# Coimisiún na Scrúduithe Stáit State Examinations Commission 

Junior Certificate 2013

## Marking Scheme

Mathematics

Higher Level

## Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.
Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

## Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

Coimisiún na Scrúduithe Stáit
State Examination Commission
Scrúdu An Teastais Shóisearaigh


# JUNIOR CERTIFICATE EXAMINATION MARKING SCHEME 

## MATHEMATICS PAPER 1

## HIGHER LEVEL

# MARKING SCHEME <br> JUNIOR CERTIFICATE EXAMINATION 2013 <br> MATHEMATICS - HIGHER LEVEL - PAPER 1 

## GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to a candidate's work as follows:

- Blunders - mathematical errors/omissions
- Slips- numerical errors
- Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5 \cdot 50$ may be written as $€ 5,50$.

| Part (a) | 15 marks | Att 5 |
| :--- | ---: | ---: |
| Part (b) | 20 marks | Att $(\mathbf{2 , 5})$ |
| Part (c) | 15 marks | Att $(3,2)$ |

## Part (a)

15 marks
Att 5
(a) Adam got 24 marks from a total of 30 marks in a class test.

What percentage mark did Adam get?

$$
\begin{aligned}
& \text { (a) } 15 \text { marks } \\
& \text { I } \quad \frac{24}{30} \text { (or equivalent e.g. } \frac{12}{15} \text { ) } \quad \mathbf{5 m} \\
& =\frac{2400}{30} \quad 12 \mathrm{~m} \\
& =80 \% \quad \mathbf{1 5 m} \\
& \text { II } \quad 6 \text { wrong }=\frac{6}{30} \quad \mathbf{5 m} \\
& \frac{6}{30} \times 100 \quad \mathbf{6 m} \\
& =\frac{600}{30} \quad 9 \mathrm{~m} \\
& =20 \% \quad \mathbf{1 2 m} \\
& \text { 100-20 12m } \\
& =80 \% \quad \mathbf{1 5 m}
\end{aligned}
$$

* Candidates need not necessarily show all steps for marks
* $\frac{24}{30}=\cdot 8$ and stops is 9 m


## Blunders (-3)

B1 Correct answer, no work shown
B2 Decimal error
B3 Incorrect operation
B4 Inversion
B5 Incorrect divisor, but note B4
B6 Incorrect multiplier, but note B4
B7 Fails to calculate final step

## Slips (-1)

S1 Numerical errors, to a maximum of 3

## Misreadings (-1)

M1 Misreads a number, providing it does not oversimplify the question

Attempts (5 marks)
A1 Mentions 100
A2 Intention to divide
A3 $20 \%$ only, no work shown
A4 $\frac{24}{30} \frac{12}{15} \quad \frac{8}{10} \quad \frac{4}{5}$ or $\cdot 8$ or equivalent only, no work shown
A5 Some knowledge of percentages
A6 Any relevant work of merit

## Worthless (0)

W1 Incorrect answer, no work shown, but note attempts
W2 Irrelevant operation e.g. 30-24 and stops
W3 Work of no merit
(i) Place the following numbers in order, starting with the smallest number:

$$
4^{1 / 2}, \quad 4^{-2}, \quad 2^{0}, \quad 2^{-3}
$$

(ii) By rounding correct to the nearest whole number, estimate the value of

$$
\frac{7 \cdot 72}{2 \cdot 35}+(3 \cdot 4)^{2}\left(\frac{8 \cdot 65}{2 \cdot 9}-\sqrt{1 \cdot 49}\right)
$$

Then, evaluate

$$
\frac{7 \cdot 72}{2 \cdot 35}+(3 \cdot 4)^{2}\left(\frac{8 \cdot 65}{2 \cdot 9}-\sqrt{1 \cdot 49}\right)
$$

correct to one decimal place.
(b) (i)

5 marks
Att 2
$4^{1 / 2}=2,4^{-2}=\frac{1}{16}, \quad 2^{0}=1, \quad 2^{-3}=\frac{1}{8}$.
2m

In order, starting with smallest: $\quad 4^{-2}, 2^{-3}, 2^{0}, 4^{1 / 2}$
5m
$=\begin{array}{ccccc}16\end{array}, \frac{1}{8}, 1, \quad 2 \quad \mathbf{5 m}$
$=0 \cdot 0625,0 \cdot 125,1, \quad 2 \quad \mathbf{5 m}$

* Candidates may decide not to consistently use fractions or decimals.

Accept correct equivalents in order.

* No hand symbol, not necessary to show work


## Blunders (-3)

B1 Omits a term
B2 Misplaced term
B3 Decimal error
B4 Index error, once if consistent
B5 Mathematical error

## Misreading(-1)

M1 Starts with largest number and moves to smallest
M2 Misreads a digit, providing it does not oversimplify the question

## Attempts ( 2 marks)

A1 Finds decimal or fraction or whole number equivalent of one given term
A2 Power of $\frac{1}{2}=$ square root
A3 Some increasing terms
A4 Any relevant step

## Worthless (0 marks)

W1 Merely rewrites the original list, with no work of merit
W2 Incorrectly works out term(s) only
W3 No work of merit
(b) (ii)
b)

Estimate

$$
\begin{aligned}
& \frac{8}{2}+3^{2}\left(\frac{9}{3}-\sqrt{1}\right) \\
& 4+9(3-1) \\
& 4+9(2) \\
& 4+18 \\
& =22
\end{aligned}
$$

Evaluate:
$\frac{7 \cdot 72}{2 \cdot 35}+(3 \cdot 4)^{2}\left(\frac{8 \cdot 65}{2 \cdot 9}-\sqrt{1 \cdot 49}\right)$
Given

$$
\begin{aligned}
& 3 \cdot 285106383+11 \cdot 56(2 \cdot 982758621-1 \cdot 220655562) \\
& 3 \cdot 285106383+11 \cdot 56(1 \cdot 762103059) \\
& 3 \cdot 285106383+20 \cdot 36991136 \\
& 23 \cdot 65501775 \\
= & 23 \cdot 7
\end{aligned}
$$

* Two parts to mark: Estimate 5m and Evaluate 10m
* Consistent errors are penalised once only in (b)(ii)


## Estimate

Blunders (-3)
B1 Correct answer, no work shown
B2 Precedent error
B3 Mishandles square root
B4 Incorrect squaring
B5 Mathematical error
B6 Calculates first, then rounds

## Slips (-1)

S1 Numerical errors to a maximum of 3
S2 Incorrect rounding to a maximum of 3

## Misreadings (-1)

M1 Misreads a digit, providing it does not oversimplify the question
Attempts ( 2 marks)
A1 Some correct rounding
A2 Any correct step without rounding

## Worthless (0)

W1 Incorrect answer, no work shown
W2 $23 \cdot 7$ or 24 without work
W3 Work of no merit

## Evaluate

Blunders (-3)
B1 Correct answer, no work shown
B2 Precedent error
B3 Mishandles square root
B4 Incorrect squaring
B5 Mathematical error
B6 Decimal error
Slips (-1)
S1 Numerical errors to a maximum of 3
S2 Early decimal rounding, once if consistent, otherwise to a maximum of 3
S3 Incorrect or no rounding of final answer
Misreadings (-1)
M1 Misreads a digit, providing it does not oversimplify the question
Attempts ( 3 marks)
A1 Rounds to whole numbers and continues
A2 Any relevant step e.g. squaring, multiplying, square root etc.
Worthless (0)
W1 Incorrect answer, no work shown
W2 Rounds to whole numbers and stops, note A1
W3 Work of no merit

Ciara invested $€ 30000$ for three years at $3 \%$ per annum compound interest.
(i) Calculate the amount of the investment at the end of two years.

At the end of two years a sum of money was withdrawn. The money which remained amounted to $€ 12181.81$ at the end of the third year.
(ii) Calculate the sum of money withdrawn at the end of two years.

## (c) (i)

10 marks
Att 3

$$
\begin{aligned}
& \text { I } \mathrm{P}_{1}=€ 30000 \\
& \mathrm{I}_{1}=€ 30000 \times \frac{3}{100} \\
& \mathrm{I}_{1}=€ 900 \\
& \mathrm{P}_{2}=€ 30000+€ 900=€ 30900 \\
& \mathrm{I}_{2}=€ 30900 \times \frac{3}{100} \text { (or } € 900+€ 900 \times \frac{3}{100} \text { or } € 900 \times \frac{103}{100} \text { ) } \\
& \mathrm{I}_{2}=€ 927 \\
& \mathrm{~A}=€ 30900+€ 927 \\
& \mathrm{~A}=€ 31827
\end{aligned}
$$

II $P_{2}=€ 30000 \times \frac{103}{100}=€ 30900$
$\mathrm{A}=€ 30900 \times \frac{103}{100}$
$\mathrm{A}=€ 31827$

$$
\text { III } \begin{array}{rlrl}
A & =P\left(1+\frac{r}{100}\right)^{\mathrm{n}} & F=P(1+i)^{\mathrm{t}} \\
A & =30000\left(1+\frac{3}{100}\right)^{2} & & F=30000(1+\cdot 03)^{2} \\
A & =30000(1 \cdot 03)^{2} & & F=30000(1 \cdot 03)^{2} \\
A & =30000(1 \cdot 0609) & & \\
A & =€ 31827 & & .
\end{array}
$$

Blunders (-3)
B1 Correct answer, no work shown
B2 Decimal error
B3 Incorrect operation
B4 Inversion
B5 Mathematical error
B6 One error in formula
B7 Precedent error
B8 Incorrect substitution, once only
B9 Index error
B10 Fails to calculate final step

Slips (-1)
S1 Numerical errors to a maximum of 3
Misreadings (-1)
M1 Misreads a digit provided it doesn't oversimplify the question
Attempts (3 marks)
A1 Simple interest ( $I=€ 1800$ and /or $A=€ 31800$ with work)
A2 Identifies any of the following: $P=€ 30000, i=\cdot 03, r=3, t$ or $n=2$
A3 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown (e.g. €1800 or $€ 31800$, but note A1)
W2 No work of merit

| I | 103\% |  | $€ 12181 \cdot 81$ |
| :---: | :---: | :---: | :---: |
|  | 1\% |  | $€ 12181 \cdot 81 \div 103=€ 118 \cdot 27$ |
|  | 100\% |  | $€ 118.27 \times 100$ |
|  |  |  | €11 827 |
|  | Withdrawn |  | €31 827 - €11 827 |
|  |  |  | €20 000 |
| II | €12 181.81 | $=$ | $P(1+.03)^{1}$ |
|  | $€ 12181.81$ - | $03=$ | $P$ |
|  | €11 827 | $=$ | $P$ |
|  | Withdrawn | $\rightarrow$ | €31 827 - €11 827 |
|  |  |  | €20 000 |
| III | Amount withdrawn $=x$ |  |  |
|  | €12 181.81 | $=(3$ | $827-x)+\cdot 03(31827-x)$ |
|  | $€ 12181 \cdot 81$ | $=31$ | $827-x+954.81-0.03 x$ |
|  | €12 181.81 | $=32$ | $781.81-1.03 x$ |
|  | €12 181.81 | 32781 | $\cdot 81=-1 \cdot 03 x$ |
|  | - € 20600 | $=-1$ | .03x |
|  | € 20600 | $=1$ | 03x |
|  | € 20600 - | $=x$ |  |
|  | € 20000 | $=\mathrm{A}$ | mount withdrawn |

* Use candidate's investment amount from (c) (i)


## Blunders (-3)

B1 Correct answer, no work shown, note *
B2 Decimal error
B3 Incorrect operation, each time
B4 Inversion
B5 Mathematical error
B6 Incorrect substitution
B7 Fails to complete final step e.g. stops at $€ 31827 \cdot 00-€ 11827 \cdot 00$ (methods I and II)
Slips (-1)
S1 Numerical slip to a maximum of 3
Misreadings (-1)
M1 Misreads a digit provided it does not oversimplify the question

Attempts ( 2 marks)
A1 11827 or 118.27 without work
A2 Mentions 103 or $100+3$
A3 $12181 \cdot 81$ divided
A4 Answer (c)(i) - $€ 12181 \cdot 81$
A5 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown; note A1
W2 100 mentioned only
W3 No work of merit

## QUESTION 2

| Part (a) | $\mathbf{1 0}$ marks | Att 3 |
| :--- | ---: | ---: |
| Part (b) | $\mathbf{2 5}$ marks | Att (3,3,2) |
| Part (c) | 15 marks | Att (2,2,2) |

## Part (a)

10 marks
Att 3
The lengths of two pieces of timber are in a ratio of $5: 2$.
The larger piece measures 250 mm .
25 Find the length of the shorter piece.
(a)

10 marks
Att 3


* No need to mention $\frac{5}{7}$ and/or $\frac{1}{7}$ and/or $\frac{2}{7}$ in finding solution


## Blunders (-3)

B1 Correct answer, no work shown
B2 $250 \div 7$ and continues (gives an answer of $71 \cdot 43$ )
B3 Inversion ( $\times \frac{5}{2}$, gives answer 625)
B4 Fails to calculate final step
Slips (-1)
S1 Numerical errors to a maximum of 3
Misreadings (-1)
M1 Misreads a digit providing it does not oversimplify the question
Attempts ( 3 marks)
A1 $250 \div 5$ or $250 \times 2$ and stops
A2 Divides 250 by 5, 2 or 7 only and stops
A3 7 or 350 or 50 with no work
A4 Some relevant step
Worthless (0)
W1 Incorrect answer, no work shown

Each week David is paid $€ 14$ per hour for the first 35 hours worked and $€ 21$ per hour for any hours worked after that.
(i) Last week he worked 38 hours. Calculate his gross pay for last week.

The standard rate of income tax is $20 \%$ and the higher rate is $41 \%$.
The standard rate cut-off point is $€ 230$ per week and he has a tax credit of $€ 62$ per week.
(ii) Calculate David's take-home pay after tax has been deducted.
(iii) What percentage of his gross pay is his take-home pay?

Give your answer correct to the nearest whole number.
(b) (i)

10 marks
Att 3

| Gross pay for week: | $€ 14 \times 35$ | and/or | $€ 21 \times 3$ | $\mathbf{3 m}$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | $€ 490$ | and/or | $€ 63$ | $\mathbf{4 m}$ |  |
|  | $€ 490$ | + | $€ 63$ |  | $\mathbf{7 m}$ |
|  | $=\quad € 553$ |  |  | $\mathbf{1 0 m}$ |  |

## Blunders (-3)

B1 Correct answer, no work shown
B2 Decimal error
B3 Incorrect operation
B4 Mathematical error
B5 Fails to calculate final step

## Slips (-1)

S1 Numerical error to a maximum of 3

## Misreadings (-1)

M1 Misreads a digit providing it does not oversimplify the question

## Attempts ( 3 marks)

A1 $€ 14 \times 35$ and/or $€ 21 \times 3$ only
A2 Any relevant step

## Worthless (0)

W1 Incorrect answer, no work shown
W2 No work of merit
(b) (ii)

| Tax: | $\begin{aligned} & \text { €230@ 20\% } \\ & \text { €323@ 41\% } \end{aligned}$ | $=$ | $\begin{aligned} & \hline € 46 \\ & € 132.43 \end{aligned}$ | ${ }_{\mathbf{4 m}}^{\mathbf{3 m}} \boldsymbol{f} \text { Interchangeable }$ |
| :---: | :---: | :---: | :---: | :---: |
| Gross tax: |  | = | $€ 46+€ 132 \cdot 43$ |  |
|  |  | = | €178.43 | 4m |
| Tax credit: <br> Tax paid: |  | = | €62 | Given |
|  |  | = | €178.43-€62 | 4m |
|  |  | = | €116.43 | 7m |
| Take home pay: |  | $=$ | $€ 553-€ 116.43$ | 7 m |
|  |  | = | $€ 436.57$ | 10m |

Use candidate's gross pay figure from (b)(i)
Blunders (-3)
B1 Correct answer, no work shown, note *
B2 Decimal error
B3 Incorrect operation
B4 Inversion (\%)
B5 Mathematical error
B6 Mishandles tax credits
B7 €323 @ 20\% and/or €230 @ 41\%
B8 Fails to complete final step. Stops at $€ 116.43$ or $€ 553$ - $€ 116.43$
Slips (-1)
S1 Numerical error to a maximum of 3
Misreadings (-1)
M1 Uses 21\%
M2 Uses 40\%
M3 Misreads a digit, providing it does not oversimplify the question
Attempts ( 3 marks)
A1 $553-230$ or 323 or indication of subtraction and stops
A2 Gets 20\%
A3 Gets 41\%
A4 Mentions 100
A5 Shows some knowledge of tax credits $e . g$. writes "Tax payable $=$ total tax minus tax credits"
A6 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown
W2 $553+230$ or $€ 783$ and stops
W3 No work of merit
(b) (iii)

5 marks
Att 2
Take home pay as a percentage:

| $\frac{436.57}{53} \times 100$ |  |  |  |
| :--- | :--- | :--- | :--- |
| $=$ |  |  |  |
| $=789 \times 100$ | or | $0.789457504 \times 100$ | $\mathbf{2 m}$ |
| $=78.9 \%$ | or | 78.9457504 | $\mathbf{4 m}$ |
| $=79 \%$. |  |  | $\mathbf{5 m}$ |

Accept candidate's figures from (b)(i) and (b)(ii)
Blunders (-3)
B1 Correct answer no work shown, note *
B2 Decimal error
B3 Does not multiply by 100
B4 Inversion
B5 Mathematical error
B6 Incorrect gross pay or take home pay used, but note M1
B7 Stops at $\cdot 789 \times 100$ or $\cdot 789457504 \times 100$

## Slips (-1)

S1 Fails to round or rounds incorrectly
S2 Numerical errors to a maximum of 3

## Misreadings (-1)

M1 Misreads a digit providing it does not oversimplify the question

## Attempts ( 2 marks)

A1 $\frac{436 \cdot 57}{553}$ or $\cdot 79$ (or candidate's equivalent) and stops
A2 $\frac{436.57}{553} \times 100$ (or candidate's equivalent) and stops.
A3 Mentions 100
A4 Some relevant step

## Worthless (0)

W1 Incorrect answer no work shown; note attempts
W2 7.9 or $\cdot 7$ without work
W3 No work of merit

A survey was carried out in a class to find which of the films A, B or C the students had seen.
The following data was collected:
$42 \%$ saw film A $\quad 41 \%$ saw film B $45 \%$ saw film C
$12 \%$ saw both A and B $18 \%$ saw both B and C $15 \%$ saw both A and C
$15 \%$ saw none of these films.
(i) Represent this information on a Venn diagram.
(ii) What percentage of the students in the class saw all three films?
(iii) What percentage of the students in the class saw two or more of the films?
(c) (i)

5 marks
Att 2
1


* The Venn diagram can be considered as work
* Follow candidate's work closely
* Circles may be positioned differently


## Blunders (-3)

B1 Each incorrect or missing term to a maximum of 3 (8 terms to check)
Slips (-1)
S1 Universal box not drawn

## Misreadings (-1)

M1 Misreads a digit, providing it does not oversimplify the question
Attempts (2 marks)
A1 Any correct entry
A2 Arbitrary value of $x$ selected
A3 Three intersecting circles
A4 Mentions $x$
A5 Any relevant step
A6 Oversimplification

## Worthless (0)

W1 Two intersecting circles only with/without Universal box; note A1
W2 Universal box only
W3 No work of merit

I $\quad 15+x+12-x+11+x+15-x+x+18-x+12+x+15=100$
$98+x=100$
$x=2 \%$

5m

II Reads from Diagram II

$$
x=2 \%
$$

* Accept candidate's values from (c)(i)


## Blunders (-3)

B1 Correct answer, no work shown, Method 1
B2 \# $U$ not equal to 100
B3 Missing element from previous work in forming equation
B4 Transposition error
B5 Mathematical error
B6 Adds unlike terms
Slips (-1)
S1 Numerical error, to a maximum of 3

## Misreadings (-1)

M1 Misreads a digit providing it does not oversimplify
Attempts (2 marks)
A1 Any correct term in forming equation and stops
A2 Any effort to combine terms from Venn Diagram
A3 Any correct step
Worthless (0)
W1 Incorrect answer, no work shown
W2 No work of merit

Two or more films:
I
$(12-x)+(15-x)+(18-x)+(x) \quad \mathbf{2 m}$
$(12-2)+(15-2)+(18-2)+(2)$
$10+13+16+2$
$=41 \%$
II
$(12-x)+(15-x)+(18-x)+(x) \quad \mathbf{2 m}$
$12-x+15-x+18-x+x$
$12-x+15-x+18-x+x$
$45-2 x$
45-2 (2)
45-4
41\%
5m
III
$10+13+16+2$
$=41 \%$
2m
5m

* Accept candidate's expressions from (c)(i)
* Accept candidate's value of $x$ from (c)(ii)


## Blunders (-3)

B1 Correct answer, no work shown, but note both *
B2 Omits a term
B3 Includes a non relevant term
B4 Uses incorrect $x$ value
B5 Precedent error
Slips (-1)
S1 Numerical errors to a maximum of 3
Misreadings (-1)
M1 Misreads a digit, proving it does not oversimplify the question

## Attempts (2 marks)

A1 Imports $12-x$ and/ or $15-x$ and/or $18-x$ and/or $x$ or candidate's equivalent from (c)(i)
A2 Imports $x=2 \%$ or candidate's equivalent from (c)(ii)
A3 Some correct substitution
A4 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown
W2 No work of merit

| Part (a) | $\mathbf{1 0}$ marks | Att 3 |
| :--- | ---: | ---: |
| Part (b) | $\mathbf{2 0}$ marks | Att $(\mathbf{3 , 2 , 2 )}$ |
| Part (c) | 20 marks | Att $(\mathbf{2 , 5})$ |

$$
3 x-[5-(x-3)]=6
$$

## (a) 10 marks

Att 3


* $\quad x=3 \cdot 5$ fully verified is 10 m


## Blunders (-3)

B1 Correct answer, no work shown
B2 Decimal error
B3 Incorrect operation
B4 Inversion
B5 Mathematical error
B6 Transposition error
B7 Distribution error
B8 Omits a term
B9 Sign error
B10 Fails to complete final step
Slips (-1)
S1 $x=\frac{14}{4}$ and stops
S2 Numerical errors to a maximum of 3
Misreadings (-1)
M1 Misreads a digit providing it does not oversimplify the question

Attempts ( 3 marks)
A1 Removes brackets
A2 Correct transposition
A3 Effort to isolate $x$
A4 Some relevant step
Worthless (0)
W1 Incorrect answer, no work
W2 No work of merit
Part (b)
(i) Find the largest possible value of $n$ such that

$$
5 n+48>8 n-6, n \in \mathbb{N}
$$

(ii) $x$ represents an even number. Explain why $x+2$ is the next even number.
(iii) If one third of the smaller even number is subtracted from half of the larger even number the result is 8 .
Find the value of $x$.
(b) (i)

| 10 marks |  |  | Att 3 |  |
| :---: | ---: | ---: | ---: | ---: |
| $\mathbf{3 m}$ | $48+6>8 n-5 n$ |  |  |  |
| $\mathbf{4 m}$ |  |  |  |  |
| $\mathbf{7 m}$ | 54 | $>$ | $3 n$ |  |
| $\mathbf{9 m}$ | 18 | $>$ | $n$ |  |
| $\mathbf{1 0 m}$ | $n$ | $=$ | 17 |  |

Blunders (-3)
B1 Correct answer, no work shown
B2 Sign error
B3 Mishandles inequality
B4 Inversion e.g. $\frac{3}{54}$ or 0.05555 ; S1 may also apply
B5 Mathematical error
B6 Transposition error
Slips (-1)
S1 Does not or cannot deduce correct value of $n$

## Misreadings (-1)

M1 Misreads a digit, provided it does not oversimplify the question

## Attempts ( 3 marks)

A1 Treats as equation and gets $n=18$ and stops
A2 Tests at least 3 values for $n$
A3 Some relevant step
Worthless (0)
W1 Incorrect answer, no work shown
(b) (ii)

Two reasons: next and even

- two is the smallest even number
- when two even numbers are added, the result is an even number or divisible by 2 etc
* Two reasons $=5 \mathrm{~m}$, one reason $=4 \mathrm{~m}$
* Note for candidates answering through the medium of Irish:

There is an error in the translation of "even number" in the Irish version of the paper. Therefore any candidate who has difficulty with part (ii) or part (iii) because of this error should be awarded full marks.

## Attempts ( 2 marks)

A1 Some understanding of even numbers e.g. lists 2, 4, 6
Worthless (0)
W1 No understanding demonstrated
W2 No work of merit

$$
\begin{array}{llll}
\frac{x+2}{2}-\frac{x}{3} & = & 8 & \mathbf{2 m} \\
\frac{3(x+2)-2(x)}{(2)(3)} & = & 8 & \\
\frac{3 x+6-2 x}{6} & = & 8 & \\
3 x+6-2 x & = & 6(8) & \\
x+6 & = & 48 & \\
x & = & 48-6 & \mathbf{2 m} \\
x & = & 42 & \mathbf{5 m}
\end{array}
$$

Correct trial and error fully verified is 5 m
Blunders (-3)
B1 Correct answer, no work shown
B2 Sign error in setting up equation
B3 Expression not equal to 8
B4 Incorrect/mishandles denominator(s)
B5 Incorrect/mishandles numerator(s)
B6 Transposition error
B7 Distribution error
B8 Mathematical error
B9 Fails to complete final step
Slips (-1)
S1 Numerical errors, to a maximum of 3
Misreadings (-1)
M1 Misreads a digit, providing it does not oversimplify the question
Attempts (2 marks)
A1 Uses $=8$
A2 Uses $\frac{1}{3}$ and/or $\frac{1}{2}$
A3 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown
W2 No work of merit
(i) Given that $a^{2}=\frac{b c^{2}+a+c}{b}$,
show that $b=\frac{1}{a-c}$.
(ii) If $a=1 \frac{1}{2}$ and $c=2 \frac{1}{3}$, find the value of $b$.
(c) (i)

5 marks
Att 2
I $b a^{2}=b c^{2}+a+c$
2m
$b a^{2}-b c^{2}=a+c$
$b\left(a^{2}-c^{2}\right)=a+c$
$b=\frac{a+c}{a^{2}-c^{2}}$
$b=\frac{a+c}{(a+c)(a-c)}$
$b=\frac{1}{a-c}$
5m

## Blunders (-3)

B1 Error in cross multiplying
B2 Distribution error
B3 Transposition error
B4 Inversion
B5 Does not or cannot isolate $b$ by factorising
B6 Error in establishing factors of $a^{2}-c^{2}$
B7 Does not or cannot cancel terms
B8 Mathematical error

## Misreadings (-1)

M1 Misreads, provided it does not oversimplify the question
Attempts ( 2 marks)
A1 Cross multiplies and stops
A2 Oversimplifies
A3 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown
W2 No work of merit


Blunders (-3)
B1 Correct answer, no work shown
B2 Sign error
B3 Mathematical error
B4 Mishandles numerator/denominator
B5 Incorrect substitution, note S3
B6 Does not substitute into equations given in (c)(i)
Slips (-1)
S1 Numerical error, to a maximum of 3
S2 Uses $c=2 \cdot 3$
S3 Swaps $a$ and $c$ when substituting
S4 $\quad b=\frac{-138}{115}$ or equivalent and stops
Misreadings (-1)
M1 Misreads a digit, providing it does not affect final answer
Attempts (5 marks)
A1 Some correct substitution
A2 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown
W2 $\frac{3}{2}, \frac{7}{3}, 1 \cdot 5,2 \cdot 3$ or $2 \cdot 33$ and stops
W3 No work of merit


## Blunders (-3)

B1 Correct answer, no work shown
B2 Incorrect common denominator
B3 Mishandles common denominator
B4 Mishandles numerator
B5 Distribution error
B6 Mathematical error
B7 Fails to combine like terms in final answer
Slips (-1)
S1 Numerical slips to a maximum of 3
Misreadings (-1)
M1 Misreads a digit, provided it does not oversimplify the question
M2 Reads middle sign as minus and continues
Attempts (3 marks)
A1 Correct common denominator and stops
A2 No denominator used
A3 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown
W2 Adds across to get $\frac{1}{9}$ or similar
W3 No work of merit
(i) Factorise $8 x^{2}-12 x$.
(ii) Factorise $4 x^{2}-12 x+9$.
(iii) Simplify $\frac{8 x^{2}-12 x}{4 x^{2}-12 x+9}$.
(b) (i)

5 marks
Att 2

$$
4 x(2 x-3)
$$

* Accept correct answer for full marks. No work required, no
* Note minus solution $-4 x(-2 x+3)$ for 5 marks:
* Accept with or without brackets for 5 marks:

$$
\begin{aligned}
& (4 x) \text { and }(2 x-3) \\
& (4 x) \text { or }(2 x-3) \\
& (4 x),(2 x-3)
\end{aligned}
$$

* Quadratic equation formula method is subject to slips and blunders


## Blunders (-3)

B1 An incorrect factor
B2 Not fully factorised e.g. $2 x(4 x-6)$
B3 Mathematical error e.g. $2 x \pm(4 x-6)$

## Attempts (2 marks)

A1 Indication of common factor " 4 " or " $2 x$ " etc. or underlining $x$ terms and stops
A2 Some correct factoring
A3 Any relevant step
Worthless (0)
W1 Work of no merit
W2 ( ) ( )

I

$$
\begin{aligned}
& 4 x^{2}-12 x+9 \\
& 4 x^{2}-6 x-6 x+9 \\
& 2 x(2 x-3)-3(2 x-3) \\
& (2 x-3)(2 x-3) \\
& \text { or }(2 x-3)^{2}
\end{aligned}
$$

II
$\begin{aligned} & 4 x^{2}-12 x+9 \\ & 2 x \\ & 2 x\end{aligned}>-3 \begin{aligned} & -3 \\ & -3\end{aligned}$
$(2 x-3)(2 x-3)$
or $(2 x-3)^{2}$

* Accept correct answer for full marks. No work required, no
* Note minus solution $(-2 x+3)(-2 x+3)$ for 10 marks
* Accept with or without brackets for 10 marks

$$
\begin{aligned}
& (2 x-3) \text { and }(2 x-3) \\
& (2 x-3) \text { or }(2 x-3) \\
& (2 x-3),(2 x-3)
\end{aligned}
$$

* Quadratic equation formula is subject to slips and blunders. $x=\frac{3}{2}$ and stops is 3 m


## Blunders (-3)

B1 Incorrect factors of $4 x^{2}$. B3 may also apply
B2 Incorrect factors of 9. B3 may also apply
B3 Factors leading to an incorrect middle term
B4 Each incorrect common factor and continues (applies to guide number method)
B5 Correct cross method but factors not written
Slips (-1)
S1 Numerical errors to a maximum of 3
Misreadings (-1)
M1 Misreading, provided it does not oversimplify the question

## Attempts (3 marks)

A1 Quadratic equation formula with some correct substitution.
A2 Attempts to find factors of 9 or 4 or $4 x^{2}$ or $x^{2}$
A3 $\sqrt{ } 9$ or $\sqrt{ } 4$
A4 Identifies the guide number (36) and stops
A5 Any relevant step

## Worthless (0)

W1 $9 \div 2=4 \cdot 5$ and stops
W2 States $4 \div 2=2$
W3 No work of merit
(b) (iii)

| $\frac{4 x(2 x-3)}{(2 x-3)(2 x-3)}$ | $\mathbf{2 m}$ |
| :--- | :--- |
| $=\frac{4 x}{(2 x-3)}$ | $\mathbf{5 m}$ |

Accept candidate's answers from (b)(i) and (b)(ii)

## Blunders (-3)

B1 Correct answer, no work shown, note *
B2 Mathematical error
B3 Does not or cannot cancel
B4 Fails to complete final step
Attempts (2 marks)
A1 Attempt to use answer(s) from (b)(i) and/or (b)(ii)
A2 Some effort at factorising
A3 Sets up division
A4 Any relevant step
Worthless (0)
W1 No work of merit.

A teacher checks out the cost of calculators for her students on two websites, C and D.
On website C, for $€ 480$, she can get a class set of calculators, one for each student.
On website D, for the same price, she can get 4 extra calculators.
If $x$ represents the number of students in her class,
(i) write an expression in $x$ for the cost per calculator on website C and an expression in $x$ for the cost per calculator on website D.

The cost per calculator on website D is $€ 6$ cheaper than the cost per calculator on website C.
(ii) Use this information to form an equation in $x$ and solve it to find the number of students in the class.
(c) (i)

$$
10(5,5) \text { marks }
$$

Att (2,2)

$$
\begin{array}{rlr}
\text { Cost on website C } & =\frac{480}{x} & \mathbf{5 m} \\
\text { Cost on website D } & =\frac{480}{x+4} & \mathbf{5 m}
\end{array}
$$

* Accept correct answers for full marks. No work required, no
* 2 expressions: Cost on website $\mathbf{C}$ and Cost on website $\mathbf{D}$ to mark separately: 5 m each


## Cost on website $\mathbf{C}$

Blunders (-3)
B1 Inversion $\frac{x}{480}$
Attempts ( 2 marks)
A1 Any combination of $x$ and 480
A2 Division indicated
A3 Any relevant step
Worthless (0 marks)
W1 No work of merit
Cost on website D

## Blunders (-3)

B1 Inversion $\frac{x+4}{480}$ Do not penalise again, if already penalised above
B2 Uses $\frac{480}{x} \pm 4$
Attempts ( 2 marks)
A1 Any combination of $x$ with 4 and/or 480
A2 Division indicated
A3 Any relevant step
Worthless (0 marks)
W1 No work of merit

* Mark in 2 parts: 5 m for establishing an equation and 5 m for solving
* Writing correct equation considered work but for solution $x=16$ algebraic work required to earn full marks.
* Accept candidate's answers from previous work but note A1


## Equation

Blunders (-3)
B1 Sign error
B2 Mathematical error
Attempts (2 marks)
A1 Attempt to form equation in $x$
Worthless (0)
W1 Work of no merit

## Solving

Blunders (-3)
B1 Correct answer, no work shown
B2 Incorrect factors
B3 Sign error
B4 Mathematical error
B5 Error in using quadratic
B6 Transposition error
Slips (-1)
S1 Numerical errors to a maximum of 3
S2 Fails to conclude
Misreadings (-1)
M1 Misreads a digit, provided it does not oversimplify the question
Attempts (2 marks)
A1 Solves or attempts to solve linear equation is 2 marks at most
A2 Correct trial and error, fully verified
A3 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown
W2 $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ with no relevant substitution
W3 No work of merit

## QUESTION 5

| Part (a) | 15 marks | Att 5 |
| :--- | ---: | ---: |
| Part (b) | 20 marks | Att $\mathbf{( 5 , 2 )}$ |
| Part (c) | 15 marks | Att $(\mathbf{2 , 2 , 2})$ |

Part (a) 15 marks Att 5

L2 $g(x)=\sqrt{5 x-2}, x \in \mathbb{N}$. Find $g(2)$.
Give your answer in the in the form $a \sqrt{a}, a \in \mathbb{N}$.

|  |  | $\mathbf{1 5}$ marks | Att $\mathbf{5}$ |
| :--- | :--- | :--- | :--- | :--- |
| $g(2)$ | $=$ | $\sqrt{5(2)-2}$ | $\mathbf{5 m}$ |
|  | $=$ | $\sqrt{10-2}$ | $\mathbf{9 m}$ |
|  | $=$ | $\mathbf{1 2 m}$ |  |
|  | $=2 \sqrt{2}$ | $\mathbf{1 5 m}$ |  |

## Blunders (-3)

B1 Correct answer, no work shown
B2 Solves $\sqrt{5 x-2}=2\left(x=\frac{6}{5}\right.$, also incurs B7)
B3 Multiplication error
B4 Sign error
B5 Mathematical error
B6 Square root error
B7 Does not present answer in required form
Slips (-1)
S1 Numerical error to a maximum of 3
Misreadings (-1)
M1 Misreads a digit, provided it does not oversimplify the question

## Attempts (5 marks)

A1 States $x=2$ and stops
A2 Substitutes $x=2$ and stops
A3 Any relevant step
Worthless (0)
W1 Squares or tries to square $\sqrt{5 x-2}$
W2 Incorrect answer, no work shown
W3 No work of merit
(i) Solve the equation $x^{2}=3 x+2$.

Give your answers correct to two decimal places.
(ii) Hence, or otherwise, find two values for $p$ for which $p=3 \sqrt{p}+2$.

Give your answers correct to one decimal place.
(b) (i)

15 marks
Att 5

$$
\begin{aligned}
& x^{2}-3 x-2=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=1, \quad b=-3, \quad c=-2 \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(-2)}}{2(1)} \\
& x=\frac{3 \pm \sqrt{9+8}}{2} \\
& x=\frac{3 \pm \sqrt{17}}{2} \\
& x=\frac{3 \pm 4 \cdot 123105626}{2} \\
& x=\frac{7.123105626}{2} \\
& x=3.561552813 \\
& x=
\end{aligned}
$$

* One error in writing formula is a blunder; two errors in writing formula, with some correct substitution, is Attempt 5m


## Blunders (-3)

B1 Correct answer, no work shown
B2 Decimal error
B3 Incorrect operation
B4 Transposition error
B5 Mathematical error
B6 Error in squaring
B7 Error in formula
B8 Substitution error
B9 Sign error
B10 Does not find $\sqrt{17}$ or is unable to find square root of number
B11 Incorrect division
B12 One solution only with work, S2 may apply
Slips (-1)
S1 Numerical errors to a maximum of 3
S2 Fails to round or rounds incorrectly, each time

Misreadings (-1)
M1 Misreads a digit provided it does not oversimplify the question
Attempts (5 marks)
A1 Any correct substitution
A2 Identifies $a=1$ and/or $b=-3$ and/or $c=-2$
A3 Correct transposition
A4 Any relevant step
A5 Oversimplification, solves $x^{2}+3 x+2=0$
A6 One solution, e.g. $3 \cdot 56$ or similar, without work
Worthless (0)
W1 Incorrect answer, no work shown
W2 $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ and stops
W3 No work of merit
(b) (ii)

| Take $\sqrt{p}$ | $=x$ |  | $\mathbf{2 m}$ |
| ---: | :--- | ---: | :--- | :--- |
| $p$ | $=x^{2}$ |  | $\mathbf{2 m}$ |
| $p$ | $=3.56^{2}$ | $\left[\right.$ or $\left.(-0.56)^{2}\right]$ | $\mathbf{2 m}$ |
| $p$ | $=12.6736$ | $\left[\begin{array}{cl}\text { or } & 0.3136\end{array}\right]$ | $\mathbf{4 m}$ |
| $p$ | $=12.7$ | $\left[\begin{array}{ll}\text { or } & 0.3\end{array}\right]$ | $\mathbf{5 m}$ |

* $\quad 12 \cdot 7$ is the only valid solution to $p=3 \sqrt{p}+2$

As two solutions were asked for, do not penalise candidates if both solutions are offered.

* Accept candidate's answers from (b)(i)


## Blunders (-3)

B1 Correct answer, no work shown, note $2^{\text {nd }} *$
B2 Squaring error
B3 Mathematical error
Slips (-1)
S1 Answer not given to one decimal place
S2 Incorrect or no rounding

## Misreadings (-1)

M1 Misreads a digit, providing it does not oversimplify the question
Attempts ( 2 marks)
A1 Imports answer(s) from (b)(i)
A2 Squaring
A3 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown
W2 No work of merit

The diagram below shows part of the graph of the function

$$
f: x \rightarrow x^{2}+b x+c \text {, where } x \in \mathbb{R} \text { and } b, c \in \mathbb{Z}
$$


(i) The graph cuts the $x$ axis at $(-3,0)$ and $(1,0)$, as shown in the diagram.

Calculate the value of $b$ and the value of $c$.
(ii) The graph has a minimum point at $(-1,-4)$.

Write down the equation of the axis of symmetry of the function in the form $x=k$, where $k \in \mathbb{Z}$.
(iii) Show that $f(x+1)=x^{2}+4 x$.
(c)(i)

I
Roots: $\quad x=-3$ and $x=1$

$$
f(x)=\quad(x+3)(x-1)=0
$$

$$
f(x)=x^{2}+2 x-3=0
$$

$$
\begin{array}{ll}
f(x)= & x^{2}+b x-c=0 \\
\rightarrow & b=2 \text { and } c=-3 .
\end{array}
$$

II $f: x \rightarrow x^{2}+b x+c$

$$
\begin{array}{ll}
(-3,0) & 0=(-3)^{2}+b x+c \\
& (-3)^{2}+b(-3)+c=0 \\
& 9-3 b+c=0 \\
& -3 b+c=-9
\end{array}
$$

$f: x \rightarrow x^{2}+b x+c$
$(1,0) \quad 0=(1)^{2}+b(1)+c$

$$
\begin{aligned}
& (1)^{2}+b+c=0 \\
& 1+b+c=0 \\
& b+c=-1
\end{aligned}
$$

$$
\begin{aligned}
-3 b+c & =-9 \\
b+c & =-1 \\
3 b-c & =9 \\
b+c & =-1 \\
4 b & =8 \\
b & =8 \div 4 \\
b & =2 \\
b+c & =-1 \\
2+c & =-1 \\
c & =-1-2 \\
c & =-3
\end{aligned}
$$

III
Graph cuts y axis at $(0,-3)$
$f: x \rightarrow x^{2}+b x+c$

$$
\begin{aligned}
& (0)^{2}+b(0)+c=-3 \\
& c=-3
\end{aligned}
$$

$(-3,0) \quad 0=(-3)^{2}+b(-3)-3$

$$
\begin{aligned}
& (-3)^{2}+b(-3)-3=0 \\
& 9-3 b-3=0
\end{aligned}
$$

$$
-3 b+6=0
$$

$$
-3 b=0-6
$$

$$
-3 b=-6
$$

$$
3 b=6
$$

$$
b=6 \div 3
$$

$$
b=2
$$

or
$(1,0) \quad(1)^{2}+b(1)-3=0$

$$
1+b-3=0
$$

$$
b-2=0
$$

$$
b=2
$$

* $\quad$ States $\mathrm{c}=-3$ OR $b=2$ and stops, no work shown, is 4 m
* Other points may be used in Methods II or III e.g. $(-4,5),(-2,-3),(0,-3)(2,5)$


## Blunders (-3)

B1 Correct answer, no work shown
B2 Sign error
B3 Incorrect substitution
B4 Inversion
B5 Mathematical error
B6 Squaring error
B7 Transposition error
B8 Solves for one unknown only
B9 Distribution error

## Slips (-1)

S1 Numerical error, to a maximum of 3
S2 Fails to correctly identify $b$ and/or $c$ in Method 1

## Misreadings (-1)

M1 Misreads a digit, providing it does not affect final answer
Attempts ( 2 marks)
A1 Some correct substitution
A2 Incorrect value created for one unknown and used to find second unknown, but note *
A3 States $x=-3$ or $x=1$ and stops
A4 One or two simplified equations and stops
A5 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown
W2 No work of merit
(c) (ii)

5 marks
Att 2
Axis of symmetry: $x=-1$

* Check graph

Blunders (-3)
Slips (-1)
S1 $x+1=0$
S2 -1 only, omits $x=$
Attempts ( 2 marks)
A1 $x=-4$
A2 Draws axis of symmetry on graph, equation not written
A3 $x+1$
A4 States any point on the axis of symmetry e.g. $(-1,3)$
A5 Work of merit
Worthless (0)
W1 Incorrect answer with no work
W2 Draws horizontal line on graph
W3 No work of merit

$$
\begin{array}{rlrl}
f(x)=x^{2}+2 x-3 & & \mathbf{2 m} \\
f(x+1)=(x+1)^{2}+2(x+1)-3 & \mathbf{2 m} \\
& =x^{2}+2 x+1+2 x+2-3 & \mathbf{2 m} \\
& =x^{2}+4 x & \mathbf{5 m}
\end{array}
$$

* Accept candidate's values of $b$ and $c$ from (c)(i)
* If candidate did not have correct $b$ and $c$ value(s) in (c)(i) and now used the correct values without showing work, apply Blunder (-3)

Blunders (-3)
B1 No expansion of $(x+1)^{2}$ shown
B2 Squaring error
B3 Incorrect or incomplete substitution
B4 Distribution error
B5 Not in correct form
B6 Mathematical error
Slips (-1)
S1 Numerical errors to a max of -3
S2 Invalid conclusion
Misreadings (-1)
M1 Misreads a digit, providing it does not oversimplify the question
Attempts (2 marks)
A1 Some correct substitution
A2 Some correct squaring or multiplication
A3 Any relevant step
Worthless (0)
W1 No work of merit

QUESTION 6

| Part (a) | 5 marks | Att 2 |
| :--- | :---: | ---: |
| Part (b) | 35 marks | Att $(\mathbf{2 , 5 , 5})$ |
| Part (c) | 10 marks | Att $(\mathbf{2 , 2})$ |

A rectangular site, with one side facing a road, is to be fenced off.
The side facing the road, which does not require fencing, is $l \mathrm{~m}$ in length.
The sides perpendicular to the road are $x \mathrm{~m}$ in length.
The length of fencing that will be used to enclose the rest of the site is 140 m .

(a) Write an expression, in terms of $x$, for the length $(l)$ of the side facing the road.

## (a)

5 marks
Att 2
2 widths +1 length
2m
Fence $=2$ widths +1 length
2 widths +1 length $=140$
$2 x+l=140 \quad 2 m$
$l=140-2 x \quad \mathbf{5 m}$

## Blunders (-3)

B1 Correct answer, no work shown
B2 Incorrect operation
B3 Transposition error
B4 Uses $2 l+2 x=140$ and continues correctly
B5 Mathematical error

## Slips (-1)

S1 $\quad x$ not used. Answer given as: length $=140-2$ widths
S2 w used instead of $x$
S3 $2 l+x=140 \rightarrow l=\frac{140-x}{2}$ or $l=70-\frac{\mathrm{x}}{2}$

## Misreadings (-1)

M1 Expresses $x$ in terms $l$ to give $x=\frac{140-l}{2}$ or similar
M2 Misreads a digit, providing it does not oversimplify the question

## Attempts (2 marks)

A1 Any effort to add length and width
A2 Width $=l$
A3 Length $=x$
A4 Perimeter formula only
A5 Some relevant use of $x$ or $l$ or 140
A6 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown
W2 Area formula
W3 Reproduced diagram
W4 No work of merit
Part (b)
$35(5,15,15)$ marks
Att (2,5,5)
(i) Show that the area of the site, in $\mathrm{m}^{2}$, is $-2 x^{2}+140 x$.
(ii) Let $f$ be the function $f: x \rightarrow-2 x^{2}+140 x$.

Evaluate $f(x)$ when $x=0,10,20,30,40,50,60,70$.
Hence, draw the graph of $f$ for $0 \leq x \leq 70, x \in \mathbb{R}$.
(b)(i)

5 marks
Att 2
Area of the site $=$ length $\times$ width $\mathbf{2 m}$
$=l \times x \quad \mathbf{2 m}$
$=(140-2 x)(x) \quad \mathbf{2 m}$
$=-2 x^{2}+140 x \quad \mathbf{5 m}$
Accept value of $l$ from (a)

## Blunders (-3)

B1 Mathematical error
B2 Fails to finish
Slip(-1)
S1 Invalid conclusion

## Misreadings (-1)

M1 Misreads a digit, providing it does not oversimplify the question
Attempts (2 marks)
A1 Area formula
A2 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown
W2 Copies diagram
W3 Work of no merit

| $f: x \rightarrow-2 x^{2}+140 x$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ |  |  |  |  |  |  |  |  | $\mathbf{~ G i v e n ~}$

$11 f: x \rightarrow-2 x^{2}+140 x$

$$
\begin{array}{lll}
f(0) & \rightarrow-2(0)^{2}+140(0) \rightarrow-2(0)+140(0)=0+0 & =0 \\
f(10) \rightarrow-2(10)^{2}+140(10) \rightarrow-2(100)+1400=-200+1400 & =1200 \\
f(20) \rightarrow-2(20)^{2}+140(20) \rightarrow-2(400)+2800=-800+2800 & =2000 \\
f(30) \rightarrow-2(30)^{2}+140(30) \rightarrow-2(900)+4200=-1800+4200 & =2400 \\
f(40) \rightarrow-2(40)^{2}+140(40) \rightarrow-2(1600)+5600=-3200+5600 & =2400 \\
f(50) \rightarrow-2(50)^{2}+140(50) \rightarrow-2(2500)+7000=-5000+7000 & =2000 \\
f(60) \rightarrow-2(60)^{2}+140(60) \rightarrow-2(3600)+8400=-7200+8400 & =1200 \\
f(70) \rightarrow-2(70)^{2}+140(70) \rightarrow-2(4900)+9800=-9800+9800 & =0
\end{array}
$$

III

| $\boldsymbol{x}$ | $\mathbf{0}$ | $\mathbf{1 0}$ | $\mathbf{2 0}$ | $\mathbf{3 0}$ | $\mathbf{4 0}$ | $\mathbf{5 0}$ | $\mathbf{6 0}$ | $\mathbf{7 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $-2 x^{2}$ | 0 | -200 | -800 | -1800 | -3200 | -5000 | -7200 | -9800 |
| $+140 x$ | 0 | +1400 | +2800 | +4200 | +5600 | +7000 | +8400 | +9800 |
| $\boldsymbol{f}(\boldsymbol{x})$ | $\mathbf{0}$ | $\mathbf{1 2 0 0}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 4 0 0}$ | $\mathbf{2 4 0 0}$ | $\mathbf{2 0 0 0}$ | $\mathbf{1 2 0 0}$ | $\mathbf{0}$ |

* If values do not appear here, check graph. If graph is correct, marks awarded are part (i)

12 m and part (ii) 15 m .

* Middle lines of table do not have to be shown
* Consistent errors in rows/columns attract a maximum deduction of minus 3
* Candidates may choose not to use a table


## Blunders (-3)

B1 Error in calculating $-2 x^{2}$, once only, note A3. Methods II and III
B2 Error in calculating +140x, once only. Methods II and III
B3 Mathematical error in $f(x)$ row Methods II and III
B4 Each incorrect value, without work. Method I
B5 Each missing $f(x)$ value
B6 If a table is used, adds in domain row when evaluating $f(x)$ value, once if consistent
B7 Mathematical errors in calculation, once if consistent

Slips (-1)
S1 Numerical errors to a maximum of 3
Misreadings (-1)
M1 Misreads a digit, provided it does not oversimplify the question
Attempts (5 marks)
A1 Any correct value for $f(x)$
A2 Some correct substitution
A3 Oversimplification, linear
A4 Some relevant step
Worthless (0)
W1 Table with no relevant work
W2 Work of no merit


* Graph constitutes work in this question
* Use candidate's $f(x)$ values from (b)(i)


## Blunders (-3)

B1 Incorrect scaling, apply once
B2 Points not joined to form curve or joined in incorrect order, once only
B3 Graph not extended to include full domain, once only
B4 Reversed co-ordinates plotted against non reversed axes or similar, once only

## Slips (-1)

S1 Each point plotted incorrectly, 8 points to check, must have one correct or attempt only
S2 Each missing point 8 points to check, must have one correct or attempt only
Attempts (5 marks)
A1 Draws axes, with some indication of scaling
A2 Some effort to plot a point
A3 Linear graph
A4 Any relevant step
Worthless (0)
W1 Work of no merit

Use your graph from part (b) to estimate:
(i) the maximum possible area of the site
(ii) the area of the site when the road frontage $(l)$ is 30 m long.
(c) (i)

5 marks
Att 2
Maximum possible area of the site: c. 2450

* Answer of 2450 must be clearly stated for full marks
* Accept value from candidate's graph in (b)(ii)
* Tolerance of 50


## Blunders (-3)

B1 Reads from incorrect axis
B2 $f(35)=-2(35)^{2}+140(35)=-2(1225)+140(35)=-2450+4900=2450$, graph not used
B3 Indicated on graph, but no statement of value of maximum possible area
B4 Indicated correctly on graph but incorrect statement of value of maximum possible area
B5 Outside of tolerance
Slips (-1)
S1 Writes maximum point instead of maximum value
Attempts ( 2 marks)
A1 Indicates maximum on graph
A2 Indication of $x=35$
A3 States maximum is highest point or turning point without any further work of merit
A4 Any relevant step
Worthless (0)
W1 Incorrect answer, no work shown
W2 No work of merit

When $l=30$

$$
\begin{array}{ll}
l=140-2 x & \mathbf{2 m} \\
30=140-2 x \\
30-140=-2 x \\
-110=-2 x \\
110=2 x \\
110 \div 2=x \\
x=55 \\
& \\
\rightarrow \text { Area: } \\
f(55) \text { from graph }=1650 & \mathbf{5 m} \\
\hline
\end{array}
$$

Graph must be used to find area

* Answer of 1650 must be clearly stated for full marks
* Accept value from candidate's graph in (b)(ii)
* Tolerance of 50


## Blunders (-3)

B1 Correct answer, no work shown
B2 Mathematical error
B3 Incorrect substitution
B4 Transposition error
B5 Sign error
B6 $f(55)=-2(55)^{2}+140(55)=-2(3025)+140(55)=-6050+7700=1650$, graph not used
B7 Indicated on graph, but no statement of value of area
B8 Indicated correctly on graph but incorrect statement of value of area
B9 Finds $f(x)$ from graph, where $x \neq 55$
B10 Outside of tolerance
B11 Reads from incorrect axis
B12 Begins with $x=55$, but reads $f(x)$ value before line touches graph
B13 $x=55$ with work and stops
Slips (-1)
S1 Numerical error, to a maximum of 3
S2 Writes co-ordinates instead of $y$ value

## Misreadings (-1)

M1 Misreads a digit, provided it does not oversimplify equation
Attempts ( 2 marks)
A1 Imports $l$ value from (a)
A2 Some correct substitution
A3 Indicates 55 on graph
A4 States $x=55$
A5 Any relevant step

## Worthless (0)

W1 Incorrect answer, no work shown
W2 Area $=$ length $\times$ width only
W3 No work of merit

Coimisiún na Scrúduithe Stáit
State Examination Commission
Scrúdu An Teastais Shóisearaigh


# JUNIOR CERTIFICATE EXAMINATION MARKING SCHEME 

# MATHEMATICS (PROJECT MATHS - PHASE 1) PAPER 2 

## HIGHER LEVEL

Liam's garden is in the shape of a square. It has four equal right-angled triangular lawns and a smaller square patio in the centre, as shown.
(a) Find the length of the hypotenuse of one of the right angled triangular lawns.


$$
\begin{aligned}
& h^{2}=a^{2}+b^{2} \\
& \text { Length }=\sqrt{12^{2}+5^{2}}=13 \mathrm{~m}
\end{aligned}
$$

(b) Find the area of one of the triangular lawns.

$$
\text { Area }=\frac{1}{2}(12)(5) \quad=\quad 30 \mathrm{~m}^{2}
$$

(c) Find the area of the square patio in the middle.

$$
\begin{aligned}
\text { Area of patio }=13^{2} & =169 \mathrm{~m}^{2} \\
& \text { or } \\
\text { Area of patio } & =17^{2}-(4 \times 30)=169 \mathrm{~m}^{2}
\end{aligned}
$$

(d) The patio is to be paved with rectangular flagstones of length 80 cm and width 50 cm .

Calculate the number of flagstones Liam needs to buy to cover the patio, allowing an extra $20 \%$ for waste.
Area of flagstone $=0.8 \times 0.5=0.4 \mathrm{~m}^{2}$
Number of flagstones $=\frac{169}{0.4}=422.5 \quad$ (or 423)

Extra $20 \%=422.5 \times 0.2=84.5$ or $120 \%=422.5 \times 1.2$
Total number of flagstones $=507$
or
Extra $20 \%=423 \times 0.2=84.6$ or $120 \% \quad=\quad 423 \times 1 \cdot 2$
Total number of flagstones $=507 \cdot 6$
or
Area to cover $=169 \times 1 \cdot 2=202 \cdot 8$
Total number of flagstones $=\frac{202 \cdot 8}{0 \cdot 4}=507$

## Question 2

The ages of the 30 people who took part in an aerobics class are as follows:

| 18 | 24 | 32 | 37 | 9 | 13 | 22 | 41 | 51 | 49 |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| 15 | 42 | 37 | 58 | 48 | 53 | 27 | 54 | 42 | 24 |
| 33 | 48 | 56 | 17 | 61 | 37 | 63 | 45 | 20 | 39 |

The ages of the 30 people who took part in a swimming class are as follows:

| 16 | 22 | 29 | 7 | 36 | 45 | 12 | 38 | 52 | 13 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 33 | 41 | 24 | 35 | 51 | 8 | 47 | 22 | 14 | 24 |
| 42 | 62 | 15 | 24 | 23 | 31 | 53 | 36 | 48 | 18 |

(a) Represent this data on a back-to-back stem-and-leaf diagram.

|  | Aerobics class |  |  |  |  |  |  | Swimming class |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  | 9 | 0 | 7 | 8 |  |  |  |  |  |
|  |  |  | 8 | 7 | 5 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 8 |  |
|  |  | 7 | 4 | 4 | 2 | 0 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 9 |
|  | 9 | 7 | 7 | 7 | 3 | 2 | 3 | 1 | 3 | 5 | 6 | 6 | 8 |  |
| 9 | 8 | 8 | 5 | 2 | 2 | 1 | 4 | 1 | 2 | 5 | 7 | 8 |  |  |
|  |  | 8 | 6 | 4 | 3 | 1 | 5 | 1 | 2 | 3 |  |  |  |  |
|  |  |  |  |  | 3 | 1 | 6 | 2 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | Key: 1 | 1 | 5 | means 15 |  |  |  |

(b) Use your diagram to identify the median in each case.

Aerobic median: $\quad \frac{37+39}{2}=38$
Swimming median: $\frac{29+31}{2}=30$
(c) What other measure of central tendency could have been used when examining this data?

Mean or Mode
(d) Based on the data make one observation about the ages of the two groups.

An older age group take Aerobics class or
A younger age group take Swimming class
or
Similar

The arrows represent the different routes that a skier can take when skiing down a mountain.
The circles on the diagram represent different points on the routes.
(a) When leaving any particular point on the mountain a skier is equally likely to choose any of the available routes from that point. Fill in the boxes in the diagram which represent the probability that the skier will take that route.

(b) (i) If the skier starts at point $A$, in how many different ways can the skier reach the point $E$ ?

1. $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{E}$
2. $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$
$\}$
3. $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$
3 ways
(ii) If the skier starts at point $A$, find the probability that the skier will reach the point $E$.
4. $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
5. $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{3}=\frac{1}{12}$
6. $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{3}=\frac{1}{12}$

$$
\left\{\begin{aligned}
\text { Probability } & =\frac{1}{4}+\frac{1}{12}+\frac{1}{12} \\
& =\frac{5}{12}
\end{aligned}\right.
$$

A football strip consists of a shirt, shorts and socks.
Aspen United has two shirts, blue and green, from which to select. They also can select from three different colours of shorts and five different colours of socks, including red in each case.
(a) Calculate how many different strips Aspen United can have.

Different strips: $2 \times 3 \times 5=30$
(b) Willow Celtic plays in an all red strip. When Aspen United plays Willow Celtic, Aspen United are not allowed to use their red shorts or their red socks. Calculate how many different strips Aspen United can have when they play Willow Celtic.

Different strips: $2 \times 2 \times 4=16$

## Question 5

In total 7150 second level school students from 216 schools completed the 2011/2012 phase 11 CensusAtSchool questionnaire. The questionnaire contained a question relating to where students keep their mobile phones while sleeping.

(a) Given that this question was answered by 4171 girls and 2979 boys, calculate how many female students kept their mobile phones under their pillows.

```
Girls - phone under pillow = 35% of 4171
    = 4171 * 0.35
    = 1459.85
    = 1460 (or 1459.85 or 1459)
```

(b) Calculate the overall percentage of students who kept their mobile phones under their pillows.

| Total number of students |  | $=7150$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Boys - phone under pillow |  | $=23 \%$ of 2979 |  |  |  |
|  |  | $=685 \cdot 17$ |  |  |  |
|  |  | $=$ | 685 | (or 68 | or 686) |
| Total | $=$ | $1460+685$ |  | $=2145$ | (or 2145.02) |
| Percentage | = | $\frac{2145}{7150} \times 100$ |  | (or $\frac{2145 \cdot 0}{7150}$ |  |
|  | $=$ | 30\% |  | (or 30.0002 |  |

(c) A new pie chart is to be drawn showing the mobile phone location for all students.

Calculate the measure of the angle that would represent the students who kept their mobile phones under their pillows.

$$
\begin{aligned}
\text { Angle } & =30 \% \text { of } 360^{\circ} \\
& =360 \times 0 \cdot 3 \\
& =108^{\circ} \quad(\text { or } 108 \cdot 00072)^{\circ}
\end{aligned}
$$

## Question 6

The salaries, in $€$, of the different employees working in a call centre are listed below.

| 22000 | 16500 | 38000 | 26500 | 15000 | 21000 | 15500 | 46000 |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 42000 | 9500 | 32000 | 27000 | 33000 | 36000 | 24000 | 37000 |
| 65000 | 37000 | 24500 | 23500 | 28000 | 52000 | 33000 | 25000 |
| 23000 | 16500 | 35000 | 25000 | 33000 | 20000 | 19500 | 16000 |

(a) Use this data to complete the grouped frequency table below.

| Salary <br> (€1000) | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of <br> Employees | $\mathbf{1}$ | $\mathbf{6}$ | $\mathbf{1 2}$ | $\mathbf{9}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{1}$ |

[Note: $10-20$ means $€ 10000$ or more but less than $€ 20000$, etc.]
(b) Using mid-interval values find the mean salary of the employees.

The mid-interval values are $5000,15000,25000,35000,45000,55000,65000$
Mean $=$

$$
\begin{aligned}
&\left.\frac{(5000}{} \times 1\right)+(15000 \times 6)+(25000 \times 12)+(35000 \times 9)+(45000 \times 2)+(55000 \times 1)+(65000 \times 1) \\
& 32 \\
&=\frac{5000+90000+300000+315000+90000+55000+65000}{32} \\
&=\frac{920000}{32} \\
&=€ 28,750
\end{aligned}
$$

(c) (i) Outline another method which could have been used to calculate the mean salary.

Add up all the individual salaries and divide by 32.
(ii) Which method is more accurate? Explain your answer.

Answer Adding up individual salaries and dividing by 32

Reason This gives the actual mean as estimates (mid-intervals) are not used.

## Question 7

In a survey, 54 people were asked which political party they had voted for in the last three elections. The results are as follows:

30 had voted for the Conservatives
22 had voted for the Liberals
22 had voted for the Republicans
12 had voted for the Conservatives and for the Liberals
9 had voted for the Liberals and for the Republicans
8 had voted for the Conservatives and for the Republicans
5 had voted for all three parties.
(a) Represent the information in a Venn diagram.
(S)
(b) If one person is chosen at random, what is the probability that the person chosen did not vote in any of the three elections?

Probability person did not vote $=\frac{4}{54}$ or $\frac{2}{27}$
(c) If one person is chosen at random, what is the probability that the person chosen voted for at least two different parties?

Probability person voted for at least two parties $=\frac{3+5+7+4}{54}=\frac{19}{54}$
(d) If one person is chosen at random, what is the probability that the person chosen voted for the same party in all three elections?

Probability person voted for the same party $=\frac{15+6+10}{54}=\frac{31}{54}$

## Question 8

Construct the bisector of the $\angle A B C$ below, using only a compass and straight edge. Show all construction work.


## Question 9

If $l_{1}, l_{2}$ and $l_{3}$ are parallel lines, find the measure of the angles $\alpha, \beta$ and $\gamma$.


In the triangle $A B C,|A B|=2$ and $|B C|=1$.
(a) Find $|A C|$, giving your answer in surd form.

$$
\begin{aligned}
& h^{2}=a^{2}+b^{2} \\
& 2^{2}=|A C|^{2}+1^{2} \\
& \Rightarrow|A C| \quad=\quad \sqrt{2^{2}-1^{2}}=\quad \sqrt{3}
\end{aligned}
$$


(b) Write $\cos \angle B A C$ and hence find $|\angle B A C|$.

$$
\begin{array}{ll}
\cos \angle B A C & =\frac{\sqrt{3}}{2} \\
|\angle B A C| & =30^{\circ}
\end{array}
$$

(c) Sketch a right angled isosceles triangle in which the equal sides are 1unit each and use it to write $\cos 45^{\circ}$ in surd form.

| Hypotenuse | $=\sqrt{1^{2}+1^{2}}=\sqrt{2}$ |
| ---: | :--- |
| $\cos 45^{\circ}$ | $=\frac{1}{\sqrt{2}}$ |

(d) Show that $\cos 75^{\circ} \neq \cos 45^{\circ}+\cos 30^{\circ}$.

$$
\begin{aligned}
& \cos 75^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}=0.2588 \\
& \cos 45^{\circ}+\cos 30^{\circ}=\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}=0.7071+0.8660=1.5731 \\
& (0.2588 \neq 1.5731)
\end{aligned}
$$

## Question 11



(a) Write the coordinates of $A, B$ and $C$.

$$
A(3,6) \quad B(-6,0) \quad C(4,-2)
$$

(b) Find the co-ordinates of $D$, the mid-point of $[A B]$.

$$
D=\left(\frac{3-6}{2}, \frac{6+0}{2}\right)=\left(-\frac{3}{2}, 3\right)
$$

(c) Find the equation of the line $A B$.

$$
\text { Slope } A B=\frac{0-6}{-6-3}=\frac{2}{3}
$$

Equation $A B$ :

$$
\begin{aligned}
& y-0=\frac{2}{3}(x+6) \quad \text { or } \quad y-6=\frac{2}{3}(x-3) \\
& \text { or } \\
& y=\frac{2}{3} x+4 \\
& 2 x-3 y+12=0
\end{aligned}
$$

(d) Find the equation of the line through $C$, perpendicular to $A B$.

Perpendicular slope $=-\frac{3}{2}$
Line through $C: \quad y+2=-\frac{3}{2}(x-4)$

$$
3 x+2 y-8=0
$$

or
The line is of the form $3 x+2 y+c=0$

$$
\begin{array}{r}
(4,-2): 3(4)+2(-2)+c=0 \Rightarrow c=-8 \\
3 x+2 y-8=0
\end{array}
$$

(e) Let $E$ be the point where this perpendicular line through $C$ intersects $A B$.

Calculate the coordinates of the point $E$.
$E$ the point of intersection of two lines

$$
\begin{aligned}
& 2 x-3 y+12=0 \text { (i) } \\
& 3 x+2 y-8=0 \text { (ii) }
\end{aligned}
$$

$$
\begin{array}{rlrl}
2 \times(\text { i) } 4 x-6 y=-24 & \text { or } & y & =\frac{2 x+12}{3} \\
+3 \times(\text { ii) } 9 x+6 y=24 & & 3 x+2\left(\frac{2 x+12}{3}\right)-8=0 \\
& \Rightarrow 9 x+4 x+24-24=0 \\
\Rightarrow x=0 & \text { and } & y=4
\end{array}
$$

(f) Which is the shorter distance, $|C D|$ or $|C E|$ ? Find this distance.

$$
\begin{aligned}
& |C D|=\sqrt{\left(4+\frac{3}{2}\right)^{2}+(-2-3)^{2}}=\sqrt{55 \cdot 25} \quad \text { or } 7 \cdot 433 \\
& |C E|=\sqrt{(4-0)^{2}+(-2-4)^{2}}=\sqrt{52} \quad \text { or } 7 \cdot 211 \\
& |C E| \text { is the shorter distance }
\end{aligned}
$$

$|C E|$ (is the perpendicular distance and therefore is the shorter distance.)

$$
|C E|=\sqrt{(4-0)^{2}+(-2-4)^{2}}=\sqrt{52} \quad \text { or } 7 \cdot 211
$$

A tree 32 m high casts a shadow 63 m long. Calculate $\theta$, the angle of elevation of the sun.
Give your answer in degrees and minutes (correct to the nearest minute).


$$
\begin{aligned}
\tan \theta & =\frac{32}{63} \\
\Rightarrow \theta & =26 \cdot 9277 \\
\Rightarrow \theta & =26^{\circ} 55^{\prime} 39 \cdot 64^{\prime \prime} \\
& =26^{\circ} 56^{\prime}
\end{aligned}
$$

$$
\text { or } \quad \tan \alpha=\frac{63}{32}
$$

$$
\Rightarrow \alpha \quad=\quad 63.0723
$$

$$
\Rightarrow \theta \quad=\quad 90-63.0723
$$

## Question 14

A solid metal hemisphere has a radius of 12 cm .

(a) Calculate the volume of the hemisphere. Give your answer in terms of $\pi$.

$$
\begin{aligned}
\text { Volume of hemisphere } & =\frac{2}{3} \pi r^{3} \\
& =\frac{2}{3} \times \pi \times 12^{3} \\
& =1152 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

(b) A solid cone of radius 4 cm and height 12 cm is cut from the hemisphere.

Calculate the volume of the cone. Give your answer in terms of $\pi$.

$$
\begin{aligned}
\text { Volume of cone } & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \times \pi \times 4^{2} \times 12 \\
& =64 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

(c) The remaining metal in the hemisphere is melted down and recast into cones of the same dimensions as the cone above. How many cones can be formed from the remaining metal?

$$
\begin{aligned}
\text { Remaining metal } & =1152 \pi-64 \pi \\
& =1088 \pi \\
\text { Volume of cone } & =64 \pi \\
\text { Number of cones } & =\frac{1088 \pi}{64 \pi} \\
& =17 \\
& \text { or } \\
\text { Number of cones } & =\frac{1152 \pi}{64 \pi}-1 \\
& =18-1 \\
& =17
\end{aligned}
$$

The dimensions of two solid cylinders are shown in the diagrams below.

(a) Calculate the ratio of the curved surface area of the smaller cylinder to the curved surface area of the larger cylinder.

| Curved surface area of a cylinder | $=2 \pi \mathrm{rh}$ |
| ---: | :--- |
| Curved surface area of small cylinder | $=2 \times \pi \times \mathrm{r} \times \mathrm{h}$ |
|  | $=2 \pi \mathrm{rh}$ |
| Curved surface area of large cylinder | $=2 \times \pi \times(2 \mathrm{r}) \times(2 \mathrm{~h})$ |
|  | $=8 \pi \mathrm{rh}$ |
| Ratio | $=2 \pi \mathrm{rh}: 8 \pi \mathrm{rh}$ |
|  | $=1: 4$ |

(b) Calculate the ratio of the volume of the smaller cylinder to the volume of the larger cylinder.

| Volume of a cylinder | $=\pi r^{2} h$ |
| :--- | :--- |
| Volume of small cylinder | $=\pi \times r^{2} \times h$ |
|  | $=\pi r^{2} h$ |
| Volume of large cylinder | $=\pi \times(2 r)^{2} \times(2 h)$ |
|  | $=8 \pi r^{2} h$ |
| Ratio | $=\pi r^{2} h: 8 \pi r^{2} h$ |
|  | $=1: 8$ |

## Structure of the marking scheme (Questions 1 - 15)

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect).
Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

| Scale label | A | B | C |
| :--- | :---: | :---: | :---: |
| No of categories | 2 | 3 | 4 |
| 2 mark scale | 0,2 | $0,1,2$ |  |
| 5 mark scale | 0,5 | $0,4,5$ | $0,2,3,5$ |
| 10 mark scale | 0,10 | $0,5,10$ | $0,3,7,10$ |
| 15 mark scale | 0,15 | $0,7,15$ | $0,7,12,15$ |

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

## Marking scales - level descriptors

## A-scales (two categories)

- incorrect response (no credit)
- correct response (full credit)


## B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)


## C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving incorrect rounding or omission of units, a mark that is one mark below the full-credit mark may also be awarded. Such cases are flagged with an asterisk. Thus, for example, Scale 10C* indicates that 9 marks may be awarded.

Summary of mark allocations and scales to be applied

Question 1 (20)
(a) $5 \mathrm{C}^{*}$
(b) 5C*
(c) $5 \mathrm{C}^{*}$
(d) 5 C
(d) 5 A

Question 3 (15)
(a) 5 C
(b)(i) 5 C
(b)(ii) 5C

Question 5 (25)
Question 6 (30)
(a) 15 C
(b) 10 C
(c) 5 C
(c) $5 \mathrm{C}^{*}$
(c)

Question 10 (20)
(a) 5 C
(b) $5 \mathrm{C}^{*}$
(c) 5 C
(d) 5 C

Question 7 (20)
(a) 5 C
(b) 5 A
(c) 5 B
(d) 5 B

Question 9 (15)
15C *

Question 11 (10)
10C
(a) 5 C
(b) 15 C

Question 4 (10)
(a) 5 A
(b) 5 A

Question 12 (45)
(a) 5 C
(b) 5 C
(c) 10 C
(d) 10 C
(e) 10 C
(f) 5 C

Question 13 (10)
10C*

Question 14 (20) Question 15 (20)
(a) 5C*
(a) 10 C
(b) 5C*
(b) 10 C
(c) 10 C

Question 8 (10)
10A

## Detailed Marking Notes

The * for units or rounding off is to be applied only if answer is fully correct. The * is to be applied once only per question.

## Question 1

(a) Scale 5C*

High Partial Credit

- $\sqrt{12^{2}+5^{2}}$


## Low Partial Credit

- Some correct substitution into Pythagoras' theorem formula
- Correct formula from tables

Note: Apply * if no units
(b) Scale 5C*

High Partial Credit

- $\frac{1}{2}(5)(12)$
- $4 \times \frac{1}{2}(5)(12)=120$


## Low Partial Credit

- Area of a triangle $=\frac{1}{2}($ base $\times$ perpendicular height $)$
- 2(5)(12)
- Correct formula from tables

Note: Apply * if no units
(c) Scale 5C*

High Partial Credit

- $13^{2}$
- $17^{2}-4 \times 30$


## Low Partial Credit

- $17^{2}$
- $4 \times 30$
- Area $=l^{2}$ or $l \times w$

Note: Accept candidate's answers from parts (a) and (b)
Note: Apply * if no units
(d) Scale 5C

High Partial Credit

- $\frac{169}{0 \cdot 4}=422 \cdot 5$
- $422 \cdot 5 \times 0.2=84 \cdot 5$
- $\frac{202 \cdot 8}{0 \cdot 4}$


## Low Partial Credit

- $80 \times 50$
- $0 \cdot 4$ or 4000
- $0.4 \times 1.20$ or $0.4 \times 0.2$
- $\frac{169}{0 \cdot 4}$ or $\frac{169}{4000}$ or $422 \cdot 5$
- Incorrect conversion of units
- Correct answer with no work

Note: Accept candidate’s answers from previous parts

## Question 2

(a) Scale 15C*

High Partial Credit

- $16+$ ages placed correctly on both aerobics class and swimming class.

Low Partial Credit

- 1 to 15 ages placed correctly on either side

Note: It is not necessary to order the stem and leaf
Note: Apply * if the key is missing or sides switched
(b) Scale 5C

High Partial Credit

- 37 to 39 and 29 to 31 given


## Low Partial Credit

- One median only correct
- 37 or 39 or 29 or 31 given from a correctly ordered list
(c) Scale 5A
(d) Scale 5A


## Question 3

(a) Scale 5C

High Partial Credit

- 6, 7 or 8 probabilities correct

Low Partial Credit

- 1 to 5 probabilities correct
(b)(i) Scale 5C

High Partial Credit

- 2 paths correctly identified

Low Partial Credit

- 1 path correctly identified
- More than 3 paths listed with at least 1 correct
(b) (ii) Scale 5C

High Partial Credit

- The three probabilities $\frac{1}{4}, \frac{1}{12}, \frac{1}{12}$ given
- Probability $=\frac{1}{4}+\frac{1}{12}+\frac{1}{12}$
- Error in one probability with addition correctly completed

Low Partial Credit

- Probability for 1 or 2 paths correct


## Question 4

(a) Scale 5A
(b) Scale 5A

## Question 5

(a) Scale 5C

High Partial Credit

- $4171 \times 0.35$

Low Partial Credit

- 35\%
- $0 \cdot 35$
(b) Scale 15C

High Partial Credit

- $\frac{2145}{7150} \times 100 \quad\left(\right.$ or $\left.\frac{2145 \cdot 02}{7150} \times 100\right)$

Low Partial Credit

- 685 (or 685•17 or 686)

Note: Accept candidate's answer from part (a)
(c) Scale 5C*

High Partial Credit

- $360 \times 0.3$
- 1 student $=\frac{360}{7150}=0 \cdot 05^{\circ}$

Low Partial Credit

- $30 \%$ of 360
- Indication that the answer is a fraction of 360
- Identifies 7150 as 360

Note: Accept candidate's answer from part (b)
Note: Apply * if units missing

## Question 6

(a) Scale 15C

High Partial Credit

- Entry $\pm 2$ in not more than 2 frequencies.

Low Partial Credit

- Some correct entry in table
(b) Scale 10C

High Partial Credit

- Answer $=28.75$


## Low Partial Credit

- Error in numerator - e.g. incorrect mid-interval values or no mid-interval values
- Error in denominator
- Effort at mid-interval values
- Sum of frequencies indicated
(c) Scale 5C

High Partial Credit

- Correct method and correct answer. No reason given.

Low partial Credit

- Correct method only.


## Question 7

(a) Scale 5C

High Partial Credit

- 2-7 correct entries.

Low Partial Credit

- 1 correct entry
(b) Scale 5A

Note: Accept value from candidate's Venn diagram except where negative values used Note: Answer must be consistent with candidate’s Venn diagram
(c) Scale 5B

Partial Credit

- $\frac{3+5+7+4}{54}$
- Not more than one element incorrect or omitted

Note: Accept values from candidate's Venn diagram unless probability > 1
Note: Answer must be consistent with candidate’s Venn diagram
(d) Scale 5B

Partial Credit

- $\frac{15+6+10}{54}$
- Not more than one element incorrect or omitted

Note: Accept values from candidate's Venn diagram unless probability > 1
Note: Accept value from candidate's Venn diagram except where negative values used
Note: Answer must be consistent with candidate’s Venn diagram

## Question 8

Scale 10A
Note: Accept tolerance of $\pm 2^{0}$
Note: All constructions must be shown

## Question 9

Scale 15C*
High Partial Credit

- 2 angles correct


## Low Partial Credit

- 1 angle correct
- Some correct work on alternate / corresponding/vertically opposite angles
- Some correct work on the angles in a straight line adding to $180^{\circ}$ or $\beta+\chi=180^{\circ}$
- Some correct work on the angles of a triangle adding to $180^{\circ}$

Note: Apply * if units missing

## Question 10

(a) Scale 5C

High Partial Credit

- $\sqrt{2^{2}-1^{2}}$
- Answer not in surd form


## Low Partial Credit

- Some correct substitution into Pythagoras’ theorem formula
- $|\angle B A C|=30^{\circ}$ or $|\angle A B C|=60^{\circ}$
- Correct formula from tables
(b) Scale 5C*

High Partial Credit

- $\cos \angle B A C=\frac{\sqrt{3}}{2}$

Note: Accept candidate's answer from part (a) if cos ratio < 1
Note: Apply * if units missing
Low Partial Credit

- Some correct use of cos ratio
- Indication that $\cos =\frac{\text { adjacent }}{\text { hypotenuse }}$
- $|\angle B A C|$ found without use of cos ratio

Note: Accept candidate's answer from part (a) if cos ratio $\geq 1$
(c) Scale 5C

High Partial Credit

- Sketch drawn and $\sqrt{2}$ found or sketch drawn and $\sqrt{2}$ shown on diagram
- Answer not in surd form


## Low Partial Credit

- Correct sketch drawn
- $\cos 45^{\circ}=\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$ from tables/calculator
- Correct sketch drawn and $\cos 45^{\circ}=0.7071$ from calculator
- Indication that $\cos =\frac{\text { adjacent }}{\text { hypotenuse }}$
- Some correct substitution into Pythagoras’ theorem formula
(d) Scale 5C

High Partial Credit

- Both correct but not in forms in which they can be easily compared
- Calculator in incorrect mode


## Low Partial Credit

- $\cos 75^{\circ}$ found correctly
- $\cos 45^{\circ}$ and $/$ or $\cos 30^{\circ}$ found or transferred from part (b) and part(c)


## Question 11

Scale 10C
High Partial Credit

- $\frac{x}{6}=\frac{25}{15}$ or equivalent


## Low Partial Credit

- Corresponding sides/angles identified
- One correct relevant ratio
- Indication that corresponding sides are proportional


## Question 12

(a) Scale 5C

High Partial Credit

- 2 points correct

Low Partial Credit

- 1 point correct
- All 3 reversed $(y, x)$
(b) Scale 5C

High Partial Credit

- Correct substitution into midpoint formula
- Both $x$ and $y$ reversed in substitution

Low Partial Credit

- Some correct substitution into midpoint formula
- One ordinate correct
- Coordinates reversed
- Correct formula from tables

Note: Correct answer written in part (b) merits full marks.
Note: Accept candidate's points from part (a)
(c) Scale 10C

High Partial Credit

- Error in slope but continues correctly
- Correct slope with 1 incorrect substitution into a line formula
- Correct slope but both $x$ and $y$ reversed in substitution


## Low Partial Credit

- Some correct substitution into slope formula
- Slope found
- Some correct substitution into line formula
- Indication that slope $=\frac{\text { rise }}{\text { run }}$
- Correct formula from tables

Note: It is not necessary to write the equation in the form $a x+b y+c=0$ for full marks.
(d) Scale 10C

High Partial Credit

- Error in slope but continues correctly
- Correct slope with 1 incorrect substitution into a line formula
- Correct slope but both $x$ and $y$ reversed in substitution


## Low Partial Credit

- Some correct substitution into line formula
- Slope correct
- Indication that the product of the slopes of perpendicular lines is -1
- $3 x+2 y+c=0$
- Correct formula from tables

Note: It is not necessary to write the equation in the form $a x+b y+c=0$ for full marks
(e) Scale 10C

High Partial Credit

- One (correct) ordinate only found
- 1 error in simplifying equations in parts (c) or (d) but solved correctly


## Low Partial Credit

- More than 1 error in simplifying equations from parts (c) and (d) in this part and continues with some correct work
- Equations from parts (c) and (d) correctly simplified in this part
- Point $E$ correctly read from graph. Graph must have perpendicular line correctly drawn from $C$ - otherwise 0 marks
- Equations from parts (c) and (d) correctly simplified but continues incorrectly

Note: Accept candidate's equations from parts (c) and (d)
(f) Scale 5C

High Partial Credit

- $|C D|$ and $|C E|$ both found but no indication of shorter distance

Low Partial Credit

- Some correct substitution into distance formula
- $|C D|$ only found
- States $|C E|$ ( or perpendicular distance) is the shorter but $|C E|$ not found
- $|C E|$ found but not identified
- Correct formula from tables


## Question 13

Scale 10C*
High Partial Credit

- $\theta=26.9277$
- Calculator in incorrect mode

Low Partial Credit

- $\tan \theta=\frac{32}{63}$
- Correct relevant trigonometric formula
- Indication that $\tan =\frac{\text { opposite }}{\text { adjacent }}$

Note: Apply * if answer not correctly rounded to the nearest minute and/or no units

## Question 14

(a) Scale 5C*

High Partial Credit

- Volume of sphere found
- $\frac{2}{3} \times \pi \times 1728$


## Low Partial Credit

- Correct or some correct substitution into volume of sphere/hemisphere formula
- Volume of hemisphere $=1 / 2$ (Volume of sphere)
- Incorrect relevant formula used
- Correct formula from tables

Note: Apply * if answer not written in terms of $\pi$ and/or no units
(b) Scale 5C*

High Partial Credit

- $\frac{1}{3} \times \pi \times 16 \times 12$


## Low Partial Credit

- Correct or some correct substitution into volume of cone formula
- Incorrect relevant formula used
- Correct formula from tables

Note: Apply * if answer not written in terms of $\pi$ and/or no units(if not applied in part (a))
(c) Scale 10C

High Partial Credit

- $\frac{1152 \pi}{64 \pi}=18$
- $\frac{1088 \pi}{64 \pi}$


## Low Partial Credit

- Subtraction of candidate's volumes
- Indication of division by $64 \pi$

Note: Accept candidate's values from previous parts provided answer in part (a) is greater than answer in part (b) - otherwise 0 marks

## Question 15

(a) Scale 10C

High Partial Credit

- Both $2 \pi \mathrm{rh}$ and $8 \pi \mathrm{rh}$ written
- Values substituted for r and h and correct ratio found


## Low Partial Credit

- Some correct substitution into curved surface area of cylinder formula
- $2 \times \pi \times \mathrm{r} \times \mathrm{h}$ and /or $2 \times \pi \times 2 \mathrm{r} \times 2 \mathrm{~h}$ written
- Incorrect relevant formula used
- Values substituted for r and h and ratio incorrect
- Correct answer without work
- Correct formula from tables
(b) Scale 10C

High Partial Credit

- Both $\pi r^{2} h$ and $8 \pi r^{2} h$ written
- Values substituted for $r$ and $h$ and correct ratio found


## Low Partial Credit

- Some correct substitution into volume of cylinder formula
- $\pi \times \mathrm{r}^{2} \times \mathrm{h}$ and/or $\pi \times(2 \mathrm{r})^{2} \times 2 \mathrm{~h}$ written
- Values substituted for r and h and ratio incorrect
- Incorrect relevant formula used
- Correct answer without work
- Correct formula from tables

