

JUNIOR CERTIFICATE EXAMINATION

2009

MARKING SCHEME

MATHEMATICS HIGHER LEVEL PAPER 1

MARKING SCHEME JUNIOR CERTIFICATE EXAMINATION 2009 MATHEMATICS - HIGHER LEVEL - PAPER 1

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips- numerical errors (-1)
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €.50 may be written as €,50.

QUESTION 1

Part (a)	10 marks	Att 3
Part (b)	20(10, 10) marks	Att (3, 3)
Part (c)	20(10, 10) marks	Att (3, 3)

Part (a)

10 marks

Att 3

Att 3

In a school library, 28% of the books are classified as fiction and the remainder as non-fiction. There are 3240 non-fiction books in the library.

10 marks

 \swarrow Find the number of books which are classified as fiction.

Part (a) Non-fiction = 100 - 28 = 72%

1% of Non-fiction books =
$$\frac{3240}{72} = 45$$

No. of books (fiction) = $45 \times 28 = 1260$

Blunders (-3)

 \Rightarrow

- B1 Correct answer but no work shown. (\mathscr{L})
- B2 Mishandles % and continues. $(3240 \neq 72\%)$
- B3 Decimal error.
- B4 Fails to finish.

Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 Rounds off incorrectly.

Attempts (3 marks)

- A1 Works with 28% or similar and stops. $(28\% = \frac{28}{100})$
- A2 100-28 and stops.

Worthless (0)

- W1 Incorrect answer and no work shown.
- W2 28×3240 and stops.

Part (b)			20 (10, 10) marks	Att (3, 3)	
(i)	Ø	Given that $x = 2 \times 10^{-3}$ ar Express your answer in the	d $y = 7 \times 10^{-4}$, evalua form $a \times 10^{n}$, where n	te $x + 8 y$. $\in \mathbb{Z}$ and $1 \le a < 10$.	
(ii)	A sug The f Bran	permarket has a special offer following table gives details d No. of bars per packe	on three different bran of the offer: t Weight of each bar	ds of packets of soap. Price of packet	
	A	3	100g	€l·35	
	В	6	100g	€ 2·40	
	С	4	125g	€ .38	
	Ŕ	Which brand has the cheap	est price per gram?		
D					

Part	: (b) (i) 10 marks	Att 3
(i)	Ľ	Given that $x = 2 \times 10^{-3}$ and $y = 7 \times 10^{-4}$, evaluate $x + 8 y$.	
		Express your answer in the form $a \times 10^n$, where $n \in \mathbb{Z}$ and $1 \le a < 10$.	

Part (b) (i)	10 marks	Att 3
Ř		
Ι		Ι
$x+8y=2\times10^{-3}+8(7\times10^{-4})$ =2×10 ⁻³ +56×10 ⁻⁴ =2×10 ⁻³ +5.6×10 ⁻³ =7.6×10 ⁻³	$2 \times 10^{-3} = \frac{2}{1000} : 7 \times 10^{-4} = \frac{7}{1000}$ $\Rightarrow x + 8y = \frac{2}{1000} + 8\left(\frac{7}{10000}\right) = \frac{7}{10000}$ $\Rightarrow \frac{76}{10000} = 0.0076 = 7.6 \times 10^{-4}$	$\overline{\frac{00}{00}} = \frac{2}{1000} + \frac{56}{10000} = \frac{76}{10000}$ 10^{-3}
Ι	Ι	
$2 \times 10^{-3} = 0 \cdot 002 : 7 \times 10^{-4} = 0 \cdot 3 \times 10^{-3} = 0 \cdot 0076 = 7 \cdot 6 \times 10^{-3}$	$0007 = 0 \cdot 002 + 0 \cdot 0056 = 0 \cdot 0076$	
$\Rightarrow 0.0076 = 7.6 \times 10^{-3}$		

- B1 Correct answer but no work shown. (*Æ*)
- B2 Index error.
- B3 Fails to add.
- B4 Distribution error.
- B5 Mathematical error.
- B6 Final answer in decimal or fraction format.
- B7 Incorrect operation.

Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 Index in wrong format e.g. 76×10^{-4}

Misreadings (-1)

M1 Reads as 2×10^3 and 7×10^4 and continues to $5 \cdot 62 \times 10^5$

Attempts (3 marks)

- A1 56×10⁻⁴ or 0.0056 and stops.
- A2 Some correct work with indices and stops, (e.g. $2 \times 10^{-3} = 0.002$)

Worthless (0)

Part (b) (ii)		10 marks	Att 3
1 (b) (ii) A s The follo	supermarket has a special	offer on three differen	t brands of packets of soap.
Brand	No. of bars per packet	Weight of each bar	Price of packet
А	3	100g	€.35
В	6	100g	€ 2·40
С	4	125g	€ 2·38
ø Wi	nich brand has the cheapes	st price per gram?	

(b) (ii)	10 marks			Att 3	
Ŕ					
Ι					
Brand		gram/pkt	Price/gram		
А	3×100	300	135	0.45	
			300		
В	6×100	600	240	0.40	B
			600		Cheapest
С	4×125	500	238	0.476	
			500		
II					
Brand		Price/bar	Price/gram		
А	135	45	45	0.45	
	3		$\overline{100}$		
В	240	40	40	0.40	B
	6		$\overline{100}$		Cheapest
С	238	59.5	59.5	0.476	
	4		125		
					•

- B1 Correct answer but no work shown. (*Æ*)
- B2 Incorrect multiplier.
- B3 Decimal error.
- B4 Incorrect division.
- B5 Price /bar or gram / packet only and continues incurs <u>2 blunders.</u>
- B6 Each missing component.

Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 No conclusion or incorrect conclusion.

Misreadings (-1)

M1 Indicates most expensive

Attempts (3 marks)

- A1 Indicates total grams in packet and stops.
 A2 Works cost per packet and stops.
 A3 One correct or partially correct step and stops.

Worthless (0)

20 (10,10) marks

Att (3,3)

A man travels from Arklow to Blanchardstown, a distance of 90 km. He leaves Arklow at 09:25 and arrives in Blanchardstown at 10:55.

(i) \swarrow Calculate his average speed for the journey.

He continues from Blanchardstown to Cootehill, a distance of 112 km. He increases his average speed by 4 km/h for this section of his journey.

(ii) \measuredangle At what time does he arrive in Cootehill?

Part (c) (i)		(i) 10 marks	Att 3
1(c)	Aı	nan travels from Arklow to Blanchardstown, a distance of 90 km.	He leaves
	Ar	klow at 09:25 and arrives in Blanchardstown at 10:55.	
Ľ	(i)	Calculate his average speed for the journey.	

(c) (i) 10 marks	Att 3
\swarrow Time of journey = 10:55 - 09:25 = 1:30 = 1.5 hrs	
Average Speed = $\frac{Dis \tan ce}{Time} = \frac{90}{1 \cdot 5} = 60 \text{ km/h} \text{ or } \frac{90}{90} = 1 \text{ km/min}$	
Average speed for the journey $= 60 \text{ km/h}$	

Blunders (-3)

- B2 Time error. (1 hr = 100 min.)
- B3 Decimal error.
- B4 Error in S/T/D formula.
- B5 Mathematical error.

Slips (-1)

S1 Numerical errors to a max of 3.

Attempts (3 marks)

- A1 Writes correct S/T/D relationship in this part.
- A2 Time 1hr: 30min or $1 \cdot 5$ hrs and stops.

Worthless (0)

(c) (ii))	10 marks	Att 3
1(c) H ≈	le co avera	ntinues from Blanchardstown to Cootehill, a distance of 112 km. age speed by 4 km/h for this section of his journey.	He increases his
× ((11)	At what time does he arrive in Cootehill?.	
(c) (ii	i)	10 marks	Att 3

Ø	New speed = 64 km/h.
	Distance $B \rightarrow C = 112$ km.
	Time = $\frac{\text{Distance}}{\text{Speed}} = \frac{112}{64} = 1.75 \text{ h} = 1 \text{ hr: } 45 \text{ min}$
\Rightarrow	Arrival Time in C = $10:55 + 1:45 = 12:40$

- B1 Correct answer but no work shown (\mathscr{L})
- B2 Decimal error
- B3 Error in S/T/D formula
- B4 Conversion error $(0.75 hrs \neq 45 min)$ (km/hr added to km/min)
- B5 Mathematical error
- B6 Mishandles calculation of new speed
- B7 Fails to calculate arrival time.

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Rounds off incorrectly

Attempts (3 marks)

- A1 New speed correct and stops
- A2 Writes correct S/T/D relationship in this part

Worthless (0)

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	20(10, 5, 5) marks	Att (3, 3, 2)
Part (c)	20(5, 10, 5) marks	Att (2, 3, 2)

Part	(a)	10 marks	Att 3
2(a)	Eigh	t workers can build a cabin in 60 hours.	
l	Ø	How many workers are needed if the	
l		cabin is to be built in 32 hours?	

(a)	10 marks	Att 3
(a)		
Ι	II	
$\frac{\text{Work hours to build a cabin}}{\text{Hours}} = \frac{8 \times 60}{32} = 15$	$60: 32 = x: 8$ $\frac{60}{32} = \frac{x}{8}$ $1 \cdot 875 = \frac{x}{8}$ $x = 15$	

Blunders (-3)

- B2 Incorrect Ratio.
- B3 Mathematical error.
- B4 Incorrect operation.

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Fails to round off correctly.

Attempts (3 marks)

A1 Writes 8×60 and stops.

A2 Writes
$$\frac{60}{32} or \frac{32}{60} or \frac{8}{32} or \frac{32}{8}$$
. and stops

Worthless (0)

- W1 Incorrect answer and no work shown.
- W2 Writes $\frac{60}{8}$ or $\frac{8}{60}$ and stops.

Part (b)	20 (10 , 5 , 5) marks	Att (3, 2, 2)
A group of	f 49 students was asked which fruit each liked.	
28 said the	y liked apples. 25 said they liked pears while 26 said they liked	ked oranges.
8 said they	liked all three types of fruit.	
17 said the	y liked pears and oranges. 11 said they liked apples and oran	iges.
5 said they	did not like any of the three types of fruit.	
Let <i>x</i> repre	esent those students who liked apples and pears but not orange	es.
(i) <i>K</i>	Represent the above information on a Venn diagram.	
(ii) 🖉	Calculate the value of <i>x</i> .	
(iii) 🖉	Calculate the percentage of students who liked one type of f	ruit only.
	Give your answer correct to the nearest whole number.	
	40 1	A

(b) (i)		10 marks	Att 3
2 (b) (i)	Ľ	Represent the above information on a Venn diagram.	

Slips (-1)

S1 Each incorrect or missing entry from the Venn Diagram above.

Attempts (3 marks)

- A1 Any single correct entry.
- A2 Draws a Venn diagram of 3 intersecting circles and stops.

(\mathbf{L})	(!!)
(D)	(11)

Att 2

2 (b) (ii)	\swarrow Calculate the value of <i>x</i> .	
(b) (ii)	5 marks	Att 2
Ŕ		
28-(11+2	x)+x+8+3+25-(17+x)+9+6=49-5	
28 - 11 - x	+x+8+3+25-17-x+9+6=44	
17 - x + x - x - x - x - x - x - x - x - x	+8+3+8-x+9+6=44	
51 - x = 44	4	
x = 51 - 44		
x = 7		

*

Accept candidate's work from previous part.

Blunders (-3)

- B1 Correct answer but no work shown. (*Æ*)
- B2 Missing or incorrect element from previous work in forming equation.
- B3 Transposition error.
- B4 Distribution error.
- B5 Mathematical error.
- B6 $\#U \neq 49$.

Slips (-1)

S1 Numerical errors to a max of 3.

Attempts (2 marks)

- A1 Any correct term in forming the equation and stops.
- A2 Any effort to combine terms from Venn diagram.

Worthless (0)

Part (b) (iii)5 marksAtt 22 (b) (iii) Calculate the percentage of students who liked one type of fruit only.
Give your answer correct to the nearest whole number.

Page 13

- B1 Correct answer but no work shown. (\mathscr{A})
- B2 Missing or incorrect element from previous work.
- B3 Decimal error
- B4 Distribution error.
- B5 Mathematical error.
- B6 Fails to find %.
- B7 $\#U \neq 49$

Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 Fails to round off or rounds incorrectly.

Misreadings (-1)

M1 Finds % who liked two fruits.

Attempts (2 marks)

A1 Any correct value/term and stops.

Worthless (0)

Part (c)	20 (5, 10, 5) marks	Att (2, 3, 2)
Three bu €40000 placed in investme	siness partners, Aideen, Brian and Caroline, invest €30000, and €70000 respectively. At the end of each year, 22.5 % of the reserve and the remainder is divided among the partners in pre- ents.	ne profit made is oportion to their
(i) 🖄	Given that in 2007, the profit amounted to €12 880, calcuplaced in reserve.	late the amount
(ii) 🖉	In 2008, Caroline's portion of the profit was €9331. Calcu Aideen and Brian each received in 2008.	ulate how much
(iii) Z	S Calculate the amount placed in reserve in 2008.	
Part (c) (i)	5 marks	Att 2
2 (c) (i) 🖉	Given that in 2007, the profit amounted to €12 880, calcu	late the amount

placed in reserve.

Part (c) (i)	5 marks	Att 2
Æ		
I	II	III
$\frac{12880}{100}$ × 22 · 5 = €2898	12880 ×0 · 225 = €2898	$22 \cdot 5 = \frac{9}{40}$ 12880 × $\frac{9}{40}$ = €2898

Blunders (-3)

- B2 Mathematical error.
- B3 Incorrect operation.
- B4 Expresses 22.5% as incorrect fraction and continues.
- B5 Profit taken as $77 \cdot 5\%$ and continues.

Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 Rounds to 23% and continues. (\notin 2962.40)

Attempts (2 marks)

- A1 Writes $77 \cdot 5\%$ and stops.
- A2 22.5% as $\frac{22.5}{100}$ or similar and stops.
- A3 Finds $22 \cdot 5\%$ of any of the given values.
- A4 Leaves answer as $12880 \times 22.5\%$

Worthless (0)

- W1 Incorrect answer and no work shown.
- W2 2007×12880 or similar and stops.

Part (c) (ii)	10 marks	Att 3
2 (c)(ii) $\not \ll$ In 2008, Can Aideen and H	roline's portion of the profit wa Brian each received in 2008.	s ⊕331. Calculate how much
(c) (ii)	10 marks	Att 3
Ŕ		
Ι	II	III
Ratios : $\frac{3}{14}$: $\frac{4}{14}$: $\frac{7}{14}$ C = €9331 ⇒ Profit for distribution =9331×2 = €18662 A = 18662× $\frac{3}{14}$ = €3999 B = 18662× $\frac{4}{14}$ = €5332	C = €9331 $\frac{9331}{7000} = 1 \cdot 333$ A = 1 \cdot 333 \times 3000 = €3999 B = 1 \cdot 333 \times 4000 = €5332	C = €331 A: B: C = 3:4:7 (or similar). $\frac{9331}{7} = 1333$ A = 1333×3=€3999 B = 1333×4=€5332

*

Candidates may work with other correct ratios or correct percentages.

Blunders (-3)

- B2 Mathematical error.
- B3 Incorrect denominator. [Note M1]
- B4 Incorrect numerator. [Note M1]
- B5 Finds Aideen's or Brian's value only.
- B6 Premature rounding that effects the answer i.e. $(1 \cdot 333 \text{ to } 1)$ and continues correctly.

Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 Rounds off incorrectly.

Misreadings (-1)

M1 Reads Caroline as Aideen or Brian and continues.

Attempts (3 marks)

- A1 Some correct work at simplifying ratios.
- A2 Writes $\frac{9331}{7000}$ or similar and stops.

Worthless (0)

Part (c) (iii)	5 marks Att 2		
2 (c) (iii) 🖉 Calculate the amour	t placed in reserve in 2008.		
(c) (iii)	5 marks Att 2		
Æ			
Distributed Profit (2008)			
= €9331 + €532+ €3999 = €18 662 or €9331 ×2 = €18 662 (or similar)			
Ι	II		
$\underbrace{\textcircled{l}}{\textcircled{l}} \underbrace{\textcircled{l}}{\end{array}{l}}{\textcircled{l}}{\textcircled{l}}{\textcircled{l}}{\textcircled{l}}{\end{array}{l}}{\textcircled{l}}{\end{array}{l}}{\textcircled{l}}{\end{array}{l}}{\textcircled{l}}{\end{array}{}}{}{\end{array}{l}}{\end{array}{l}}{\end{array}{l}}{\end{array}{l}}{\end{array}}{}{}}{\end{array}{l}}{}{}$	Total Profit = $\frac{18\ 662}{77\cdot 5}$ ×100 = €24 080		

Reserve = €24 080 - €18 662 = €5418

*

Accept candidate's answers from part (ii).

77.5(31)

Blunders (-3)

- B1 Correct answer but no work shown. (\mathscr{L})
- B2 Mathematical error.
- B3 Incorrect distributed profit.
- B4 Incorrect ratio
- B5 Decimal error

Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 Incorrect rounding or early rounding which affects answer.

Misreadings (-1)

M1 Reads €18 662 as 100% i.e. Finds 22.5% of €18 662 (€4198.95) and continues.

Attempts (2 marks)

- A1 Some correct work at finding total profit.
- A2 States $\in 18662 = 77.5\%$ or similar and stops.
- A3 Writes $100 22 \cdot 5 = 77 \cdot 5$ and stops.

Worthless (0)

QUESTION 3

Part (a) Part (b) Part (c)	10 marks 20(10, 10) marks 20(10, 5, 5) marks	Att 3 Att (3, 3) Att (3, 2, 2)
Part (a)	10 marks	Att 3
\swarrow Simplify: (2 <i>x</i> –	3) $(4-5x)$.	
(a)	10 marks	Att 3
\swarrow (2x-3)(4-5x)		
$2x(4-5x) - 3(4-5x) 8x - 10x^2 - 12 + 15x$		
$-10x^2 + 23x - 12$		

Blunders (-3)

- B2 Mathematical error.
- B3 Fails to group or groups incorrectly.
- B4 Each incorrect or omitted term.

Slips (-1)

S1 Numerical errors to a max of 3.

Attempts (3 marks)

- A1 Some correct relevant work.
- A2 Combining unlike terms merits at most attempt mark subject to marks already secured.

Worthless (0)

Part (b)		20 (10, 10) marks	Att (3, 3)
(i)	Ŕ	Given that $x = 2t - 1$ and $y = \frac{2}{3}t + 2$, express $3x - y + 2$	
		in terms of <i>t</i> , in its simplest form.	
(ii)	Ø	Hence, find the value of t when $3x - y + 2 = 0$.	

(b) (i)		10 marks	Att 3
3(b) (i)	Ŕ	Given that $x = 2t - 1$ and $y = \frac{2}{3}t + 2$, express $3x - y + 2$ in terms of <i>t</i> , in its simplest form.	

(b) (i)	10 marks	Att 3
	3x - y + 2	
	$3(2t-1)-(\frac{2}{3}t+2)+2$	
	$6t - 3 - \frac{2}{3}t - 2 + 2$	
	$\frac{16}{3}t - 3$ or $5\frac{1}{3}t - 3$ or $\frac{16t - 9}{3}$	

- B1 Correct answer but no work shown (🖉)
- B2 Mathematical error
- B3 Distribution error
- B4 Fails to group or groups incorrectly
- B5 Incorrect substitution for *x* and /or *y* and continues
- B6 Ignores the constant in the expression and continues. [see A3]
- B7 Eliminates t. Answer as (x-3y+7=0) (Apply B5 also.)
- B8 Answer not in simplest form
- B9 Mishandles fractions

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (3 marks)

- A1 Some correct relevant work
- A2 Partial substitution and stops

A3 Ignores all the constants in each equation to give. $[3(2t)-\frac{2}{3}t]$ and stops or continues

Worthless (0)

(b)	(ii)
$\langle \sim \rangle$	()

10 marks

Att 3

3(b) (ii)	\swarrow Hence, find the value of <i>t</i> when $3x - y + 2 = 0$.	
(b) (ii)	10 marks	Att 3
Ľ		
	3x - y + 2 = 0	
	$\frac{16}{3}t - 3 = 0$	
	16t - 9 = 0	
	$t = \frac{9}{16}(0.5625)$	

*

Accept candidate's answer from previous part.

* Solving 3x - y + 2 = 0 and x - 3y + 7 = 0 $(\frac{1}{8}, \frac{19}{8})$ followed by substitution gives correct answer (see B7 previous part).

Blunders (-3)

- B2 Mathematical error.
- B3 Transposition error.

Slips (-1)

S1 Numerical errors to a max of 3.

Attempts (3 marks)

A1 Some correct relevant work.

Worthless (0)

(i)

A swimming pool can be filled by a large pipe operating alone in 4 hours.

What fraction of the pool can be filled by this pipe in 1 hour?

The swimming pool can be filled by a small pipe operating alone in *x* hours.

(ii) \swarrow Derive an expression in x for the fraction of the pool filled by the two pipes working together in 1 hour.

It takes 3 hours for the two pipes working together to fill the pool.

(iii) \swarrow Find x.

(c) (i)	10 marks	Att 3
3(c) (i)	A swimming pool can be filled by a large pipe operating alone in 4 hours.	
	What fraction of the pool can be filled by this pipe in 1 hour?	

(c) (i)		10 marks	Att 3
	Fraction of the pool	$=$ $\frac{1}{4}$	

Blunders (-3)

B1 Any variable divided by 4.

B2 15 minutes or 900 seconds.

Slips (-1)

S1 Numerical errors to a max of 3.

Misreadings (-1)

M1 Not in required form (e.g. decimal or percentage).

M2
$$\frac{3}{4}$$
.

Attempts (3 marks)

A1 Some correct relevant work.

Worthless (0)

5 marks

The swimming pool can be filled by a small pipe operating alone in *x* hours.

3(c) (ii) \swarrow Derive an expression in x for the fraction of the pool filled by the two pipes working together in 1 hour.

Blunders (-3)

- B1 Correct answer but no work shown. (🔊)
- B2 Error in forming the expression.
- B3 Mathematical error.

Slips (-1)

S1 Numerical errors to a max of 3.

Attempts (2 marks)

A1 Some correct relevant work.

Worthless (0)

Part (c) (iii)

5 marks

Att 2

3(c) (iii) \swarrow It takes 3 hours for the two pipes working together to fill the pool. Find *x*.

(c) (iii)	5 marks	Att 2
Ŕ		
Ι	II	III
$3\left(\frac{1}{4} + \frac{1}{x}\right) = 1$ $\Rightarrow \frac{3}{4} + \frac{3}{x} = 1$ $\Rightarrow \frac{3}{x} = \frac{1}{4}$ $\Rightarrow x = 12$	$\frac{1}{4} + \frac{1}{x} = \frac{1}{3}$ $\Rightarrow \frac{x+4}{4x} = \frac{1}{3}$ $\Rightarrow 3x + 12 = 4x$ $\Rightarrow x = 12$	3 hours large pipe $\rightarrow \frac{3}{4}$ of pool 3 hours small pipe $\rightarrow \frac{1}{4}$ of pool $\Rightarrow \frac{1}{4}$ pool in 3 hours $\Rightarrow 1$ pool in 12 hours
	l.	1

- * Accept candidate's answer from previous part unless oversimplifying applies.
- * Accept 4×3=12

Blunders (-3)

- B1 Correct answer but no work shown. (*Æ*)
- B2 Mathematical error.
- B3 Transposition error.
- B4 Error in setting up equation.
- B5 Mishandles fractions
- B6 Mishandles common denominator.

Slips (-1)

S1 Numerical errors to a max of 3.

Attempts (2 marks)

A1 Some correct relevant work.

Worthless (0)

QUESTION 4

Att (3, 3)
Att (3, 2, 2)

Part (a)	10 marks	Att 3
Ŕ	Given that $y = \sqrt{2x - a}$,	
	find the value of y when $x = 4$ and $a = -1$.	

(a)		10 marks	Att 3
Ŕ			
	Ι	II	
	$y = \sqrt{2x - a}$	$y^2 = 2x - a$	
	$y = \sqrt{2(4) - (-1)}$	$y^2 = 2(4) - (4)$	(-1)
	$y = \sqrt{8+1}$	$y^2 = 9$	
	$y = \sqrt{9}$	$y=\pm 3$	
	<i>y</i> =3		

* Accept
$$y = \pm 3$$

Blunders (-3)

- B1 Correct answer but no work shown. (*Æ*)
- B2 Mathematical error.
- B3 Mishandles square root.
- B4 Incorrect operation.
- B5 Substitutes into the expression and stops.

B6 Incorrect substitution (x=-1; a=4 or $y=\sqrt{2a-x}$). May incur B3

Slips (-1)

S1 Numerical errors to a max of 3.

Misreadings (-1)

- M1 Arbitrary substitution with value of *a* negative.
- M2 Misreads coefficient of x.

Attempts (3 marks)

- A1 Partial substitution and stops.
- A2 Squares both sides and stops.

Worthless (0)

Part (b)		20 (10, 10) marks	Att (3, 3)
(i)	Ľ	Graph on the number line the solution set of $-3 < 4x + 7 \le 23, x \in \mathbf{R}$.	
(ii)	Ŕ	Solve the following simultaneous equations: $x = -\frac{1}{2}y + 36$ y = 2x + 12.	

(b)	(i)
------------	-----

10 marks

Att 3

4(b) (i)	Ľ	Graph on the number line the solution set of
		$-3 < 4x + 7 \le 23, x \in \mathbf{R}.$

(b) (i)		10 marks	Att 3
Ľ	Ι	II	
-3<4	$x + 7 \leq 23$	$-3 < 4x + 7 \le 23$	
-3 < 4	$x + 7$ and $4x + 7 \le 23$	$-3-7 < 4x \le 23-7$	
-10<-	$4x$ and $4x \le 23 - 7$	$-10 < 4x \le 16$	
$-\frac{10}{4} <$	$x and x \le \frac{16}{4}$	$-\frac{10}{4} < x \le \frac{16}{4}$	
-2.5	$< x$ and $x \le 4$	$-2 \cdot 5 < x \leq 4$	
	-2.5	4	

Blunders (-3)

- B1 Correct answer but no work shown (\cancel{K})
- B2 Mathematical error
- B3 Mishandles inequality
- B4 Transposition error
- B5 Fails to graph on number line or graphs incorrectly.e.g[$x \in Z$]
- B6 Ignores the negative value in the original inequality and continues
- B7 Solves one inequality in method I (B5 may apply)

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Includes the point -2.5 on the number line
- S3 Excludes the point 4 on the number line

Misreadings (-1)

M1 Reverses one or both inequality signs

Attempts (3 marks)

- A1 Tests any value in the inequality and stops
- A2 Draws a number line and stops

(b) (ii) 10	marks Att 3
4(b) (ii) \swarrow Solve the following sin	nultaneous equations:
$r = -\frac{1}{2}v + 36$	
$x = -\frac{1}{2}y + 30$	
y = 2x + 12.	
(b) (ii) 10	marks Att 3
Ľ	
Ι	II
$x + \frac{1}{2}y = 36$	$x + \frac{1}{2}y = 36$
2x - y = -12	2x - y = -12
$\overline{2x + y} = 72$	-2x - y = -72
2x - y = -12	2x - y = -12
4x = 60	-2y = -84
$x = \frac{60}{4}$	$y = \frac{-84}{2} = 42$
x = 15	-2
$\Rightarrow y = 2x + 12$	$\Rightarrow x = -\frac{1}{2}(42) + 36$
y = 2(15) + 12	x = -21 + 36
y = 30 + 12 = 42	x = 15
III	IV
$x = -\frac{1}{2}y + 36 y = 2x + 12$	$x = -\frac{1}{2}y + 36 y = 2x + 12$
$y = 2(-\frac{1}{2}y + 36) + 12$	$x = -\frac{1}{2}(2x+12)+36$
y = -y + 72 + 12	x = -x - 6 + 36
2y = 84	2x = 30
y = 42	x = 15
$\Rightarrow x = -\frac{1}{2}(42) + 36$	$\Rightarrow y = 2x + 12$
x = -21 + 36	y = 2(15) + 12
x = 15	y=30+12=42

Apply only <u>one</u> blunder deduction (B1 or B2) to any error(s) in establishing the first * equation in terms of x only or the first equation in terms of y only.

*

Finding the second variable is subject to a maximum deduction of (3). Correct values without algebraic work <u>**both verified**</u> in both equations merits <u>**10 marks**</u> *

* Correct values without algebraic work *not verified* merits attempt <u>3 marks</u>

- B1 Error(s) in establishing the first equation in terms of x only [4x = 60] or the first equation in terms of y only [-2y = -84] through elimination by cancellation[**I**,**II**]
- B2 Error(s) in establishing the first equation in terms of x only [2x = 30] or the first equation in terms of y only [2x = 30] through elimination by substitution[**III,IV**]
- B3 Transposition errors in solving the first one variable equation
- B4 Transposition errors when finding the second variable
- B5 Incorrect substitution when finding second variable
- B6 Finds one variable only
- B7 Distribution error
- B8 Mathematical error

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (3 marks)

- A1 Any correct manipulation of either given equation and stops
- A2 Some correct partial substitution and stops

Worthless (0)

- W1 Incorrect answer and no work shown
- W2 Trial and error

The lengths of the sides of a right-angled triangle are as shown in the diagram.

(i) Using the theorem of Pythagoras, write an equation in x.

(ii) \swarrow Solve this equation to find x correct to 2 decimal places.

(c) (i)	10 marks	Att 3
4 (c) (i)	Using the theorem of Pythagoras, write an equation in <i>x</i> .	

(c) (i)	10 ma		Att 3	
	$(x+1)^2 + (x+2)^2$	=	$(2x+2)^2$	

Blunders (-3)

- B1 Incorrect Pythagoras e.g. 2x + 2 not used as hypotenuse.
- B2 Omits any or all of the squares from the equation.
- B3 Uses an incorrect operation.

Attempts (3 marks)

- A1 Writes Pythagoras theorem without reference to the triangle.
- A2 Uses a value of *x* to write a special case.

(c) (ii)			10(5, 5) marks	Att (2, 2)
4 (c) (ii)	(ii)	Ŕ	Solve this equation to find <i>x</i> correct to 2 decin	nal places.

(c) (ii)	1	0(5,5) marks	Att (2,2)
Ŕ			
5 marks	Att 2	5 marks	Att 2
Establishing quadratic equation	n	Solving quadratic equation	
$(2x+2)^2 = (x+1)^2 + (x+2)^2$		$-(2)\pm\sqrt{(2)^2-4(2)(-1)}$	
$4x^2 + 8x + 4 = x^2 + 2x + 1 + x^2 + 4$	x+4	2(2)	
$2x^2 + 2x - 1 = 0$		$-(2)\pm\sqrt{4+8}$ $-(2)\pm\sqrt{12}$	$-2\pm 3\cdot 464101615$
		4 4	4
		$=\frac{-2+3\cdot464101615}{and}\frac{-2}{and}$	$2 - 3 \cdot 464101615$
		4	4
		$=\frac{1\cdot464101615}{4}$ and $\frac{-5.4641}{4}$	01615
		=0.3660254038 and -1.36	6025404
		$= \underline{0.37}$ and $\underline{-1.37}$	

* Accept candidate's work from previous part.

* No penalty for not eliminating invalid solution.

Blunders (-3)

- B1 Correct answer but no work shown (\mathscr{L})
- B2 Error in squaring
- B3 Fails to group or groups incorrectly
- B4 Combines unlike terms and continues e.g. 8x + 4 = 12
- B5 Error transposition
- B6 Error in quadratic formula
- B7 Error in the application of the quadratic formula
- B8 Finds only one solution
- B9 Decimal error
- B10 Mathematical error

B11 Stops at
$$\frac{-2 \pm \sqrt{12}}{4}$$

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Fails to round off or rounds incorrectly

Attempts (2 marks)

- A1 Any correct multiplication and stops.
- A2 Simplifies to a linear equation may merit Att 2 marks at most.
- A3 Solves a linear equation correctly for a single value may merit Att 2 marks at most.
- A4 Writes correct quadratic formula and stops.

Worthless (0)

	QUESTION 5	
Part (a)	10 marks	Att 3
Part (b)	20(15, 5) marks	Att (5, 2)
Part (c)	20 (10, 5, 5) marks	Att (3, 2, 2)
Part (a)	10 marks	Att 3

1 ui ((u)			11000
5(a)	Ľ	Given that $f(x) = 5x - 12$ and that $f(a) = a$, find the value of a .	

Part (a)	10 marks	Att 3
Ľ	f(x) = 5x - 12	
	f(a) = a	
	\Rightarrow 5 <i>a</i> -12 = <i>a</i>	
	4a = 12	
	12	
	$a = \frac{1}{4}$	
	<i>a</i> = 3	

- B2 Incorrect substitution.
- B3 Transposition error.
- B4 Mishandles fraction.

Slips (-1)

S1 Numerical errors to a max of 3.

Attempts (3 marks)

- A1 Some correct substitution and stops.
- A2 f(a) = 5a 12 and stops.

Worthless (0)

Part (b)	20 (15, 5) marks Att (5, 2	2)
(i)	Let f be the function $f: x \to 5x - 4$ and g be the function $g: x \to 3x + 1$.	
(ii)	 ✓ Using the same axes and scales, draw the graph of <i>f</i> and the graph of <i>g</i>, for 0 ≤ x ≤ 3, x ∈ R. From your graphs, write down the co-ordinates of the point of intersection of the two lines. 	
(b) (i)	15 marks Att	5
5(b)(i)	Let <i>f</i> be the function $f: x \to 5x - 4$ and <i>g</i> be the function $g: x \to 3x + 1$.	

 \swarrow Using the same axes and scales, draw the graph of *f* and the graph of *g*, for $0 \le x \le 3$, $x \in \mathbf{R}$.

* Both graphs correct \Rightarrow Full Marks (15 marks)

- * **One graph correct** but no table **merits 9 marks**[B4 + B7]
- * Only two points needed for each function but the graph must include the domain.
- * Accept reversed co-ordinates if
 - (i) axes are not labelled or (ii) if axes are reversed to compensate.
- * Tolerance = ± 1 Box on scale.

					Ι					
f(x) =	5x - 4					g(x) =	3x + 1			
$f(0)=5(0)-4=0-4=-4 \rightarrow (0,-4)$						$g(0)=3(0)+1=0+1=1 \rightarrow (0,1)$				
$f(1)=5(1)-4=5-4=1 \rightarrow (1,1)$				g(1)=3	$g(1)=3(1)+1=3+1=4 \rightarrow (1,4)$					
$f(2)=5(2)-4=10-4=6 \rightarrow (2,6)$				g(2)=3	$g(2)=3(2)+1=6+1=7 \rightarrow (2,7)$					
f(3)=5	5(3) - 4 = 1	5 - 4 = 11	\rightarrow (3,11)	1		$g(3)=3(3)+1=9+1=10 \rightarrow (3,10)$				
					II					
x	0	1	2	3		x	0	1	2	3
5 <i>x</i>	0	5	10	15		3 <i>x</i>	0	3	6	9
-4	-4	-4	-4	-4		+1	+1	+1	+1	+1
f(x)	-4	1	6	11		g(x)	1	4	7	10
Points	(0,-4)	(1,1)	(2,6)	(3,11)		Points	(0,1)	(1,4)	(2,7)	(3,10)

4

* Error(s) in each row/column attract a maximum deduction of 3.

* Tolerance = ± 1 Box on scale.

Blunders (-3)

- B1 Each incorrect or missing point on the graph to maximum of two per line
- B2 Adds in x row when evaluating f(x) or g(x) (once if consistent.)
- B3 Mathematical errors in calculation (once if consistent)
- B4 Points not joined or joined incorrectly once for each line
- B5 (x, y) plotted as (y, x) or Axes reversed (once only)
- B6 Scale error (once only)
- B7 Error in plotting points from candidates table/values (once per function) [*Tolerance]
- B8 Lines not extended to include full domain (once only)

Misreadings (-1)

M1 Uses separate graphs for f(x) and g(x)

Attempts (5 marks)

A1 Correct or partially correct tables/values but no graph drawn

A2 Correctly scaled axis drawn

(b) (ii)

5 marks

5 (b) (ii) From your graphs, write down the co-ordinates of the point of intersection of the two lines.

(b) (i	ii) 5 marks	Att 2
	Point of intersection: (2.5,8.5)	
*	Accept candidates work from previous part.	
*	Tolerance = ± 1 Box on scale.	

Blunders (-3)

B1 (x, y) read as (y, x)

B2 Indicates point on graph but (x, y) not stated.

B3 Finds the *x* or *y* value only.

Slips (-1)

S1 Co-ordinates of point outside tolerance.

Attempts (2 marks)

A1 Scaled axis drawn for this part.

- * **<u>Correct graph</u>** \Rightarrow Full Marks (10 marks)
- * Accept reversed co-ordinates if
 - (i) axes are not labelled or (ii) if axes are reversed to compensate.
- * Graph incorrect examine work and mark accordingly.
- * Tolerance = ± 1 Box on scale.

	Ι							
f(x) = 2	$f(x) = 2x^2 + x - 15$							
f(-4) =	$2(-4)^2 + (-$	-4)-15=2	2(16) - 4 - 13	5 = 32 - 19 =	$=13 \rightarrow (-4)$,13)		
f(-3) = 1	$2(-3)^2 + (-$	-3)-15=2	2(9) - 3 - 15	=18 - 18 = 18	$0 \rightarrow (-3,0)$			
f(-2) =	$2(-2)^{2}+(-$	-2)-15 =	2(4) - 2 - 15	5 = 8 - 17 = -	$-9 \rightarrow (-2, -2, -2)$	-9)		
f(-1) = 2	$2(-1)^2 + (-$	1) - 15 = 2	(1) - 1 - 15 =	2 - 16 = -1	$4 \rightarrow (-1, -1)$	4)		
f(0) = 2($(0)^2 + (0) - 1$	5 = (0) - 0	-15 = 0 - 1	$5 = -15 \rightarrow 0$	(0,-15)			
f(1) = 2(1)	$(1)^{2} + (1) - 13$	5 = 2(1) + 1	-15 = 2 + 1	-15 = 3 - 15	$=-12 \rightarrow ($	1,-12)		
f(2) = 2($(2)^2 + (2) -$	15 = 2(4) +	-2 - 15 = 8 +	-2 - 15 = 10	-15 = -5 -	→(2,-5)		
f(3) = 2($(3)^2 + (3) - 1$	5 = 2(9) +	3-15=18-	+3-15=21	$-15 = 6 \rightarrow$	(3,6)		
				II				
x	-4	-3	-2	-1	0	1	2	3
$2(x)^{2}$	32	18	8	2	0	2	8	18
+x	-4	-3	-2	-1	0	1	2	3
-15	-15	-15	-15	-15	-15	-15	-15	-15
f(x)	13	0	-9	-14	-15	-12	-5	6
Points	(-4,13)	(-3,0)	(-29)	(-1,-14)	(0,-15)	(1,-12)	(2,-5)	(3,6)

* Error(s) in each row/column attract a maximum deduction of 3.

* Accept candidate's values from table when plotting graph.

Blunders (-3)

- B1 Each incorrect point without work [S1 may apply]
- B2 Each missing point
- B3 Adds in domain row when evaluating f(x) (once if consistent)
- B4 Omits "x" row
- B5 Omits "-15" row
- B6 Mathematical errors in calculation (once if consistent)
- B7 Reversed co-ordinates plotted against non reversed axes or similar (once only)
- B8 Scale error (once only)
- B9 Points not joined to form curve or joined in incorrect order (once only)
- B10 Graph not extended to include full domain (once only).

Slips (-1)

- S1 Each incorrect point plotted [Tolerance \pm 1Box on scale]
- S2 Numerical errors to a max of 3

Misreadings (-1)

- M1 " $2(x)^2$ " taken as" $(2x)^2$ " all the way. [In row headed $2(x)^2$ by the candidate]
- M2 "*x*"taken as" *x*"all the way [In row headed *x* by the candidate]
- M3 "-15" taken as "15" all the way [In row headed -15 by the candidate] *Attempts (3 marks)*
- A1 Correct or partially correct tables/values but no graph drawn
- A2 Scaled axis drawn for this part.
- A3 Omits " $2(x)^2$ " row from table or treats " $2(x)^2$ " as $\pm 2x$ or similar
- A4 Some effort to plot a point

Part (c) (ii)

5 marks

Att 2

5 (c) (ii) \swarrow Use your graph to find the minimum value of f(x).

* Accept answer consistent with candidate's curve [Tolerance = ± 1 Box on scale]

Blunders (-3)

- B1 Correct answer but no work shown (\mathscr{L})
- B2 Minimum indicated on graph but no value given or value outside tolerance
- B3 States *x* co-ordinate of minimum point

Slips (-1)

S1 Identifies *x* and *y* co-ordinates of minimum only

Attempts (2 marks)

A1 Reads minimum from table.

Att 2

5 (c) (iii) \swarrow Use your graph to find the range of values of x for which $f(x) \ge 0$.

(c) (i	(iii) 5 marks Att 2						
	(iii) $x \leq -3$ and $x \geq 2\frac{1}{2}$ [indicated on graph]						
*	Accept answer consistent with candidate's curve [Tolerance = ± 1 Box on scale]						
*	Accept range indicated correctly on graph and written in words.						
*	Accept $-4 \le x \le -3$ and $2\frac{1}{2} \le x \le 3$.						
Blun	ders (-3)						
B 1	Correct answer but no work shown (🖄)						
B2	Range indicated correctly on graph but no value given or value/s outside tolerance						
B3	Gives only one range value						
B4	Range of values of $f(x) \le 0$						
B5	Range of values of $f(x) < 0$						

B6 Values of f(x) = 0

Attempts (2 marks)

- A1 Indicates a value that lies within the range
- A2 Indicates or states either x = -3 or $x = 2\frac{1}{2}$

	QUESTION 6	
Part (a) Part (b) Part (c)	10 marks 20(5, 5, 10) marks 20(15, 5) marks	Att 3 Att (2, 2, 3) Att (5, 2)
Part (a)	10 marks	Att 3
6(a)	Express in its simplest form: $\frac{x+7}{5} + \frac{3-x}{4}.$	
(a)	10 marks	Att 3
Ŕ	$\frac{\frac{x+7}{5} + \frac{3-x}{4}}{\frac{4(x+7)+5(3-x)}{20}}$ $\frac{\frac{4x+28+15-5x}{20}}{\frac{43-x}{20}}$	

- B1 Correct answer but no work shown (\cancel{K})
- B2 Incorrect denominator
- B3 Mishandles denominator
- B4 Mishandles numerator
- B5 Distribution error
- B6 Mathematical error
- B7 Fails to combine like terms in final answer
- B8 Combines unlike terms and continues

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (3 marks)

- A1 Identifies common denominator and stops
- A2 Any correct relevant step and stops

Worthless (0)

W2
$$\frac{x+7}{5} + \frac{3-x}{4} = \frac{10}{9}$$
 and stops

Part	(b)
	$\langle \sim \rangle$

(i)	Factorise	$25x^2 - 36y^2$.
(ii)	Factorise	$11x^2 + 75x - 14$.
(iii)	🗷 Simplify	$(3-4x)^2 - (3-5x)^2$.

(b) (i)		5 marks	Att 2
6 (b) (i)	Factorise	$25x^2-36y^2$	

(b)	(i) 5 marks	Att 2	
	(5x - 6y)(5x + 6y)		
*	Accept (with or without brackets) for 5 marks any of the following		
	(5x-6y) and $(5x+6y)$ [The word and is written down]		
	(5x-6y) or $(5x+6y)$ [The word or is written down]		
	(5x-6y), $(5x+6y)$ [A comma is used]		

- B1 Answer as (25x 36y)(25x + 36y)
- B2 Answer as $(5x-6y)\pm(5x+6y)$
- B3 Mathematical error
- B4 Sign error
- B5 Incorrect factorisation of one term

Attempts (2 marks)

- A1 Indicates $25x^2 = (5x)^2$ or similar and stops
- A2 Any correct relevant step and stops.
- A3 Mentions the difference of two squares and stops
- A3 Worthless (0)
- W1 Incorrect answer and no work shown

(b) (ii)	5 marks	Att 2
6 (b) (ii) Factorise	$11x^2 + 75x - 14$.	
Part (b) (ii)	5 marks	Att 2
$ \frac{11x^{2} + 75x - 14}{11x^{2} + 77x - 2x - 14} \\ \frac{11x(x + 7) - 2(x + 7)}{(x + 7)(11x - 2)} $	$x \xrightarrow{-2} +7$	$\frac{-(75)\pm\sqrt{(75)^2-4(11)(-14)}}{2(11)}$ $\frac{-75\pm\sqrt{5625+616}}{22} = \frac{-75\pm79}{22}$ $\frac{4}{22} = \frac{2}{11} and \frac{-154}{22} = -7$ $\Rightarrow (11x-2)(x+7)$

* Accept also (with or without brackets) for 5 marks any of the following (x + 7) and (11x - 2) [The word **and** is written down.] (x + 7) or (11x - 2) [The word **or** is written down.] (x + 7), (11x - 2) [A comma is used]

Blunders (-3)

- B1 Correct factors of $11x^2$ and -14 leading to incorrect middle term e.g. (11x 14)(x + 1).
- B2 Incorrect factors of $11 x^2$
- B3 Incorrect factors of -14
- B4 Correct cross method but factors not shown and stops
- B5 11x(x+7) 2(x+7) or similar and stops
- B6 Incorrect common factor and continues.
- B7 Incorrect quadratic formula and continues.
- B8 Error in the use of quadratic formula
- B9 Answer left as roots.
- B10 Sign error in substituted formula
- B11 Error in square root or square root ignored
- B12 $(x+7)\pm(11x-2)$

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (2 marks)

- A1 Correct quadratic equation formula quoted and stops
- A2 Correct factors of either $11x^2$ or ± 14
- A3 Any correct step
- A4 Guide number = ± 154 as and stops

Worthless (0 marks)

- W1 $11x^2 + 75x = 14$ or similar and stops
- W2 Combines "*x*'s"to "numbers" and continues or stops

(b) (iii)			10 :	marks	Att 3
6 (b) (iii)	Ľ	Simplify	(3-4	$(x)^2 - (3-5x)^2.$	
(b) (iii)			10 :	marks	Att 3
Ŕ					
	Ι			II	
$(3-4x)^2 - (3-5x)^2$	$(x)^2$			$(3-4x)^2 - (3-5x)^2$	
$9-24x+16x^2-6$	9 - 30x + 25	$5x^2$		[(3-4x)-(3-5x)][(3-4x)+(3-	-5x)

(3-4x-3+5x)(3-4x+3-5x)

(x)(6-9x)

* Accept $3(2x-3x^2)$ or 3x(2-3x) or x(6-9x) as correct answer.

Blunders (-3)

B1 Correct answer but no work shown (\cancel{K})

 $6x - 9x^2$

B2 Mathematical error

 $9-24x+16x^2-9+30x-25x^2$

- B3 Distribution error
- B4 Error in squaring
- B5 Combines unlike terms and continues
- B6 Fails to combine similar terms
- B7 Error in the factors of the difference of two squares

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (3 marks)

- A1 Any correct attempt to square and stops
- A2 Mentions the difference of two squares and stops

Worthless (0)

Part (c)		20 (15, 5) marks	Att (5, 2)
(i)	Ŕ	Solve $\frac{6}{x} + \frac{6}{x+2} = \frac{5}{2}, x \in \mathbf{R}$.	
(ii)	Ŕ	Hence, or otherwise, find the two values of $t \in \mathbf{R}$, for which $\frac{6}{2t-1} + \frac{6}{2t+1} = \frac{5}{2}.$	
(c) (i)		15 marks	Att 5

(C) (I)					5 marks	
Q 6 (c)(i)	Ŕ	Solve $\frac{6}{x}$	$+ \frac{6}{x+2}$	$=\frac{5}{2}$	$x \in \mathbf{R}$	

(c) (i)	15	marks Att 5
Ľ		
	Ι	П
	$\frac{6}{6} + \frac{6}{2} = \frac{5}{2}$	$\frac{6}{-}+\frac{6}{2}=\frac{5}{2}$
х 6	(x+2) = 2 (x+2) = 6(x) = 5	x x+2 2
_	$\frac{x(x+2)+6(x)}{x(x+2)} = \frac{3}{2}$	$\frac{6(x+2)(2)+6(x)(2)-5(x)(x+2)}{-0} = 0$
<u>-</u>	$\frac{5x+12+6x}{x^2+2x} = \frac{5}{2}$	x(x+2)(2) = 0
$\frac{1}{z}$	$\frac{2x+12}{x^2+2x} = \frac{5}{2}$	$\frac{12x+24+12x-5x^2-10x}{x(x+2)(2)} = 0$
5	$x^2 + 10x = 24x + 24$	$5x^2 - 14x - 24 = 0$
5	$x^2 - 14x - 24 = 0$	(5x+6)(x-4)=0
(:	5x+6)(x-4) = 0	5x + 6 = 0 and $x - 4 = 0$
5	x + 6 = 0 and $x - 4 = 0$	$\Rightarrow x = -\frac{6}{-}$ and $x = 4$
=	$\Rightarrow x = -\frac{6}{5} and x = 4$	5

* Quadratic equation may be solved by other methods: [as per scheme Q6 (b) (ii)]

* Solving quadratic equation may incur maximum penalty of -3.

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L})
- B2 Transposition error
- B3 Distribution error
- B4 Error in quadratic formula or its application (once)
- B5 Mathematical error

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (5 marks)

- A1 Identifies a correct common denominator and stops
- A2 Has simplified equation to linear and solves correctly for single value of x -max att 5
- A3 Writes correct quadratic formula and stops
- A4 Multiplies out common denominator correctly and stops
- A5 Trial and error leading to one correct solution
- A6 Any correct relevant work

Worthless (0)

(c) (ii)

5 marks

Q 6 (c) (ii) \swarrow Hence, or otherwise, find the two values of $t \in \mathbf{R}$, for which $\frac{6}{2t-1} + \frac{6}{2t+1} = \frac{5}{2}.$

(c) (ii)
 5 marks
 Att

$$\checkmark$$
 I
 III

 \checkmark
 \checkmark
 \blacksquare
 \blacksquare
 \checkmark
 \checkmark
 \blacksquare
 \blacksquare
 \checkmark
 \blacksquare
 \blacksquare
 \blacksquare
 \sim
 $2t-1$
 $Let x+2=2t+1$
 $\frac{6}{2t-1} + \frac{6}{2t+1} = \frac{5}{2}$
 $\frac{6}{2t-1} + \frac{6}{2t+1} = \frac{5}{2}$
 $10t-5=-6$
 $2t + 2 = 2t - 1$
 $\frac{6}{2t-1} + \frac{2t-1}{2(2t-1)(2) - 5(2t-1)(2t+1)} = 0$
 $\frac{6(2t+1)(2) + 6(2t-1)(2) - 5(2t-1)(2t+1)}{2(2t-1)(2t+1)} = 0$
 $10t = -1$
 $-\frac{6}{5} = 2t - 1$
 $24t + 12 + 24t - 12 - 20t^2 + 5 = 0$
 $20t^2 - 48t - 5 = 0$
 $Let t = -\frac{1}{10}$
 $10t = -1$
 $10t = -1$
 $10t = -1 \Rightarrow t = -\frac{1}{10}$
 $10t = -1 \Rightarrow t = -\frac{1}{10}$
 $10t = -1 \Rightarrow t = -\frac{1}{10}$
 $2t = 5$
 and
 $4 = 2t - 1$
 $2t = 5$
 $t = \frac{5}{2}$
 $2t = 5$
 $t = \frac{5}{2}$
 $t = \frac{5}{2}$
 $2t = 5$
 $t = \frac{5}{2}$
 $t = \frac{5}{2}$
 $t = \frac{5}{2}$

* Accept candidate's values from part (c) (i)

* Method III apply scheme as per 6(c)(ii)

Blunders (-3)

- Correct answer but no work shown (\mathscr{L}) **B**1
- **B**2 x+2=2t-1 and/or x=2t+1 and continues
- **B**3 Mathematical error
- **B**4 Distribution error
- B5 Transposition error

Slips (-1)

Numerical errors to a max of 3 **S**1

Attempts (2 marks)

A1 x=2t-1 and/or x+2=2t+1 and stops.

- A2 Any correct step and stops.
- Trial and error [Substitutes a arbitrary value of x into either x=2t-1 or x+2=2t+1] A3

Worthless (0)

W1 Incorrect answer and no work shown

Att 2

Att 2

 $2t = 5 \Longrightarrow t = \frac{5}{2}$

BONUS MARKS FOR ANSWERING THROUGH IRISH

Bonus marks are applied separately to each paper as follows:

If the mark achieved is 225 or less, the bonus is 5% of the mark obtained, rounded *down*. (e.g. 198 marks \times 5% = 9.9 \Rightarrow bonus = 9 marks.)

If the mark awarded is above 225, the following table applies:

Bunmharc	Marc Bónais	Bunmharc	Marc Bónais
(Marks obtained)	(Bonus Mark)	(Marks obtained)	(Bonus Mark)
226	11	261 - 266	5
227 – 233	10	267 – 273	4
234 - 240	9	274 - 280	3
241 - 246	8	281 – 286	2
247 – 253	7	287 – 293	1
254 - 260	6	294 - 300	0