

JUNIOR CERTIFICATE EXAMINATION

2009

MARKING SCHEME

MATHEMATICS HIGHER LEVEL PAPER 2

MARKING SCHEME JUNIOR CERTIFICATE EXAMINATION 2009 MATHEMATICS - HIGHER LEVEL - PAPER 2

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips- numerical errors (-1)
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

QUESTION 1

Part (a)	10 marks	Att 3
Part (b)	20(10,5,5) marks	Att (3,2,2)
Part (c)	20(10,10) marks	Att (3,3)

Part (a)	10 marks	Att 3
Ŕ	Find the total surface area of a solid hemisphere of diameter 14 cm. Give your answer correct to the nearest whole number.	

(a)	10 marks	Att 3
	Total surface area = $2\pi r^2 + \pi r^2 = 3\pi r^2$	
	$=3\pi(7)^2$	
	$=147\pi$	
	=461.8141201	
	$= 462 \text{ cm}^2$	

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{A})
- B2 Total surface area = $2\pi r^2$
- B3 Total surface area = $4\pi r^2$
- B4 *r*=14
- B5 Value of π used which affects the accuracy of the answer
- B6 Incorrect relevant area formula
- B7 Answer in terms of π
- B8 Incorrect squaring

Slips (-1)

- S1 Arithmetic slips to a maximum of (-3)
- S2 Answer not rounded off or incorrectly rounded

Attempts (3 marks)

- A1 Total surface area = $2\pi r^2 + \pi r^2$ or $2\pi r^2$ or πr^2
- A2 Correct *r* indicated

Worthless (0)

- W1 Volume of hemisphere
- W2 2π*r*

Part (b)	20 (10,5,5) marks	Att (3,2,2)
1 cm ³ of gold costs €4 (i)	3 cm and height 2 cm. 400. the cost of the block of gold. 0 mm ³ of gold to make a gold ring. y rings can be made from the block?	2 cm 3 cm
(iii) 🗷 Calculate	the amount of profit the jeweller makes	on each ring.

(b) (i)	10 marks	Att 3
Volume of block = $4 \times 3 \times 2$		
$= 24 \text{ cm}^{3}$		
Cost = 24 × €400		
=€9 600		

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect relevant formula
- B3 Incorrect substitution

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (3 marks)

- A1 Volume = length \times breadth \times height
- A2 Indication of multiplication by 400

Worthless (0)

W1 Surface area formula

 $24 \text{cm}^3 = 24000 \text{mm}^3$ Number of rings $= \frac{24000}{250} = 96$

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 $1 \text{ cm}^3 \neq 1000 \text{ mm}^3$
- B3 Incorrect operation

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (2 marks)

A1 1 cm = 10 mm

A2 Indication of division by 250

Worthless (0)

W1 Answer from (b) (i) divided by 120

(b) (iii)	5 marks	Att 2
Total Selling Price	e = €120 × 96 = €11 520	
Total Profit = €11	520 - €9 600	
=€19	20	
Profit on each ring	$s = \frac{1920}{96} = \epsilon = 20$	
or		
Cost per ring = €9	600 ÷ 96 = €100	
Profit on each ring	$g = \epsilon 120 - \epsilon 100$	
	=€20	
* Accept candidate's	s answers from parts (i) and (ii)	
Blunders (-3)		

B1 Correct answer without work shown (\mathscr{L})

B2 Profit not calculated

B3 Incorrect operation

B4 Answers from part (i) and/or part (ii) not used

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (2 marks)

A1 Profit = selling price - cost price

A2 Works with answer from (b) (i) or (b) (ii)

Part	t (c)	20 (10,10) marks	Att (3,3)
	hemisphere is made	e hemisphere is 30 cm	
			60 cm
	(ii) \land Express		₩
		used in the float as ntage of the volume of the cylinder.	30 cm
		our answer correct to the nearest whole	number
	0110 90		manno en.
(c) (i)	10 marks	
(c) (10 marks	Att 3
(c) (Volume = volume o	$\frac{10 \text{ marks}}{50 \text{ f cone} + \text{volume of hemisphere}}$ $\frac{2}{3} \pi r^3 \dots \text{Step 1}$	
(c) (Volume = volume o $= \frac{1}{3}\pi r^{2}h + \frac{1}{3}\pi (15)^{2}(4)$	of cone + volume of hemisphere $\frac{2}{3}\pi r^3$ Step 1 $(45) + \frac{2}{3}\pi (15)^3$ Step2	
(c) (Volume = volume o $= \frac{1}{3}\pi r^{2}h + \frac{1}{3}\pi (15)^{2}(4)$	of cone + volume of hemisphere $\frac{2}{3}\pi r^3$ Step 1 $(45) + \frac{2}{3}\pi (15)^3$ Step2	
(c) (Volume = volume o $= \frac{1}{3}\pi r^{2}h + \frac{1}{3}\pi (15)^{2}(4)$	of cone + volume of hemisphere $\frac{2}{3}\pi r^3$ Step 1 $(45) + \frac{2}{3}\pi (15)^3$ Step 2 2250π or 5625π Step 3	
*	Volume = volume o $= \frac{1}{3}\pi r^{2}h + \frac{1}{3}\pi (15)^{2}(4)$ $= \frac{1}{3}\pi (15)^{2}(4)$	of cone + volume of hemisphere $\frac{2}{3}\pi r^3$ Step 1 $(45) + \frac{2}{3}\pi (15)^3$ Step 2 2250π or 5625π Step 3	
*	Volume = volume o $= \frac{1}{3}\pi r^{2}h + \frac{1}{3}\pi (15)^{2}(4)$ $= \frac{1}{3}\pi (15)^{2}(4)$ $= 3375\pi + \frac{1}{3}\pi r^{3} \text{ or } \frac{1}{2}(4)$ Accept $\frac{2}{8}\pi r^{3} \text{ or } \frac{1}{2}(4)$ and ers (-3)	of cone + volume of hemisphere $\frac{2}{3}\pi r^3$ Step 1 $(45) + \frac{2}{3}\pi (15)^3$ Step 2 2250π or 5625π Step 3	
* Blur	Volume = volume o $= \frac{1}{3}\pi r^{2}h + \frac{1}{3}\pi (15)^{2}(4)$ $= \frac{1}{3}\pi (15)^{2}(4)$ $= 3375\pi + \frac{1}{3}\pi r^{3} \text{ or } \frac{1}{2}(4)$ Accept $\frac{2}{8}\pi r^{3} \text{ or } \frac{1}{2}(4)$ and ers (-3)	bot cone + volume of hemisphere $\frac{2}{3}\pi r^{3}$ Step 1 $\frac{2}{45} + \frac{2}{3}\pi (15)^{3}$ Step 2 $\frac{2250\pi \text{ or } 5625\piStep 3}{\left(\frac{4}{8}\pi r^{3}\right)}$ hout work shown (\mathscr{K})	

- B4 Incorrect relevant volume formula
- B5 Incorrect *h*
- B6 $r \neq 15$
- B7 Incorrect squaring or cubing

Slips (-1)

- S1 Arithmetic slips to a maximum of (-3)
- S2 Answer not in terms of π
- S3 Fails to indicate addition

Attempts (3 marks)

- A1 r = 15
- A2 h = 45

A3 Volume of the hemisphere = $\frac{2}{3}\pi r^3$

- A4 Volume of cone formula correct with some substitution
- A5 Volume of the cone or hemisphere found only
- A6 Effort at calculating the volume of either the cone or the hemisphere

Worthless (0)

W1 Area formula for both the cone and the hemisphere

(c) (ii)	10 marks	Att 3
Volume of cy	vlindrical shape = $\pi r^2 h$	
	$= \pi (15)^2 (60) = 13500\pi$ Step 1	
Percentage	$=\frac{5625\pi}{13500\pi}$ or equivalent ratioStep 2	
	$= \frac{5625\pi}{13500\pi} \times 100\% = 41\frac{2}{3}\% = 42\% \dots \text{Step 3}$	

- B1 Correct answer without work shown (\mathscr{L})
- B2 $r \neq 15$
- B3 $h \neq 60$
- B4 Incorrect squaring
- B5 Incorrect relevant volume formula
- B6 Incorrect substitution into correct formula
- B7 Ratio inverted
- B8 Percentage not found

Slips (-1)

- S1 Arithmetic slips to a maximum of (-3)
- S2 Answer not rounded off or incorrectly rounded

Attempts (3 marks)

- A1 Correct formula with some substitution
- A2 r = 15
- A3 Use of 100
- A4 volume float ÷ volume cylinder

Worthless (0)

W1 Area formula

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	15 marks	Att 5
Part (c)	25(5,10,5,5) marks	Att (2,3,2,2)

Part (a)	10 marks	Att 3
a (-	2, -1) and b (5, -4) are the end points of the diameter of a circle.	
Ľ	Find the coordinates of the centre of the circle.	

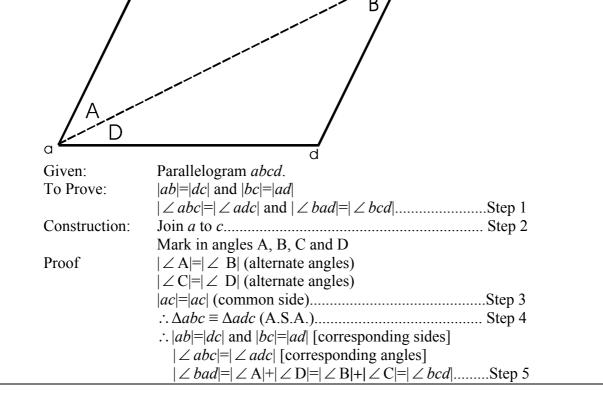
(a)		10 n	narks	Att 3
	entre = midpoint[<i>ab</i>] $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$		$a \to b$ (-2,-1) \to (5,-4) x:+7, y:-3	
=	$\left(\frac{-2+5}{2}, \frac{-1-4}{2}\right)$ $\left(\frac{3}{2}, -\frac{5}{2}\right)$	or	$\Rightarrow a \rightarrow \text{centre} x: +\frac{7}{2}, y: -\frac{3}{2}$ $\therefore \text{centre} = \left(-2 + \frac{7}{2}, -1 - \frac{3}{2}\right)$ $= \left(\frac{3}{2}, -\frac{5}{2}\right)$	

Blunders (-3)

- B1 Correct answer without work shown (\cancel{k})
- B2 Incorrect relevant formula
- B3 Both *x* and *y* switched in substitution
- B4 Correct substitution but midpoint not found
- B5 Error in translation

Slips (-1)

- S1 Arithmetic slips to a maximum of (-3)
- S2 One incorrect substitution


Attempts (3 marks)

- A1 Correct formula with or without some substitution
- A2 Effort at translation
- A3 Graphical solution or effort at graphical solution

Worthless (0)

W1 Wrong formula with or without substitution

Part (b)	15 marks	Att 5
Ŕ	Prove that the opposite sides and opposite angles of a parallelogram are respectively equal in measure.	
(b) (i)	15 marks	Att 5
	^b C ^c B	

- * Some steps may be indicated on candidate's diagram
- * Accept other valid proofs
- * Must have one reason in Step 3 and A.S.A. in Step 4
- * Accept one pair of sides and one pair of angles for Step 1

- B1 Each step incorrect or omitted
- B2 Each step incomplete

Attempts (5 marks)

- A1 Parallelogram drawn with diagonal indicated
- A2 Parallelogram drawn with sides or angles to be proven equal indicated

Worthless (0)

- W1 Wrong Theorem
- W2 Parallelogram drawn and stops
- W3 No diagram

Part (c)	25 (5,1	0,5,5) marks	Att (2,3,2,2)
(i) <i>k</i>	S Verify that the points $(3, 0)$	and $(0, -2)$ are on the line <i>L</i> : $2x$	-3y = 6.
(ii) <i>k</i>	Find the equation of the line	e K through $(3, 0)$ which is	
	perpendicular to L.		
(iii) A	Show the lines L and K on	a coordinate diagram on graph j	paper.
(iv) Z	Find the area of the triangle	e formed by the lines <i>L</i> and <i>K</i> ar	nd the <i>y</i> axis.
(c) (i) $(-1)^{-1}$		marks	Att 2
(3,0):2		(0,-2): 2(0) - 3(-2) = 6	
or	6 - 0 = 6 yes	0 + 6 = 6 yes	
or	-2-0 2		
Slope o	of $L: \frac{-2-0}{0-3} = \frac{2}{3}$		
The equ	uation of $L: y - 0 = \frac{2}{3}(x - 3)$		
	3y = 2x - 6		
	2x - 3y = 6		
Thus, v	verified.		
or Latr-	$2 \cdot 2(2) = 2 \cdot 1 = 6$	$L_{2}(x) = 2 \cdot 2x - 2(-2) = 6$	
Let $x =$	$3:2(3) - 3y = 6$ $\Rightarrow 6 - 3y = 6$	Let $y = -2: 2x - 3(-2) = 6$ $\Rightarrow 2x + 6 = 6$	
	$\Rightarrow 6-3y=0$ $\Rightarrow -3y=0$	$\Rightarrow 2x + 0 = 0$ $\Rightarrow 2x = 0$	
	$\Rightarrow \qquad y=0$	$\Rightarrow 2x =$ $\Rightarrow x =$	
Thus, v	verified.		0
or			
Cuts x	-axis: $y = 0$	Cuts y - axis : $x =$	0
	$\Rightarrow 2x - 3(0) = 6$	$\Rightarrow 2(0) - 3y$	
	$\Rightarrow 2x - 0 = 6$	$\Rightarrow 0-3y$	
	$\Rightarrow 2x = 6$	\Rightarrow $-3y$	
	$\Rightarrow x = 3$	\Rightarrow y	= -2
$\frac{(3,0)}{Bhundars}$	and $(0,-2)$ are points on the line		

B1 Both *x* and *y* switched in substitution

B2 Incorrect relevant formula

B3 Transposition error

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (2 marks)

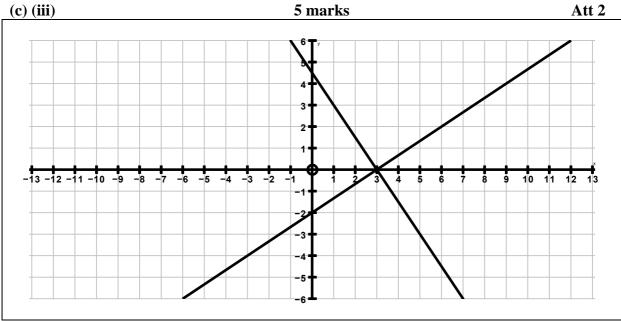
- A1 Correct formula with or without substitution
- A2 Effort at substitution
- A3 At least two points on *L* correctly plotted

(c) (ii) 10 marks	Att 3
slope $L = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - 0}{0 - 3} = \frac{2}{3}$ or $y = mx + c$ method or $m = -\frac{a}{b}$ method	
\Rightarrow slope $K = -\frac{3}{2}$	
The equation of $K: y - y_1 = m(x - x_1)$	
$y-0 = -\frac{3}{2}(x-3)$	
or $2y = -3x + 9$	
or $3x + 2y - 9 = 0$	

* Accept candidate's slope from part (i)

Blunders (-3)

- B1 Incorrect relevant formula
- B2 Both *x* and *y* switched in substitution
- B3 Incorrect perpendicular slope


Slips (-1)

- S1 Arithmetic slips to a maximum of (-3)
- S2 One incorrect substitution

Misreadings (-1) M1 (0,-2) used in equation formula

Attempts (3 marks)

- A1 Correct slope formula and/or line formula with or without substitution
- A2 Indication that the product of perpendicular slopes is -1

- * Accept candidate's perpendicular axes
- * Accept any other point on K
- * If second point on K not found accept perpendicular angle within a tolerance of $\pm 10^{\circ}$
- * Accept candidate's equation of K from part (ii)

- B1 Scale not uniform
- B2 One line only sketched

Slips (-1)

S1 Not on graph paper

Attempts (2 marks)

- A1 One point only plotted
- A2 Scaled axes drawn and stops
- A3 Effort at finding a point on either *L* or *K*

(c) (iv)	5 marks	Att 2
Area of triangle =	$\frac{1}{2}(6\cdot 5)(3) = 9\cdot 75$ units ²	

- * Accept any valid method
- * Accept values consistent with candidate's graph, within a tolerance of ± 0.2 Blunders (-3)

Biunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect relevant formula
- B3 Incorrect base
- B4 Incorrect height
- B5 Sum of areas of two smaller triangles not equal to area of required triangle

Slips (-1)

- S1 Arithmetic slips to a maximum of (-3)
- S2 Sum of areas of smaller triangles not found

Attempts (2 marks)

A1 Correct formula with or without substitution (applies to coordinate geometry formula)

	QUESTION 3			
Part (a)	art (a) 20(15,5) marks Att (5,			
Part(b)	20(10,10) marks	Att (3,3)		
Part (c)	10(5,5) marks	Att (2,2)		
Part (a)	20(15,5)marks	Att 5,2		
$abcd$ is a parallelogrproduced to e and $ \angle$ shown.Find (i) $ \angle abc $,(ii) $\not \ll \angle$	$\angle bce = 36^{\circ}$, as a	b c e		
*Accept (i) and (ii) in any	order			
(a)(i)	15 marks	Att 5		
$ \angle abc = \angle bc$	$e \models 36^{\circ}$ [alternate angles]			
	or			
$ \angle bcd = 180^{\circ}$	$-36^{\circ} = 144^{\circ} \implies \angle abc \models 36^{\circ}$ [interior angles	2]		

- * Some steps may be indicated on candidate's diagram
- * Accept correct answer without work shown

- B1 $|\angle bcd| + |\angle bce| \neq 180^{\circ}$
- B2 Sum of the angles in a parallelogram $\neq 360^{\circ}$

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (5 marks)

- A1 Diagram from examination paper drawn with equal angles indicated
- A2 States that alternate angles are equal
- A3 Indication that a straight angle = 180°
- A4 Indication that the sum of the angles in a parallelogram = 360°

Worthless (0)

(a)(ii)		5 marks	Att 2
	$\left \angle bad \right = 180^{\circ} - 36^{\circ} = 144^{\circ}$		

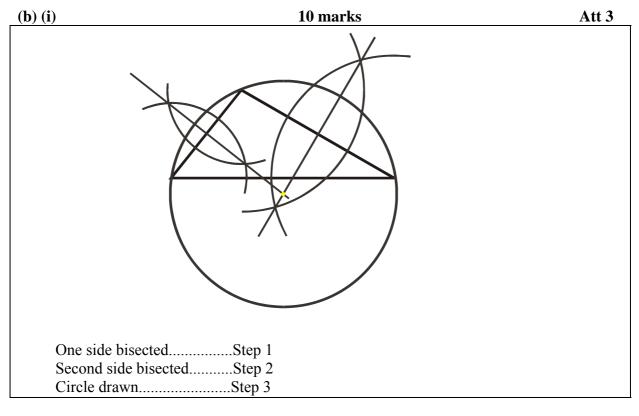
- * Some steps may be indicated on candidate's diagram
- * Accept candidate's answer from part (i)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Sum of the angles in a parallelogram $\neq 360^{\circ}$
- B3 Opposite angles in a parallelogram = 180°
- B4 $|\angle bcd| + |\angle bce| \neq 180^{\circ}$

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (2 marks)


- A1 Diagram from examination paper drawn with equal angles indicated
- A2 Indication that the opposite angles in a parallelogram are equal
- A3 Indication that the sum of the angles in a parallelogram = 360°

A4
$$\mid \angle bcd \mid = 144^{\circ}$$

A5 $|\angle bad| = 360^{\circ} - 2(36^{\circ})$

Worthless (0)

Part (b) 20 (10,10) marks Att (3,3) Z (i) Show how to construct the circumcircle of a triangle. All construction lines must be clearly shown. **(ii)** Ø Each of the three figures labelled A, B and C shown below is the image of the figure X under a transformation. For each of A, B and C, state what the transformation is (translation, central symmetry, axial symmetry or rotation) and in the case of a rotation, state the angle. X В CA

- * Accept constructions with tolerance of 2mm
- * 4 marks: one side correctly bisected
- * 7 marks: two sides correctly bisected

- B1 Circumcentre indicated but circumcircle not drawn
- B2 Vertex not on circle (outside tolerance) once only

Attempts (3 marks)

- A1 Effort at bisecting any side
- A2 Incircle drawn with construction lines shown
- A3 Triangle and circumcircle drawn with no construction lines shown

Worthless (0)

W1 Incircle with no construction lines

(b) (ii)	10 marks	Att 3
A	Rotation of 90° [anti-clockwise] or Rotation of 270° [clockwise]	
В	Axial symmetry	
С	Translation or Rotation of 360°	

- * Accept angle of rotation without reference to anti-clockwise or clockwise
- * One correct transformation: 4 marks
- * Two correct transformations: 7 marks
- * Three correct transformations: 10 marks

Slips (-1)

S1 No angle or incorrect angle of rotation

Attempts (3 marks)

A1 Effort at drawing the figure *X* under one of the given transformations

Part (c)	10 (5,5) marks	Att (2,2)
The trian	gle <i>abc</i> is an isosceles triangle, with $ ab = ac $ and $ \angle bec = \angle c$	$cdb = 90^{\circ}.$
The lines	ec and bd intersect at f.	
(i) 🖉	Prove $ \angle dbc = \angle ecb $.	
(ii) 🖉	Prove ef = fd .	
	e stand	
	b 2010 c	

(c) (i)	5 mai	rks	Att 2
[Consider ∆ <i>bef</i>	`and Δcdf]		
$ \angle bfe = \angle cfd [$	vertically opposite angles]		
$ \angle bef = \angle cdf $	[given]	Step 1	
$\therefore \angle ebf = \angle dcf$	f [3rd pair of angles]	Step 2	
$ \angle abc = \angle acb $	$[\Delta abc$ is isosceles]		
$\Rightarrow \angle abc - \angle e$	$ebf \models \angle acb \mid - \mid \angle dcf \mid$		
i.e. $ \angle dbc = \angle e$	ecb	Step 3	
or			
[Consider Δbc	d and Δcbe]		
$ \angle bcd = \angle cbe $	$ [\Delta abc \text{ is isosceles}]$	Step 1	
$ \angle bdc = \angle bec$	[given]	Step 2	
$\therefore \angle dbc \mid = \angle ecl$	b [3rd pair of angles]	Step 3	
or			
		with diameter [<i>bc</i>]Step 1 ame arc <i>de</i> are equal)Step 2	
$ \angle cbe = \angle bcd$	$[\Delta abc \text{ is isosceles}]$		
$\Rightarrow \angle cbe - \angle a$	$lbe \models \angle bcd \mid - \mid \angle dce \mid$		
i.e. $ \angle dbc = \angle e$	ecb	Step 3	

- *
- *
- Some steps may be indicated on candidate's diagram Accept other valid proofs If prove Δbcd and Δcbe are congruent by A.S.A. full marks *

- Each step incorrect or omitted Each step incomplete B1
- B2

Attempts (2 marks)

- A1 Diagram drawn with equal angles indicated
- A2 $|\angle abc| = |\angle acb|$
- A3 Mention of [bc] as diameter of circumcircle of either Δbce or Δbcd
- A4 Indication that the sum of the angles in a triangle = 180°

Worthless (0)

W1 Diagram from examination paper either partially or fully drawn

(c) (ii)	5 marks		Att 2
[Consider ∆ <i>bef</i>	and Δcdf]		
$ \angle efb = \angle dfc [$	vertically opposite angles]		
$ \angle bef = \angle cdf $	[given]	Step 1	
$\therefore \angle ebf = \angle dcf$	[[third pair of angles]		
$ bf = cf [In \Delta b]$	$cf \mid \angle fbc \mid = \mid \angle fcb \mid$, from part (i)]	Step 2	
$\therefore \Delta bef \equiv \Delta cdf($	A.S.A.)		
$\Rightarrow ef = fd [co$	rresponding sides]	Step 3	

- * Some steps may be indicated on candidate's diagram
- * Accept other valid proofs

Blunders (-3)

- B1 Each step incorrect or omitted
- B2 Each step incomplete

Attempts (2 marks)

- A1 Diagram drawn with equal angles indicated
- A2 Indication that the sum of the angles in a triangle = 180°
- A3 Indication of a pair of sides or pair of angles relevant to proving congruency

Worthless (0)

	QUESTION 4	
Part (a)	20(15,5) marks	Att (5,2)
Part (b)	20(15,5) marks	Att (5,2)
Part (c)	10(5,5) marks	Att (2,2)
Part (a)	20(15,5) marks	Att 5,2
<i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> and <i>e</i> are	points on a circle	
and $ \angle bde = 1$	08°.	× ×

Find (i) $\mathscr{K} | \angle bae |$, (ii) $\mathscr{K} | \angle bce |$,

giving a reason for your answer in each case.

*Accept (i) and (ii) in any order

(a)(i)

 $\frac{15 \text{ marks}}{|\angle bae| = 180^\circ - 108^\circ = 72^\circ \text{ [sum of opposite angles in cyclic quadrilateral = 180^\circ]}$

h

Att 5

* Some steps may be indicated on candidate's diagram

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 360° or 90° used instead of 180°

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (5 marks)

- A1 Indication that the sum of the angles in a cyclic quadrilateral = 360°
- A2 Indication that the sum of the opposite angles in a cyclic quadrilateral = 180°

Worthless (0)

- W1 $|\angle bae| = 108^{\circ}$
- W2 Diagram from examination paper either partially or fully drawn

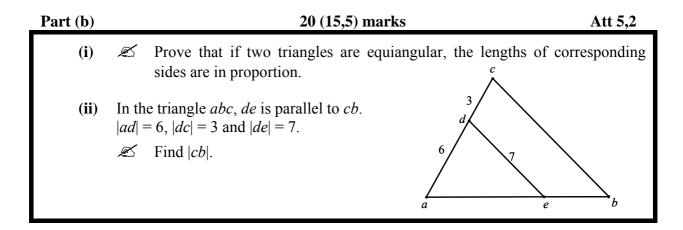
(a)(ii)	5 marks	Att 2
	$ \angle bce = 108^{\circ}$ (angles standing on same arc are equal)	
	or	
	$\left \angle bce \right = 180^{\circ} - 72^{\circ} = 108^{\circ}$ [sum of opposite angles in a cyclic quadrilatera	$1 = 180^{\circ}$

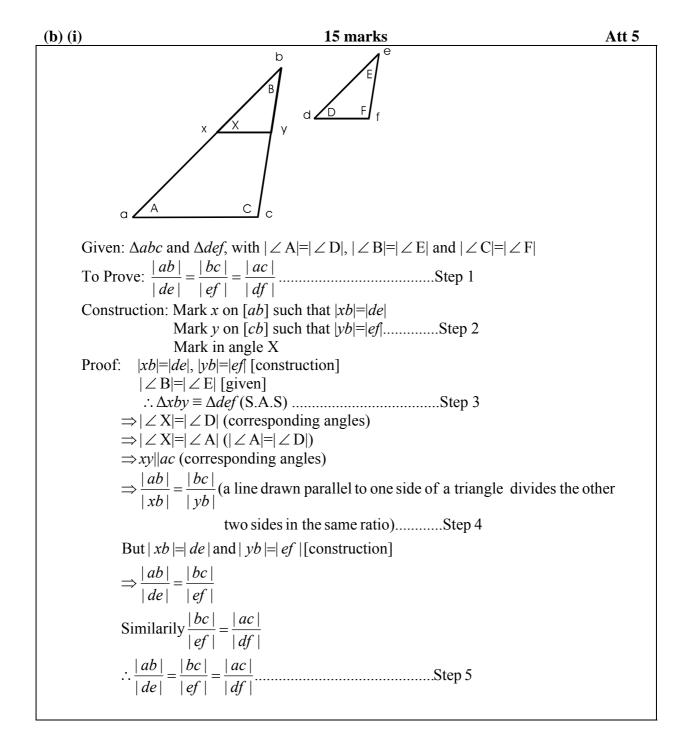
* Some steps may be indicated on candidate's diagram

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 360° or 90° used instead of 180°

Slips (-1)


S1 Arithmetic slips to a maximum of (-3)

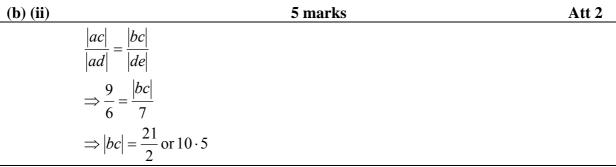

Attempts (2 marks)

- A1 Indication that the sum of the angles in a cyclic quadrilateral = 360°
- A2 Indication that sum of the opposite angles in a cyclic quadrilateral = 180°
- A3 Indication that angles standing on the same arc are equal

Worthless (0)

- W1 $|\angle bce| = 72^{\circ}$
- W2 Diagram from examination paper either partially or fully drawn

- * Some steps may be indicated on candidate's diagram
- * Accept other valid proofs
- * Must have S.A.S. in Step 3 and one reason in Step 4


- B1 Each step incorrect or omitted
- B2 Each step incomplete

Attempts (5 marks)

- A1 Two separate triangles drawn with equal angles indicated
- A2 The second diagram of the proof drawn

Worthless (0)

- W1 Wrong theorem
- W2 Two triangles drawn
- W3 No diagram

* Some steps may be indicated on candidate's diagram

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{A})
- B2 $\frac{|ac|}{|ad|} = \frac{|de|}{|bc|}$ or similar incorrect ratio
- B3 Error in cross multiplication

Slips (-1)

S1 Arithmetic errors to a max of (-3)

Attempts (2 marks)

- A1 One correct relevant ratio
- A2 9 written down without work
- A3 Any use of 6 and 3 in a ratio

Worthless (0)

Part(c)	10 (5)	,5) marks	Att 2,2
of centre a	are tangents to the circle ects the chord [<i>ad</i>] at the Prove that Δabc is congruent to Δdbc . Hence, prove that [<i>bc</i>] bisects the chord [<i>ad</i>].		b

(c) () 5 marks Att 2
	[Consider Δabc and Δdbc]
	<i>ac</i> = <i>dc</i> [radii]Step 1
	$ \angle cab = \angle cdb $ [right angles]
	<i>cb</i> = <i>cb</i> [common side]Step 2
	$\therefore \Delta abc \equiv \Delta dbc (R.H.S.)Step 3$
*	Some steps may be indicated on candidate's diagram

* Accept other valid proofs

Blunders (-3)

- B1 Each step incorrect or omitted
- B2 Each step incomplete

Attempts (2 marks)

A1 Indication of a pair of sides or pair of angles relevant to proving congruency

Worthless (0)

(c) (ii)	5 marks		Att 2
	[Consider $\triangle ace$ and $\triangle dce$]		
	ac = dc [radii]		
	$[\Delta abc \equiv \Delta dbc]$		
	$\Rightarrow \angle ace = \angle dce [corresponding angles]Step 1$		
	ce = ce [common side]		
	$\therefore \Delta ace \equiv \Delta dce (S.A.S.)Step 2$		
	$\Rightarrow ae = de $ [corresponding sides]Step 3		
or			
	[Consider $\triangle aeb$ and $\triangle deb$]		
	$ ab = bd [\Delta abc \equiv \Delta dbc \Rightarrow \text{corresponding sides}]$		
	$ \angle abe = \angle dbe [\Delta abc \equiv \Delta dbc \Rightarrow \text{corresponding angles}]$	Step 1	
	be = be [common side]		
	$\therefore \Delta aeb = \Delta deb (S.A.S.).$	Step 2	
	\Rightarrow $ae \models$ = $de \mid$ [corresponding sides]	Step 3	
or ∠a	$ae \models \angle cde \mid [\Delta acd \text{ is isosceles}]$		
	$\angle bac - \angle cae = \angle bdc - cde $		
i.e.	$ \angle bae = \angle bde $		Step 1
\Rightarrow	\bad is isosceles		-
	$abe \models \angle dbe \mid [$ corresponding angles since $\triangle abc \equiv \triangle dbc]$		
	$bc \perp ad$		Step 2
	bc bisects the chord $[ad]$ [a diameter line perpendicular		1
	to a chord bisects the chord]		Step 3

* Some steps may be indicated on candidate's diagram

* Accept other valid proofs

Blunders (-3)

- B1 Each step incorrect or omitted
- B2 Each step incomplete

Attempts (2 marks)

- A1 Indication of a pair of sides or pair of angles relevant to proving congruency
- A2 Indication that a diameter perpendicular to a chord bisects the chord

Worthless (0)

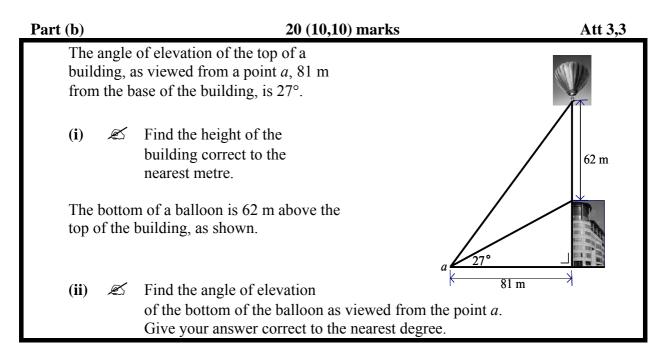
QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	20(10,10) marks	Att (3,3)
Part (c)	20(10,10) marks	Att (3,3)

Part (a)	10 marks	Att 3
abc is an isosceles tria $ ab = \sqrt{50}$ and $ \angle acb$		
$\not \!$	<u>لـ</u>	b

(a)	10 marks			Att 3
	$ ab ^{2} = ac ^{2} + bc ^{2}$ $\left(\sqrt{50}\right)^{2} = bc ^{2} + bc ^{2}$ $= 2 bc ^{2}$ $\Rightarrow bc ^{2} = 25$ $\Rightarrow bc = 5 \text{ or } \sqrt{25}$	or	$ \angle abc = \angle bac = 45^{\circ}$ $\sin 45^{\circ} = \frac{ bc }{ ab } = \frac{ bc }{\sqrt{50}}$ $\Rightarrow bc = \sqrt{50} \sin 45^{\circ}$ $\Rightarrow bc = 5 \text{ or } 4 \cdot 9$	

Blunders (-3)


- Correct answer without work shown (\mathscr{K}) **B**1
- Pythagoras Theorem incorrect B2
- Incorrect squaring $|bc|^2 = 25$ and stops B3
- B4
- Incorrect ratio for sin function B5
- Error in cross multiplication B6
- B7 Calculator in incorrect mode or page in tables used not relevant to sin/cos function
- **B**8 Early rounding which affects the accuracy of the answer

Slips (-1)

Arithmetic slips to a maximum of (-3) **S**1

Attempts (3 marks)

- Indication of Pythagoras Theorem A1
- Indication of 45° A2
- Sine Rule with some substitution A3
- A4 $\sin A = \frac{\text{opposite}}{\text{hypotenuse}}$ or $\cos A = \frac{\text{adjacent}}{\text{hypotenuse}}$

(b) (i)	10 marks Att		
	Let $h =$ height of the building.		
	$\tan 27^\circ = \frac{h}{81} \Longrightarrow h = 81 \tan 27^\circ$	$\frac{h}{\sin 27^{\circ}} = \frac{81}{\sin 63^{\circ}} \Longrightarrow h = \frac{81 \sin 27^{\circ}}{\sin 63^{\circ}}$	
	$= 41 \cdot 27156141$ or	$= 41 \cdot 27156141$	
	= 41m	= 41m	

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect ratio for tan function
- B3 Incorrect ratio for Sine Rule
- B4 Error in cross multiplication
- B5 Calculator in incorrect mode or page in tables used not relevant to tan/sin function
- B6 Early rounding which affects the accuracy of the answer

Slips (-1)

- S1 Arithmetic slips to a maximum of (-3)
- S2 Answer not rounded off or incorrectly rounded

Attempts (3 marks)

A1
$$\tan A = \frac{\text{opposite}}{\text{adjacent}}$$

A2
$$\tan 27^{\circ}$$

A3
$$\frac{h}{81}$$

A4 Indication that the sum of the angles in a triangle = 180°

A5 Sine Rule with some substitution

Worthless (0)

W1
$$\frac{h}{27} = \frac{81}{63}$$

(D) (II)	10 marks At	t S			
	Let θ = angle of elevation.				
	The distance from the base of the building to the bottom of the balloon $= 62+41=103$ m.				
	$\tan \theta = \frac{103}{81} \Longrightarrow \theta = \tan^{-1} \left(\frac{103}{81} \right)$				
	$=51 \cdot 81821457^{\circ} = 52^{\circ}$				
or					
	$ ab ^2 = 103^2 + 81^2$				
	= 10609 + 6561				
	= 17170				
	$\Rightarrow ab = 131.0343466 = 131$				
	$\frac{\sin \angle bad}{\cos \theta} = \frac{\sin 117^{\circ}}{\cos \theta}$				
	62 131 a				
	$\Rightarrow \sin \angle bad = \frac{62\sin 117^{\circ}}{131}$				
	-				
	= 0.421697744				
	$\Rightarrow \angle bad = \sin^{-1}(0.421697744) = 24.94^{\circ} = 25^{\circ}$				
	$\therefore \angle bac = 25^{\circ} + 27^{\circ} = 52^{\circ}$				
or					
	$ ad ^2 = 41^2 + 81^2$ $ ab ^2 = 103^2 + 81^2$				
	=1681+6561 $=10609+6561$				
	= 8242 = 17170				
	$\Rightarrow ad = 90.78546139 \qquad \Rightarrow ab = 131.0343466 \qquad $				
	=91 =131				
$\sin \angle abd = \sin 117^{\circ}$					
$\frac{1}{91} = \frac{1}{131}$					
$\Rightarrow \sin \angle abd = \frac{91\sin 117^{\circ}}{131} = 0.618943463$					
$\Rightarrow \mid \angle abd \mid = \sin^{-1} (0.618943463) = 38.24^{\circ} = 38^{\circ}$					
	$\Rightarrow \angle bad = 180^{\circ} - 117^{\circ} - 38^{\circ} = 25^{\circ}$				
	$\therefore \angle bac = 25^{\circ} + 27^{\circ} = 52^{\circ}$				

* Accept candidate's answer from part (i)

* Accept $25^{\circ} + 27^{\circ}$ for full marks

Blunders (-3)

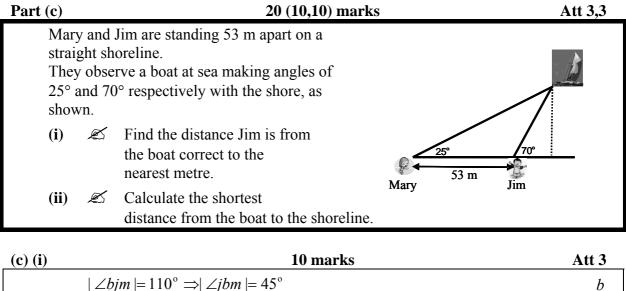
- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect ratio for tan function
- B3 Error in cross multiplication
- B4 Calculator in incorrect mode or page in tables used not relevant to tan/sin function

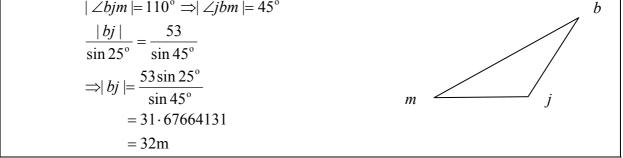
B5 $\tan \theta = \frac{62}{81}$

- B6 Early rounding which affects the accuracy of the answer
- B7 Incorrect ratio for Sine Rule
- B8 $| \angle abd |$ found as angle of elevation

Slips (-1)

- S1 Arithmetic slips to a maximum of (-3)
- S2 Answer not rounded off or incorrectly rounded
- S3 Sum of angles not indicated


Attempts (3 marks)


A1 $\tan A = \frac{\text{opposite}}{\text{adjacent}}$

- A2 Indication of use of 81 in a ratio
- A3 Attempt at finding the hypotenuse of either right angled triangle
- A4 Sine Rule with some substitution
- A5 Indication that the sum of the angles in a triangle = 180°

Worthless (0)

W1 $\frac{27}{81}$

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect ratio for Sine Rule
- B3 Error in cross multiplication
- B4 Calculator in incorrect mode or page in tables used not relevant to sin function
- B5 Early rounding which affects the accuracy of the answer
- B6 Sum of the angles in a triangle $\neq 180^{\circ}$

Slips (-1)

- S1 Arithmetic slips to a maximum of (-3)
- S2 Answer not rounded off or incorrectly rounded

Misreadings (-1)

M1 The distance Mary is from the boat correctly found

Attempts (3 marks)

- A1 Sine Rule with some substitution
- A2 Indication that the sum of the angles in a triangle = 180°

Worthless (0)

- W1 $\frac{|bj|}{25} = \frac{53}{45}$ or similar
- W2 The triangle treated as right angled

(c) (ii)

Let x = shortest distance.

$$\sin 70^\circ = \frac{x}{32} \Longrightarrow x = 32 \sin 70^\circ$$
$$= 30.07016387$$

- * Accept candidate's answer from part (i)
- * Accept answer not rounded off

Blunders (-3)

- B1 Correct answer without work shown (*Æ*)
- B2 Incorrect ratio for sin function
- B3 Error in cross multiplication
- B4 Calculator in incorrect mode or page in tables not relevant to sin/cos function used

or 30 or 30.1 etc.

B5 Early rounding which affects the accuracy of the answer

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (3 marks)

- A1 $\sin A = \frac{\text{opposite}}{\text{hypotenuse}}$
- A2 $\sin 70^{\circ}$
- A3 Indication that the sum of the angles in a triangle = 180°
- A4 Attempt at distance of Jim or Mary to the dotted line
- A5 Attempt at distance of Mary to the boat

QUESTION 6

Part (a)	10 marks	Att 3
Part (b)	20(10,10) marks	Att (3,3)
Part (c)	20(5,5,5,5) marks	Att (2,2,2,2)

Part (a)	10 marks	Att 3
8 is	the mean of the five numbers 13, 6, 5, x and 7	
Ŕ	Find the value of <i>x</i> .	

(a)	10 marks	Att 3
	$\frac{13+6+5+x+7}{8} = 8$	
	5 -0	
	$\Rightarrow \frac{x+31}{5} = 8$	
	$\Rightarrow x + 31 = 40$	
	$\Rightarrow x = 9$	

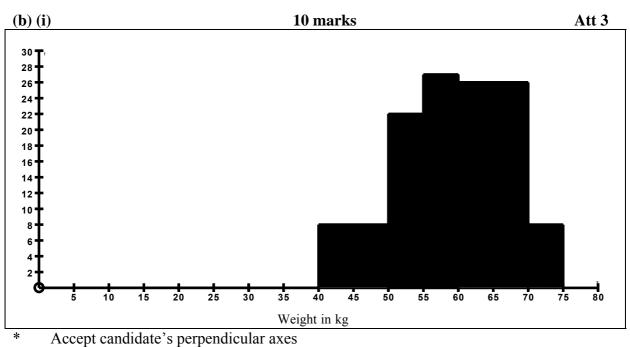
Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect denominator
- B3 Transposition error
- B4 31x in numerator
- B5 24x in numerator

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Misreadings (-1)


M1 Mean of 13, 6, 5, x is 7 and continues

Attempts (3 marks)

- A1 Some or all of the numbers added
- A2 Indication of division by 5

A3
$$\frac{13+6+5+x+7}{5}$$

rt (b)		20	(10,10) mark	KS		Att (3,3)
The weights, in kg, of 125 Junior Certificate students are given in the following frequency table.						
Wei	ght in kg	40 - 50	50 - 55	55 - 60	60 - 70	70 – 75
Number of students		16	22	27	52	8
 [Note: 40 - 50 means 40 or more but less than 50, etc.] (i) Draw a histogram to illustrate the data in the frequency table. (ii) Sing mid interval values, calculate the mean weight of the Junior Certificate students. 			e Junior			

* The interval 0-40 need not be shown on "Weight" axis

Blunders (-3)

- B1 Scale not uniform on each axis
- B2 Incorrect width of rectangle
- B3 Incorrect height of rectangle
- B4 Rectangle omitted

Attempts (3 marks)

- A1 Graph from frequency table drawn
- A2 Scaled axes drawn and stops

Worthless (0)

W1 Table from examination paper copied

$\langle 1 \rangle$	()
(h)	(11)
(\mathbf{D})	(11)

10 marks

Att 3

To marks	11110
Mean weight $-(16)(45)+(22)(52\cdot5)+(27)(57\cdot5)+(52)(65)+(8)(72\cdot5)$	
16 + 22 + 27 + 52 + 8	
$720+1155+1552\cdot 5+3380+580$	
- 125	
7387.5	
$=\frac{125}{125}$	
$= 59 \cdot 1 \text{kg}$	
	Mean weight = $\frac{(16)(45) + (22)(52 \cdot 5) + (27)(57 \cdot 5) + (52)(65) + (8)(72 \cdot 5)}{16 + 22 + 27 + 52 + 8}$ $= \frac{720 + 1155 + 1552 \cdot 5 + 3380 + 580}{125}$ $= \frac{7387 \cdot 5}{125}$

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Consistent incorrect mid interval values
- B3 Division by 5
- B4 Division by sum of mid interval values
- B5 Mid interval values added to frequencies instead of multiplied

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (3 marks)

- A1 One correct multiplication in numerator
- A2 Indication of division by 125
- A3 One correct mid interval
- A4 Sum of mid interval values divided by 125

Worthless (0)

W1 Sum of frequencies divided by 5

Part (c)

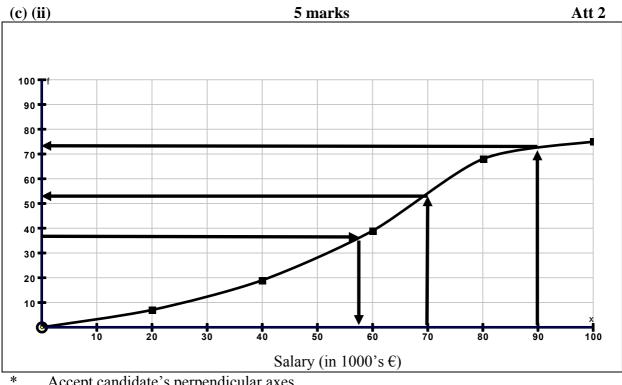
Sala	Salary (in 1000's €)		0-20	20 - 40	40 - 60	60 - 80	80 - 100
Nur	Number of employees		7	12	20	29	7
		[Note: 20	0 - 40 mean	s 20 or more	e but less tha	in 40, etc.]	
(i)	(i) Construct the cumulative frequency table.						
(ii)	On gra	In graph paper construct the ogive.					
(iii)	Ľ	Use your graph to estimate the median salary.					
(iv)	Ľ	Estimate from your graph the percentage of employees whose salaries are between \notin 70000 and \notin 90000.					
Give your answer correct to the nearest whole number.							

(c) (i)		5 marks				Att 2
	Salary (in 1000's €)	< 20	< 40	< 60	< 80	< 100
	Number of employees	7	19	39	68	75

Blunders (-3)

B1 Number omitted (sum \neq 75)

Slips (-1)


S1 Arithmetic slips to a maximum of (-3)

Attempts (2 marks)

- A1 One value correctly filled into table
- A2 Indication of addition of frequencies

Worthless (0)

W1 Table copied from examination paper

Accept candidate's perpendicular axes

Blunders (-3)

- Scale not uniform B1
- Points plotted but not joined B2
- Cumulative cumulative ogive drawn B3

Slips (-1)

- Each point incorrectly plotted **S**1
- S2 Each point omitted
- S3 Points joined with straight lines
- Not on graph paper S4

Attempts (2 marks)

- Graph from frequency table drawn A1
- Scaled axes drawn A2

(c) (ii	i) 5 marks	Att 2
	Median salary = \in 58 500 or 58.5	
*	Accept answer consistent with candidate's work	
*	Accept median in the range €55 000 - €60 000 or 55 - 60	
Blund	lers (-3)	
B1	Correct answer without work shown (🗷)	
B2	Line drawn from incorrect starting point of correct axis for median	
B3	Median outside the range	
Slips		

- Work for median correct but not clearly marked **S**1
- S2 Incorrect reading from graph with work shown

Attempts (2 marks)

- Horizontal line from 38 or 37.5 to the ogive drawn and stops A1
- A2 Indication of use of 38 or 37.5
- A3 Horizontal axis used for median

Worthless (0)

W1 Answer from trend graph

(c) (iv)	5 marks	Att 2
	€70 000: 54 employees	
	€90 000: 73 employees	
	The number of people whose salaries are between €70 000 and €90 000	
	=73-54=19	
	$Percentage = \frac{19}{75} \times 100\%$	
	$= 25\frac{1}{3}\%$	
	= 25%	
* Δ	ccent answer consistent with candidate's work	

Accept answer consistent with candidate's work

Blunders (-3)

- **B**1 Correct answer without work shown (\mathscr{L})
- B2 Percentage not found

Slips (-1)

- **S**1 Numerical slips to a maximum of (-3)
- S2 Values added
- S3 Answer not rounded off or incorrectly rounded
- S4 Incorrect reading from graph with work shown

Attempts (2 marks)

- Graphical indication of use of €70 000 and /or €90 000 A1
- 73 or 54 indicated A2
- A3 Use of 100

Worthless (0)

W1 Answer from trend graph

BONUS MARKS FOR ANSWERING THROUGH IRISH

Bonus marks are applied separately to each paper as follows:

If the mark achieved is 225 or less, the bonus is 5% of the mark obtained, rounded *down*. (e.g. 198 marks \times 5% = 9.9 \Rightarrow bonus = 9 marks.)

If the mark awarded is above 225, the following table applies:

Bunmharc (Marks obtained)	Marc Bónais (Bonus Mark)	Bunmharc (Marks obtained)	Marc Bónais (Bonus Mark)
226	11	261 – 266	5
227 - 233	10	267 - 273	4
234 - 240	9	274 - 280	3
241 - 246	8	281 - 286	2
247 - 253	7	287 – 293	1
254 - 260	6	294 - 300	0