{1}\right)^{2}+\left(y_{2}+y_{1}\right)^{2}}$ or omits $\sqrt{ }$ or omits squares
B2 Incorrectly treats couples as $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ if not already penalised
B3 Mathematical error e.g. sign rules or $(4)^{2}=8$
B4 Two or more signs incorrect in substitution
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Error in one sign in $\left(x_{2}-x_{1}\right)$ or $\left(y_{2}-y_{1}\right)$ in formula
S3 One incorrect substitution or sign when substituting

Attempts (2 marks)

A1 Some correct substitution into formula with $x_{2}-x_{1}$ and/or $y_{2}-y_{1}$
A2 Point p and/or q plotted reasonably well for this part
A3 States Theorem of Pythagoras and stops
A4 Correct graphical solution
Worthless (0)
W1 Uses wrong formula e.g. midpoint formula

The point $(3, k)$ is on the line $2 x-3 y+6=0$. Find the value of k.

Find the value k

$$
\begin{aligned}
2(3)-3(k)+6 & =0 \\
{[6-3 k+6} & =0] \\
-3 \mathrm{k} & =-12 \\
k & =\frac{-12}{-3} \text { or } 4
\end{aligned}
$$

* Correct answer without work merits 7 marks
* Accept answer given as $\mathrm{y}=4$ with work shown

Blunders (-3)
B1 Substitutes $x=k$ and $y=3 \Rightarrow k=\frac{3}{2}$
B2 Mathematical error e.g. sign rules
B3 Incorrect transposition e.g. $\mathrm{k}=\frac{-12}{3}$
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Reads as $2 x+3 y+6=0$ and continues
Attempts (3 marks)
A1 Substitutes one value and stops
A2 Draws a line $\mathrm{x}=3$ or states $\mathrm{x}=3$ and/or $\mathrm{y}=\mathrm{k}$ and stops
A3 Some statement similar to "substituting in will satisfy the equation"
A4 Use of arbitrary value e.g. $\mathrm{x}=0$ or $\mathrm{y}=0$ with some correct work
A5 Any correct transposition of equation and stops e.g. $2 x-3 y=-6$
Worthless (0)
W1 Incorrect answer and no work shown

The line M has slope -2 and contains the point $(2,-3)$. Find the equation of M.

$$
\text { Equation of } \mathrm{M} \quad y-(-3)=-2(x-2) \text { or } y+3=-2(x-2) \text { or } 2 x+y-1=0
$$

Blunders (-3)

B1 Incorrect formula e.g. $y+y_{1}=m\left(x+x_{1}\right)$ or $x-x_{1}=m\left(y-y_{1}\right)$
B2 Switches x and y e.g. $\mathrm{y}-2=-2(\mathrm{x}-(-3))$
B3 Mathematical error e.g. sign rules
B4 Omits brackets e.g. $y+3=-2 x-2$ with no work shown
B5 $y=-2 x+c$ and stops
B6 Uses a point other than (2,-3) e.g. $(0,0)$
B7 $m \neq-2$
Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Error in one sign in formula
S3 One incorrect sign in substitution

Attempts (3 marks)

A1 Writes $\mathrm{m}=-2$ and stops
A2 States $\mathrm{y}=\mathrm{mx} \pm \mathrm{c}$ and stops
Notes: $\quad-3-y_{1}=-2\left(2-x_{1}\right)$ merits full marks
Say $7-(-3)=-2(5-2)$ merits attempt mark

QUESTION 6

Part (a)	10 marks	Att 4
Part (b)	20 marks	Att 6
Part (c)	20 marks	Att 6
Part (a) (i)	5 marks	Att 2

The triangle $a b c$ has measurements as shown.

Write down the value of $\cos A$.

$$
\cos A \quad=\quad \frac{4}{5} \quad \text { or } \quad 0.8
$$

* Accept $\cos \frac{4}{5}$ for full marks

Blunders (-3)
B1 Incorrect or inverted ratio e.g. $\cos A=\frac{5}{4}$
B2 Gets cos of top angle
Attempts (2 marks)
A1 Any correct trigonometric ratio written down
A2 Gives answer $=37^{\circ}$ exactly or rounded to 37°
A3 Gives answer $=0.9999025$
A4 States relevant geometry e.g. 180°
A5 \quad Answer $=0.81915$ or $\cos 35^{\circ}=0.81915$

Write down the value of $\tan A$.

$$
\tan A \quad=\quad \frac{3}{4} \quad \text { or } \quad 0.75
$$

* Accept consistent error from (i)

Blunders (-3)

B1 Incorrect or inverted ratio e.g. $\tan \mathrm{A}=\frac{5}{4}$
B2 Gets tan of top angle

Attempts (2 marks)

A1 Any correct trigonometric ratio written down
A2 Gives answer $=37^{\circ}$ exactly or rounded to 37° for this part
A3 \quad Gives answer $=0.0130907$
A4 States relevant geometry e.g. 180°
A5 \quad Answer $=0.7002$ or $\tan 35^{\circ}=0.7002$

A vertical building is 8 m high. It casts a shadow three times its height on horizontal ground.

Write down the length of the shadow.
$l=3 \times 8$ or 24 m

Blunders (-3)
B1 $\quad l=n \times 8, \quad n \neq 3$
B2 $\quad l=n x 3, \quad n \neq 8$
Slips (-1)
S1 Numerical slips to a maximum of -3
Attempts (3 marks)
A1 Multiples of 8 or 3 without work other than correct answer
A2 \quad Answer $=22 / 3$ without work
A3 Correct trigonometric ratio involving 8
A4 8 ± 3
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 11 or 5 without work

Find B, the angle of elevation of the sun, correct to the nearest degree.

$$
\text { Qut } \quad \begin{aligned}
\tan B & =\frac{\text { opposite }}{\text { adjacent }} \\
& =\frac{8}{24} \quad \text { or } \quad 0 \cdot \dot{3} \\
B & =18.43^{\circ} \approx 18^{\circ}
\end{aligned}
$$

* \quad Correct answer without work merits 7 marks
* Accept candidate's answer from part (i)

Blunders (-3)
B1 Incorrect trigonometric ratios but note W3 below
B2 No decimal point or misplaced decimal point
B3 Incorrectly uses radian or grad mode
B4 Incorrect manipulation of fraction
B5 Error in handling minutes \rightarrow degrees if top angle found first

Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Fails to round off or rounds off incorrectly
S3 Obvious slip in reading tables or calculator

Attempts (3 marks)

A1 Any correct trigonometric ratio written down
A2 States theorem of Pythagoras or uses it to find length of third side and stops

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 Diagram reproduced with no modifications
W3 Angle measured with protractor
W4 Value of Sin or $\operatorname{Cos}>1$

A vertical flagpole $[p q], 12 \mathrm{~m}$ high, is supported by a cable $[q r]$ as shown in the diagram.

Given that $|\angle q r p|=30^{\circ}$, find the length of the cable $[q r]$.

Length of cable [qr]
$\frac{\|p q\|}{\|q r\|}$
$\frac{12}{\|q r\|}=\sin \angle \mathrm{prq} 30^{\circ}$
$\|q r\|=24 \mathrm{~m}$

* Correct answer without work merits 7 marks

Blunders (-3)
B1 Incorrect trigonometric ratios
B2 No decimal point or misplaced decimal point
B3 Incorrectly uses radian or grad mode
B4 Incorrect manipulation of fraction or incorrect transposition
B5 Error in handling minutes \rightarrow degrees if top angle found first

Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Obvious slip in reading tables or calculator
S3 Calculates $|p r|$ correctly

Attempts (3 marks)

A1 Any correct trigonometric ratio written down
A2 Some use of $\operatorname{Sin} / \mathrm{Cos} /$ Tan
Worthless (0)
W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)

How far is r from p, the foot of the flagpole?
Give your answer correct to one decimal place.

Length \mid pr $\|$$\frac{\|p q\|}{\|p r\|}$ $=\tan 30^{\circ}$	or	$\|p r\|^{2}+\|p q\|^{2}=\|q r\|^{2}$
$\frac{12}{\|p r\|}=\tan 30^{\circ}$	$\|p r\|^{2}+12^{2}=24^{2}$	
$\|p r\|=20.784 \approx 20.8 \mathrm{~m}$		$\|p r\|=20.784 \approx 20.8$

* Correct answer without work merits 7 marks
* Accept other trigonometric ratios

Blunders (-3)

B1 Incorrect trigonometric ratios
B2 No decimal point or misplaced decimal point
B3 Incorrectly uses radian or grad mode
B4 Mathematical error e.g. $12^{2}=24$
B5 Incorrect transposition
B6 Incorrect use of Pythagoras

Slips (-1)
S1 Numerical errors to a maximum of -3
S2 Fails to round off or rounds off incorrectly
S3 Obvious slip in reading tables or calculator
S4 Calculates $|q r|$ correctly

Attempts (3 marks)
A1 Any correct trigonometric ratio written down
A2 Some use of $\operatorname{Sin} / \operatorname{Cos} /$ Tan
A3 States theorem of Pythagoras and stops

Worthless (0)

W1 Incorrect answer without work unless attempt mark applies (answer relevant to scheme)
W2 Diagram reproduced with no modifications

