Coimisiún na Scrúduithe Stáit
State Examinations Commission

JUNIOR CERTIFICATE 2008

MARKING SCHEME

MATHEMATICS

HIGHER LEVEL

PAPER 2

GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions
- Slips- numerical errors
- Misreadings (provided task is not oversimplified)

Frequently occurring errors to which these penalties must be applied are listed in the scheme.
They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts - even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5 \cdot 50$ may be written as $€ 5,50$.

Part (a)
Part (b)
15 marks
Att 5
Part (c)
$15(5,5,5)$ marks
Att 6(2,2,2) Att 7(2,3,2)

The height and the diameter of a solid cylinder are both 8 cm in length.
2 Find the curved surface area of the cylinder correct to the nearest whole number.

15 marks

Att 5

CSA of cylinder $2 \pi r h=2(3 \cdot 142) 4 \cdot 8=201 \cdot 088 \mathrm{~cm}^{2}$
$201 \mathrm{~cm}^{2}$ to nearest whole number

Blunders (-3)

B1 Correct answer without work shown (R)
B2 Incorrect substitution into correct formula
B3 Incorrect r
B4 Incorrect relevant area formula
B5 Using a value of π which affects accuracy of answer

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)
S2 Not rounding to nearest whole number
Attempts (5 marks)
A1 Correct formula with some substitution
A2 Correct r indicated
Worthless (0)
W1 Volume of cylinder
(b) The diagram shows the perimeter of a running track, consisting of two straight sections of length l, and two semi-circular sections, at each end, of radius $\frac{100}{\pi} \mathrm{~m}$, as shown.

(i) Given that the perimeter of the track measures 400 m , find l.
(ii) A 1500 m race starts at the point a and goes in the direction $a b c d$.
2. At what point does the race finish?
(iii) An athlete completes this distance in 3 mins 26 sec .
2. Find his average speed in m / s, correct to one decimal place.
(b)(i) 5 marks

Att 2
$2 l+2 \pi r=400$
$l+\pi r=200$
$l+\pi\left(\frac{100}{\pi}\right)=200 \quad \Rightarrow l+100=200 \quad \Rightarrow l=100 \mathrm{~m}$

Blunders (-3)

B1 Correct answer without work shown (S)
B2 Incorrect substitution into correct perimeter formula
B3 Incorrect relevant perimeter formula
B4 Using incorrect r
B5 Using a value of π which affects accuracy of answer
B6 Early rounding off which affects accuracy of answer

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (2 marks)

A1 Correct perimeter formula

Worthless (0)

W1 Area of rectangle and/or disc
(b)(ii)
$1500=3(400)+300$
i.e three perimeters and 300 m more from a $|a b|=|b c|=|c d|=100$
or $\frac{1500}{400}=3.75 \mathrm{laps}$
Starting at a the race finishes at d as it lies 0.75 laps or 300 m from a

Blunders (-3)
B1 Correct answer without work shown (2)
B2 $\frac{400}{1500}$
B3 Early rounding off of answer from (b) (i) which affects accuracy of answer
Slips (-1)
S1 Arithmetic slips to a maximum of (-3)
Misreadings (-1)
M1 Race in opposite direction i.e. $a d c b$
Attempts (2 marks)
A1 Finds number of complete perimeters

Worthless (0)

W1 $\frac{400}{1500}$ and stops

(b)(iii)

 5 marksAtt 2
$3 \mathrm{mins} 26 \mathrm{sec}=206 \mathrm{sec}$
Average speed $=\frac{1500}{206}=7.28 \mathrm{~m} / \mathrm{sec}=7 \cdot 3 \mathrm{~m} / \mathrm{sec}$ to one decimal place

Blunders (-3)

B1 Correct answer without work shown ()
B2 3 mins $\neq 180$ secs
B3 \quad Speed $=\frac{206}{1500} \mathrm{~m} / \mathrm{sec}$
B4 Speed expressed in metres per min
Slips (-1)
S1 Arithmetic slips to a maximum of (-3)
Attempts (2 marks)
A1 Converting minutes to seconds

Worthless (0)

W1 Av Speed = product of distance by time
(c) A spherical golf ball has a diameter of 4 cm .
(i) Find the volume of the golf ball in terms of π.

A cylindrical hole on a golf course is 10 cm in diameter and 12 cm deep. The hole is half full of water.
(ii) Calculate the volume of water in the hole, in terms of π.

The golf ball is dropped into the hole.
(iii) Find the rise in the level of the water, correct to two decimal places.
(c)(i)

5 marks
Att 2
Volume of golf ball $($ sphere $)=\frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi 2^{3}$ or $\frac{32}{3} \pi \mathrm{~cm}^{3}$ or $10.67 \pi \mathrm{~cm}^{3}$

Blunders (-3)

B1 Correct answer without work shown (S)
B2 Incorrect substitution into correct formula
B3 Incorrect relevant volume formula
Slips (-1)
S1 Arithmetic slips to maximum (-3)
S2 Answer not in terms of π
Attempts (2 marks)
A1 Indicates radius $=$ half length of diameter
Worthless (0)
W1 Surface area of sphere
(c)(ii)

10 marks
Att 3
Volume of cylinder where $r=5$ and $h=6$

$$
\pi r^{2} h=\pi 5^{2} \times 6 \text { or } 150 \pi \mathrm{~cm}^{3}
$$

Blunders (-3)

B1 Correct answer without work shown (S)
B2 Incorrect r and /or incorrect h
B3 Incorrect relevant volume formula

Slips (-1)

S1 Arithmetic slips to maximum (-3)
S2 Answer not in terms of π

Attempts (2 marks)

A1 Indicates radius half length of diameter
A2 Some indication of relevant height

Worthless (0)

W1 Surface area formula for cylinder
(c)(iii)

Att 2

$$
\begin{aligned}
& \text { Let rise in cylinder }=h \quad \text { or } \quad \text { Vol of water in cyl. }+ \text { vol of sphere } \\
& \pi 5^{2} h=\frac{4}{3} \pi 2^{3} \\
& 25 \pi h=\frac{32}{3} \pi \\
& 25 h=\frac{32}{3} \\
& \pi 5^{2} \times 6+\frac{4}{3} \pi 2^{3}=150 \pi+\frac{32}{3} \pi=\frac{482}{3} \pi \\
& \text { Let height in cylinder }=\mathrm{H} \\
& \pi 5^{2} \mathrm{H}=\frac{482}{3} \pi \\
& h=\frac{32}{75}=0 \cdot 42666 \\
& 25 \mathrm{H}=\frac{482}{3} \quad \mathrm{H}=6.4266 \\
& \text { rise }=6 \cdot 4266-6=0 \cdot 4266 \\
& h=0.43 \mathrm{~cm} \text { to } 2 \text { dec. places }
\end{aligned}
$$

Blunders (-3)

B1 Correct answer without work shown (2)
B2 Incorrect squaring and /or cubing
B3 Transposition error
B4 Using a value of π which affects accuracy of answer
B5 Incorrect substitution into correct formula
B6 Incorrect r
B7 Incorrect relevant volume formula
B8 Early rounding off which affects accuracy of answer

Slips (-1)

S1 Not rounding off to 2 dec places
S2 Arithmetic slips to a maximum of (-3)
S3 Leaving answer as $6 \cdot 4266$ or equivalent
Attempts (2 marks)
A1 Volume of either sphere or cylinder carried forward from (c)(i) or (c)(ii)
A2 Addition of volumes

Part (a)
Part (b)
Part (c)

10 marks
$20(5,5,5,5)$ marks
$20(5,5,5,5)$ marks
10 marks
Att 3
Part (a)
(a) $\quad a(3,6)$ and $b(-1,3)$ are two points.

Find $|a b|$.

(a)

10 marks
Att 3
Formula: $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
|a b|=\sqrt{(3+1)^{2}+(6-3)^{2}}=\sqrt{4^{2}+3^{2}}=\sqrt{25} \text { or } 5
$$

Blunders (-3)

B1 Correct answer without work shown (S)
B2 Incorrect relevant formula and continues
B3 Switches both x and y in substitution

Slips (-1)
S1 Arithmetic errors
Attempts(3 marks)
A1 Correct formula with or without some substitution
A2 Subtracts the x 's and /or y 's

Part (b)
$20(5,5,5,5)$ marks
Att 8(2,2,2,2)
The line $L: 3 x-5 y+15=0$ and the line $M: 3 x+4 y-12=0$ cut the x-axis at the points c and d respectively.
(i) Find the coordinates of c and d.
(ii) Find e, the point of intersection of L and M.
(iii) Show the lines L and M on a coordinate diagram on graph paper.
(iv) Find the area of $\Delta c d e$.

```
L:3x-5y+15=0
        y=0
    3x-0+15=0
        3x=-15
        x=-5
        c(-5,0)
```

 M: \(3 x+4 y-12=0\)
 \(y=0\)
 \(3 x+0-12=0\)
 \(3 x=12\)
 \(x=4\)
 \(d(4,0)\)

Blunders (-3)

B1 Correct answer without work shown (
B2 Transposition error.
B3 Finds point where L cuts the x - axis only
B4 Finds point where M cuts x-axis only
Slips (-1)
S1 Finds where L (or M) cuts both axes but does not identify c (or d) or incorrectly identifies c (or d)

S2 Arithmetic slips to a maximum of (-3)

Misreadings (-1)

M1 Finds where both L and M intersect Yaxis
Attempts (2 marks)
A1 Some attempt at substitution of 0
(b)(ii)

$$
\begin{array}{ll}
M: & 3 x+4 y-12=0 \\
L: & \frac{3 x-5 y+15=0}{9 y-27=0}
\end{array}
$$

$$
9 y \quad=27 \quad 3 x+12 \quad-12=0
$$

$$
\begin{array}{llll}
y & =3 & 3 x & =0
\end{array}
$$

$$
=0 \quad e(0,3)
$$

* Note: Accept $(0,3) \in L$ and $(0,3) \in M$ shown in each case

Blunders (-3)

B1 Correct answer without work shown (S)
B2 Transposition error
Slips (-1)
S1 Arithmetic slips to maximum (-3)
S2 Not finding second co-ordinate
Attempts (2marks)
A1 Any correct step and stops
A2 Graphical solution correct
Worthless(0)
W1 Graphical solution incorrect

Accept candidate's perpendicular axes
Blunders(-3)
B1 Incorrect scale
B2 One line only sketched
Slips (-1)
Attempts (2 marks)
A1 One point only plotted
A2 Axes only drawn
(b)(iv)

$$
\text { Area }=\frac{1}{2} \cdot 9 \cdot 3=\frac{27}{2} \quad \text { or } 13 \cdot 5
$$

* Accept any valid method

Blunders (-3)

B1 Correct answer without work shown (S)
B2 Incorrect relevant area formula
B3 Sum of areas of two smaller triangles not equal to area of required triangle
Slips (-1)
S1 Arithmetic errors to a maximum of (-3)
S2 Sum of areas of smaller triangles not found

Attempts (2 marks)

A1 Relevant area formula with some substitution
p is the point $(2,-3)$ and q is the point $(-2,1)$.
(i) Find r, the midpoint of $[p q]$.
K is the line through r, perpendicular to $[p q]$.
(ii) Find the equation of K.
(iii) Show that $s(3,2)$ is on the line K.
(iv) Prove that the triangle $\Delta p q s$ is isosceles.
(c)(i) 5 marks

Att 2
$\mathrm{r}: \quad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{2-2}{2}, \frac{-3+1}{2}\right)=\left(\frac{0}{2}, \frac{-2}{2}\right)$ or $(0,-1)$

Blunders (-3)

B1 Correct answer without work shown ()
B2 Incorrect relevant midpoint formula and continues
B3 Mixes both x and y in substitution
B4 Finds one co-ordinate only
Slips (-1)
S1 Arithmetic errors
Attempts (2 marks)
A1 Writes midpoint formula with or without substitution

Slope $p q=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-1}{2--2}=\frac{-4}{4}=-1$
Slope $K=1 \quad$ Equation $K: \quad y-y_{1}=m\left(x-x_{1}\right)$
$y--1=1(x-0)$
$y+1=x$

Blunders (-3)

B1 Correct answer without work shown (S)
B2 Incorrect relevant formula and continues
B3 Switches both x and y in substitution

Slips (-1)
S1 Arithmetic errors
S2 Incorrect perpendicular slope
S3 Taking p or q instead of r for point on K
Attempts (2marks)
A1 Correct slope formula and/or line formula with or without some substitution
A2 Indicates product of perpendicular slopes equals -1
(c)(iii) 5 marks

Att 2

$$
\begin{aligned}
& \hline s(3,2) \text { on line } K \\
& y+1=x \Rightarrow \\
& \text { LHS: } 2+1=3=\text { RHS }
\end{aligned}
$$

Blunders(-3)

B1 Mixes x and y in substitution
B2 Transposition error

Slips(-1)

S1 Arithmetic errors to maximum (-3)
Attempts(2 marks)
A1 Graphical solution correct

Worthless(0)

W1 Graphical solution incorrect

Formula : $\left.\sqrt{\left(x_{2}-x_{1}\right.}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$

$$
\begin{aligned}
& |s q|=\sqrt{(-2-3)^{2}+(1-2)^{2}}=\sqrt{(-5)^{2}+(-1)^{2}}=\sqrt{25+1} \text { or } \sqrt{26} \\
& |s p|=\sqrt{(-2-3)^{2}+(3-2)^{2}}=\sqrt{(-5)^{2}+(1)^{2}}=\sqrt{25+1} \text { or } \sqrt{26}
\end{aligned}
$$

Triangle $\Delta p q s$ is isosceles

Blunders (-3)

B1 Correct answer without work shown ()
B2 Incorrect relevant formula and continues
B3 Switches both x and y in substitution
B4 Substitutes correctly for x and y in each case but does not simplify
B5 $(-1)^{2} \neq 1$
Slips (-1)
S1 $|s q| \neq|s p|$ without a conclusion
S2 Arithmetic errors to maximum (-3)
Attempts(2 marks)
A1 Correct formula with or without some substitution
A2 Incorrect relevant formula with some correct substitution

Part (a)
Part (b)
$25(20,5)$ marks

15 marks
Att 5
Part (a)
Att 5
Part (c) 10 (3,3,3,1) marks
(a) $a b c$ is an isosceles triangle, with $|a b|=|a c|$
and $|\angle b a c|=30^{\circ}$.
\& Find $|\angle a c d|$.

(a)

15 marks

Att 5
$|\angle a c d|=|\angle b a c|+|\angle a b c| \quad$ (exterior angle $=$ sum of interior opposites)
$|\angle a b c|=|\angle a c b|$ (isosceles triangle)
$=\frac{1}{2}\left(180^{\circ}-30^{\circ}\right)=75^{\circ}$
$|\angle a c d|=30^{\circ}+75^{\circ}=105^{\circ} \quad$ or $|\angle a c b|=75^{\circ}$
$|\angle a c d|=180^{\circ}-75^{\circ}=105^{\circ}$

* Note: Some or all steps may be indicated on diagram drawn by candidate

Blunders (-3)

B1 Correct answer without work shown (思)
B2 Sum of angles in triangle $\neq 180$
B3 $|\angle a c b|+|\angle a c d| \neq 180$
Slips (-1)
S1 Arithmetic slips to a maximum of (-3)

Attempts (5 marks)

A1 Diagram from examination paper drawn and equal angles indicated

Worthless (0)

W1 Diagram from examination paper either partially or fully drawn
(b) (i) Construct a triangle of sides $11 \mathrm{~cm}, 8 \mathrm{~cm}$ and 6 cm .
(b) (ii) Prove that the measures of the three angles of a triangle sum to 180°.
(b)(i) 20 marks

Att 7

* Accept constructions with a tolerance of 2 mm

Blunders(-3)
B1 Each incorrect side
B2 Constructing right angle between two sides
Attempts(7 marks)
A1 Any one correct side drawn

Given: $\Delta a b c$
To prove : $|\angle \mathrm{A}|+|\angle \mathrm{B}|+|\angle \mathrm{C}|=180^{\circ}$
Construction: Through c draw a line parallel to [$a b$] Mark the angles E and D
step 1
Proof: $\quad \begin{aligned}|\angle \mathrm{A}| & =|\angle \mathrm{E}| \text { alternates } \\ |\angle \mathrm{B}| & =|\angle \mathrm{D}| \text { alternates }\end{aligned}$ step 2

$$
|\angle \mathrm{C}|+|\angle \mathrm{A}|+|\angle \mathrm{B}|=|\angle \mathrm{C}|+|\angle \mathrm{E}|+|\angle \mathrm{D}|
$$

But $|\angle \mathrm{C}|+|\angle \mathrm{E}|+|\angle \mathrm{D}|=180^{\circ}$
step 3

$$
\Rightarrow|\angle \mathrm{A}|+|\angle \mathrm{B}|+|\angle \mathrm{C}|=180^{\circ}
$$

Blunders (-3)

B1 Any step incorrect
Attempts (2 marks)
A1 Triangle with vertices or angles indicated

Worthless (0)

W1 Wrong theorem
(c) $a b$ is parallel to $d e$, $a c$ bisects $\angle b a d$, $d c$ bisects $\angle a d e$, $b e$ is perpendicular to $a b$ and
$|\angle b a c|=35^{\circ}$.
(i) Find $|\angle a d e|$.

(ii) Find $|\angle a c d|$.
(iii) Prove that the triangles $a d c, a b c$ and $c d e$ are equiangular.
(iv) Given that $|a b|=5$ and $|b c|=3 \cdot 5$, write $|d e|:|e c|$ in the form $m: n$, where $m, n \in \mathrm{~N}$.
(c)(i)

3 marks
Att 1
|

$\mid \angle$ bad $\mid=35^{\circ}+35^{\circ}=70^{\circ}$	or taking quadrilateral abed
$\mid \angle$ ade $\mid=180^{\circ}-70^{\circ}=110^{\circ}$	$\mid \angle$ bad $\|+\| \angle$ ade $\|+\| \angle$ abe $\|+\| \angle$ bed $\mid=360^{\circ}$
$70^{\circ} \quad+\mid \angle$ ade $\mid+90^{\circ}+90^{\circ}=360^{\circ}$	

* Note: Any blunder results in an attempt mark of 1.

Blunders (see * above)
B1 Correct answer without work shown ()
B2 Sum of angles on straight line $\neq 180^{\circ}$
B3 Sum of angles in quadrilateral $\neq 360^{\circ}$
Slips (-1)
S1 Arithmetic slip(Max 2)

Attempts (1 mark)

A1 Measure of any correct relevant angle indicated

Worthless (0)

W1 Diagram from examination paper either partially or fully reproduced

$$
\begin{aligned}
& |\angle a d c|=|\angle c d e|=\frac{1}{2}\left(110^{\circ}\right)=55^{\circ} \\
& |\angle a c d|=180^{\circ}-\left(35^{\circ}+55^{\circ}\right)=180^{\circ}-90^{\circ}=90^{\circ}
\end{aligned}
$$

* Note: Any blunder results in an attempt mark of 1 .
* Some or all steps may be indicated on candidate's diagram

Blunders (See 1t ${ }^{\text {st }}$ above)
B1 Correct answer without work shown (S)
B2 Sum of angles in $\Delta a d c \neq 180^{\circ}$
B3 Sum of angles on line $\neq 180^{\circ}$
Slips (-1)
S1 Arithmetic slip (Max 2)

Worthless (0)
W1 Diagram from examination paper either partially or fully reproduced

(c)(iii)

 3 marksAtt 1
Measures of angles in $\Delta a d c$ are $90^{\circ}, 55^{\circ}, 35^{\circ}$
Measures of angles in $\Delta a b c$ are $90^{\circ}, 35^{\circ}$, with remaining angle 55° (sum $=180^{\circ}$)
Measures of angles in $\Delta d c e$ are 90° (given), $|\angle c d e|=55^{\circ} \Rightarrow|\angle d c e|=35^{\circ}$ \Rightarrow triangles equiangular

* Note: Any blunder results in an attempt mark of 1.
* Some steps may be indicated on candidate's diagram

Blunders (See 1t *above)

B1 Sum of angles in any triangle $\neq 180$
Slips (-1)
S1 Arithmetic slip(Max 2)
S2 Showing a pair of the triangles are equiangular.

(c)(iv)

1 mark
hit or miss
de side opposite 35°
ce side opposite 55°
$|b c|:|a b|=|d e|:|e c|=3 \cdot 5: 5=7: 10$
(a) $[b d]$ is the diameter of the circle, c is the centre of the circle and $|b a|=|a d|$.

Find (i) $|\angle a d b|$,
(ii) $|\angle d a c|$.

(a)(i)

15 marks
Att 5
(a)
$|\angle b a d|=90^{\circ}$ (angle in semi-circle)
$|\angle a b d|=|\angle a d b| \quad$ (isosceles triangle)

$\angle a b d|+|$| adb |
| :--- |$=90^{\circ}$

$|\angle a d b|=45^{\circ}$

Some or all steps may be indicated on candidate's diagram

Blunders (-3)

B1 Correct answer without work shown (
B2 Sum of measure of angles in triangle $\neq 180^{\circ}$
Slips (-1)
S1 Arithmetic slips to maximum of (-3)

Attempts (5 marks)

A1 Angle at arc in semi-circle indicated as right angle
A2 Correct angles indicated in isosceles triangle but value not found

Worthless (0)

W1 Diagram from examination paper reproduced either partially or fully

$\|a c\|=\|c d\|$ (radii)	
$\|\angle c d a\|$	$=\|\angle d a c\|$
$\|\angle d a c\|=45^{\circ}$ since $\|\angle c d a\|=45^{\circ}$	

Some or all steps may be indicated on candidate's diagram

Blunders (-3)

B1 Correct answer without work shown (25)
B2 Sum of angles in a triangle $\neq 180^{\circ}$
Slips (-1)
S1 Arithmetic slips to maximum of (-3)
Attempts (2 marks)
A1 $|a c|=|c d|$ indicated

Worthless (0)
W1 Diagram from examination paper reproduced either partially or fully
Part (b)
$20(15,5)$ marks
Att 7(5,2)
(b) (i) Prove that a line through the centre of a circle perpendicular to a chord bisects the chord.
(b) (ii)
c is the centre of both circles.
$[p s]$ is a chord of the larger circle.
[$p s$] intersects the smaller circle
at q and r.
$c d$ is perpendicular to $p s$.
2 Prove $|p q|=|r s|$.

Given: Circle C, centre c on D , with chord $a b \perp \mathrm{D}$, and $a b \cap \mathrm{D}=\{\mathrm{p}\}$
Construction: Join $c a$ and $c b$
step 1
To Prove : $|a p|=|b p|$
Proof: $|c a|=|c b| \quad$ (radii) step 2
$|\angle c p a|=|\angle c p b|$ (right angles) step3
$|c p|=|c p|$
\Rightarrow RHS $\Rightarrow \Delta c a p$ and $\Delta c p b$ congruent step 4

$$
\Rightarrow|a p|=|b p| \quad \text { step5 }
$$

or $|c a|=|c b| \quad$ (radii)
$\Rightarrow|\angle c a p|=|\angle c b p| \quad$ (isosceles triangle) step2
$|\angle c p a|=|\angle c p b| \quad$ (right angles)

$\Rightarrow|\angle a c p|=|\angle \mathrm{bcp}| \quad$ step 3
$\Rightarrow \mathrm{ASA} \Rightarrow \Delta c a p$ and $\Delta c p b$ congruent step 4
$\Rightarrow|a p|=|b p| \quad$ step5
아 $\quad|c a|=|c b|$ (radii)
$\Rightarrow|\angle c a p|=|\angle c b p| \quad$ (isosceles triangle) step 2 $|\angle c p a|=|\angle c p b| \quad$ (right angles)
$\Rightarrow|\angle a c p|=|\angle b c p| \quad$ (sum of angles in triangle $=180$) step3
$\Rightarrow|c p|=|c p|$
$\Rightarrow \mathrm{SAS} \Rightarrow \Delta c a p$ and $\Delta c p b$ congruent step 4
$\Rightarrow|a p|=|b p| \quad$ step5

* Some steps may be indicated on diagram
* Accept any other valid proofs

Blunders(-3)

B1 Each step incorrect or omitted
B2 Each step incomplete

Attempts(5marks)

A1 Diagram with circle drawn, and diameter or chord indicated

Worthless(0)

W1 Wrong Theorem
W2 Circle and nothing else

Blunders (-3)

B1	$d p$	$\neq \mid$	$d s$
B2	$d q$	\neq	$d r$
B3	$q d$	equals radius or equivalent	

Slips (-1)
S1 Arithmetic slips to maximum of (-3)
Attempts (2 marks)

A3 Steps towards showing $\Delta c p d$ and $\Delta c s d$ congruent
A4 q as midpoint of [$p d]$ or equivalent
Worthless (0)
W1 Diagram from examination paper reproduced either partially or fully
(c) T is a tangent to the circle and o is the centre of the circle.
$|\angle x y w|=40^{\circ}$.
(i) Find $|\angle w v y|$.
(ii) Using congruent triangles or otherwise, prove $|z w|=|v y|$

(c)(i)

Att 2

$$
\begin{aligned}
& |\angle z y w|=50^{\circ} \text { since diameter } z y \text { perpendicular to } T \\
& |\angle y w v|=50^{\circ} \text { since }|y o|=|w o| \text { (radii) } \\
& |\angle y o w|=180^{\circ}-\left(50^{\circ}+50^{\circ}\right)=80^{\circ} \quad \text { or taking } \Delta y v w \\
& \text { But }|\angle y o w|=2|\angle w v y| \quad|\angle w v y|=180^{\circ}-|\angle v y w|+|\angle y w v| \\
& |\angle w v y|=40^{\circ} \\
& =180^{\circ}-\left(90^{\circ}+50^{\circ}\right) \\
& =40^{\circ}
\end{aligned}
$$

* Some or all steps may be indicated on candidate's diagram.

Blunders (-3)

B1 Correct answer without work shown (S)
B2 $|\angle z y x| \neq 90^{\circ}$
B3 Sum of angles in a triangle $\neq 180^{\circ}$
B4
$\left\lvert\, \begin{aligned} & \angle z y w|\neq|\angle y w v| \\ & \angle y o w|\neq 2| \angle w v y \mid\end{aligned}\right.$
Slips (-1)
S1 Arithmetic slips to a maximum of (-3)
Attempts (2 marks)
A1
A2

$$
\left\lvert\, \begin{aligned}
& |\angle z y w|=50^{\circ} \\
& |y o|=|w o| \text { or equivalent }
\end{aligned}\right.
$$

Worthless (0)

W1 Diagram from examination paper reproduced either partially or fully
W2 Angles at centre of circle indicated as right angles

Congruent triangles:

Taking $\Delta y w v$ and $\Delta y w z$
$|\angle w y v|=|\angle y w z|$ (both right angles)
or in Δ voy and $\Delta z o w$
[wy] common to both triangles
[wv] and [yz] hypothenuse in each case
\Rightarrow RHS \Rightarrow congruent triangles
$\Rightarrow|z w|=|v y|$
$|o v|=|o z|$ (radii)
$|o y|=|o w|$
step 1
\angle voy $|=| \angle$ zow \mid (vertically opposite) step 2
$\Rightarrow \mathrm{SAS} \Rightarrow$ congruent triangles
$\Rightarrow|z w|=||v y|$
step 3

* Note: Also possible to show Δ voy and Δ zow congruent by ASA

Otherwise: \quad Taking $\Delta y w v$ and $\Delta y z w$

$$
|w v|^{2}=|w y|^{2}+|v y|^{2}
$$

$$
|z y|^{2}=|w y|^{2}+|z w|^{2} \quad \text { step } 1
$$

$$
\text { but }|w v|^{2}=|z y|^{2} \text { since both diameters } \quad \text { step } 2
$$

$$
\Rightarrow|w y|^{2}+|v y|^{2}=|w y|^{2}+|z w|^{2}
$$

$$
\Rightarrow \quad|v y|^{2}=|z w|^{2} \Rightarrow \quad|v y|=|z w| \text { step3 }
$$

Blunders (-3)

B1 Any step incorrect or omitted
B2 Incorrect identification of hypotenuse
Slips (-1)

Attempts (2 marks)
A1 Indicates pair of sides or pair of angles relevant to proving congruence
A2 Sum of angles in a triangle $=180^{\circ}$
Worthless (0)
W1 Numerical values given to $|v y|$ and $|z w|$ from measurement on examination paper

Part (a)	5 marks	Att 2
Part (b)	$35(15,20)$ marks	Att 12(5,7)
Part (c)	$10(3,3,3,1)$ marks	Att 3(1,1,1)

2 Given that $\tan A=4$, write $\cos A$ in the form $\frac{1}{\sqrt{x}}, x \in \mathrm{~N}$.
(a)

5 marks
Att 2
$\operatorname{Tan} A=4=\frac{4}{1}=\frac{o p p}{a d j}$
Let hypotenuse $=h$
$h^{2}=4^{2}+1^{2}=17 \Rightarrow h=\sqrt{17}$
$\operatorname{Cos} A=\frac{\text { adj }}{\text { hyp }}=\frac{1}{\sqrt{17}}$

Blunders(-3)

B1 Correct answer without work shown ()
B2 Incorrect ratio for Tan function
B3 Pythagoras incorrect
B4 Incorrect squaring
B5 Incorrect ratio for Cos function
Slips(-1)
S1 Arithmetic slips
Attempts (2 marks)
A1 Tan function or Cos function ratio correct
A2 Pythagoras indicated
b and c are two airports as shown.
When airport b is viewed from a,
$|\angle a b c|=36^{\circ}$.
When airport c is viewed from a,

$$
|\angle a c b|=44^{\circ} .
$$

It takes a plane 25 minutes travelling at a speed of $384 \mathrm{~km} / \mathrm{h}$ to go from airport b to airport c.

Find (i) the distance between both airports, i.e. $|b c|$,
(ii) the distance airport c is from point a, i.e. $|a c|$, correct to the nearest km .
(b)(i)

15 marks
Att 5
$\frac{25}{60}(384)=\frac{5}{12}(384)=160 \mathrm{~km}$

Blunders (-3)

B1 Correct answer without work shown (
B2 Early rounding off which affects accuracy of answer
Slips (-1)
S1 Arithmetic errors to a maximum of (-3)
S2 Mishandles converting 25 minutes in terms of hours
Attempts (5 marks)
A1 Use of 25 and 60
$|\angle c a b|=180^{\circ}-\left(36^{\circ}+44^{\circ}\right)=100^{\circ}$

$$
\frac{\operatorname{Sin} 100^{\circ}}{160}=\frac{\operatorname{Sin} 36^{0}}{|a c|} \Rightarrow \frac{160 \operatorname{Sin} 36^{0}}{\operatorname{Sin} 100^{\circ}}=\frac{160(0.587785)}{0.9848}=95.497
$$

95 km , to nearest km.

Blunders (-3)

B1 Correct answer without work shown (S)
B2 Incorrect ratio in use of Sine Rule
B3 Error in cross multiplication
B4 Reads wrong page of tables or uses calculator in incorrect mode
B5 Early rounding off which affects the answer
B6 Sum of angles in triangle $\neq 180^{\circ}$
Slips (-1)
S1 Arithmetic slips to maximum (-3)
S2 Answer not to nearest km.
Misreadings (-1)
M1 Calculates $|a b|$
Attempts (7 marks)
A1 Sine Rule with some substitution
A2 Uses $|\angle \mathrm{cab}|=90^{\circ}$ and continues

Worthless (0)

W1 Treats triangle as right angled
W2 $\frac{100}{160}=\frac{36}{|a c|}$ or equivalent

Part (c)

(c) The diagram shows an equilateral triangle and the incircle of the triangle with centre o.
(i) Given that $|o m|=4$, find $|m n|$, giving your answer in surd form.
(ii) Find $|o n|$.

(iii) Write down the height of the equilateral triangle.
(iv) Calculate the area of the equilateral triangle, giving your answer in surd form.
(c)(i)

3 marks
Att 1
$\operatorname{Tan} 30^{\circ}=\frac{|o m|}{|m n|}=\frac{4}{|m n|} \Rightarrow \frac{1}{\sqrt{3}}=\frac{4}{|m n|} \Rightarrow|m n|=4 \sqrt{3} \quad$ or $\frac{\sqrt{3}}{3}=\frac{4}{|m n|} \Rightarrow|m n|=\frac{12}{\sqrt{3}}$

Note: Any blunder results in an attempt mark of 1.
Blunders (See *above)
B1 Correct answer without work shown ()
B2 Incorrect ratio for Tan function
B3 Error in cross multiplication
B4 Reads from page in tables not relevant to Tan function or uses calculator in incorrect mode
Slips (-1)
S1 Arithmetic slip (Max 2)
S2 Answer not in surd form
Attempts (1 mark)
A1 Indicates use of 4 in a relevant ratio
(c)(ii)

Att 1

$$
\begin{aligned}
\mid \text { on }\left.\right|^{2}=4^{2}+(4 \sqrt{3})^{2}=16+48=64 \Rightarrow \mid \text { on } \mid=8 \text { or } \operatorname{Sin} 30^{\circ}=\frac{4}{\mid \text { on } \mid} & \Rightarrow \frac{1}{2}=\frac{4}{\mid \text { on } \mid} \\
& \Rightarrow \quad \mid \text { on } \mid=8
\end{aligned}
$$

* Note: Any blunder results in an attempt mark of 1.
* Accept candidate's value from (c)(i)

Blunders (See $1^{s t} *$ above)
B1 Correct answer without work shown (S)
B2 Pythagoras incorrect
B3 Incorrect squaring
B4 \mid on $\left.\right|^{2}=64$ and stops
B5 Incorrect ratio for Sine function
B6 Reads wrong page of tables or uses calculator in incorrect mode
B7 Error in cross multiplication
Slips (-1)
S1 Arithmetic slip(Max 2).
Attempts (1 mark)
A1 Pythagoras indicated
A2 Sine Rule with some substitution

(c)(iii)

3 marks

Att 1

12 (i.e. $8+4$).

* Note: Any blunder results in an attempt mark of 1.
* Accept candidate's value for \mid on \mid

Blunders (See 1 ${ }^{\text {st }}$ * above)
B1 Shows incorrect operator e.g. \mid on $\mid-4$ instead of \mid on $\mid+4$
Attempts (1 mark)
A2 Indicates some use of 4 or 8
(c)(iv) 1 mark hit or miss

Area $=1 / 2$ base \times perpendicular height $=4 \sqrt{3} \times 12=48 \sqrt{3}$
or area $=6 \times($ Area Δ mon $)=6 \times(1 / 2 \times 4 \sqrt{3} \times 4)=48 \sqrt{3}$

Part (a)	15 marks	Att 5
Part (b)	$15(5,10)$ marks	Att 5(2,3)
Part (c)	$20(5,5,5,5)$ marks	Att 8(2,2,2,2)

Part (a)
15 marks
Att 5

60 people were asked how they travelled to work. The following table is a summary of the results:

Type of transport	Public Transport	Car	Walk
No. of people	35	15	10

2 Draw a pie chart to illustrate the above information.
(a)

15 marks
Att 5

	Public Transport	Car	Walk
Pie Chart Angles	35	15	10
	210°	90°	60°

\square Public Transport

- Car
\square Walk

Blunders (-3)

B1 Correct answer without work shown (S)
B2 Sum of angles $\neq 360^{\circ}$
B3 Divisor other than 60
B4 Incorrect plotting
Slips (-1)
S1 Arithmetic slips to maximum of (-3)
Atempts (5 marks)
A1 Use of 360 indicated or implied
A2 Circle drawn
Worthless (0)
W1 Bar Chart

Part (b)
$15(5,10)$ marks
Att 5(2,3)

A professional golfer plays 50 rounds of golf over a season. The following were the number of shots taken in each round:

69	66	70	70	71	70	68	71	76	72
69	74	75	73	77	70	73	74	66	74
69	74	74	70	75	73	69	76	80	72
73	69	79	72	69	74	79	73	77	72
69	67	70	69	68	70	70	71	68	66

(i) Complete the following frequency table.

No. shots per round	$66-69$	$69-72$	$72-75$	$75-81$
Number of rounds				

[Note: $66-69$ means 66 or more but less than 69 , etc.]
(ii) Using mid interval values, calculate the mean number of shots per round, giving your answer correct to the nearest whole number.

No. shots per round	$66-69$	$69-72$	$72-75$	$75-81$
Number of rounds	7	19	15	9

Blunders (-3)

B1 Omits any number (frequencies do not sum to 50)
B2 Cumulative frequencies
Slips (-1)
S1 Arithmetic errors
Attempts (2 marks)
A1 Any one value filled in correctly into table

Worthless (0)

W1 Copies table and stops without making any further entries
(b)(ii)

10 marks
Att 3

$$
\begin{aligned}
\text { Mean } & =\frac{7(67 \cdot 5)+19(70 \cdot 5)+15(73 \cdot 5)+9(78)}{50} \\
& =\frac{472 \cdot 5+1339 \cdot 5+1102 \cdot 5+702}{50} \\
& =\frac{3616 \cdot 5}{50} \\
& =72 \cdot 33 \\
& =72 \text { to nearest whole number }
\end{aligned}
$$

Accept candidates work from (b)(i)

Blunders (-3)

B1 Correct answer without work shown (S)
B2 Consistent incorrect mid interval value
B3 Division by 4
B4 Division by sum of mid intervals
B5 Consistently adds interval value to frequency instead of multiplying
Slips (-1)
S1 Arithmetic slips to maximum (-3)
Attempts (3 marks)
A1 One correct multiplication in numerator
A2 Indicates division by 50
A3 One correct midinterval
Worthless (0)
W1 Sum of frequencies divided by 4
(c) At a Garda checkpoint, the speed of 100 vehicles passing was recorded. The following were the results:

Speed in km/h	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
No. of cars	8	24	40	18	10

[Note: $20-40$ means 20 or more but less than 40 , etc.]
(i) Construct the cumulative frequency table.
(ii) On graph paper construct the ogive.
(iii) Use your graph to estimate the median.
(iv) Use your graph to estimate the number of vehicles with a speed of at least $70 \mathrm{~km} / \mathrm{h}$.

(c)(i)

 5 marksAtt 2

Speed in km/h	<20	<40	<60	<80	<100
No. of cars	8	32	72	90	100

Blunders (-3)

B1 Omits any number (sum $\neq 100$)

Slips (-1)

S1 Arithmetic slips to maximum (-3)

Attempts (2 marks)

A1 Any one value filled in correctly into table
A2 Any indication of addition of frequencies
Worthless (0)
W1 Copies table and stops

Blunders (-3)
B1 Incorrect scales
B2 Plots points but not joined
B3 Draws a 'cumulative' histogram
B4 Draws a 'cumulative' cumulative ogive
Slips (-1)
S1 Each incorrect plot
S2 Each point omitted
Attempts (2 marks)
A1 Draws scaled axes and stops

Median $=49$

* Accept median consistent with candidate's work

Blunders (-3)
B1 Correct answer without work shown (
B2 Takes 'median' from horizontal axis
B3 Line drawn from incorrect starting point of correct axis for median
B4 Work for median correct but not clearly marked
Attempts (2marks)
A1 Draws line from $50^{\text {th }}$ frequency to ogive
A2 Indicates use of 50
(c)(iv) 5 marks

Att 2
No of vehicles with a speed of less than $70 \mathrm{~km} / \mathrm{hr}=82$ (using graph)
No. of vehicles with speed greater than $70 \mathrm{~km} / \mathrm{hr}=100-82=18$

* Accept answer consistent with candidate's work

Blunders (-3)
B1 Correct answer without work shown ()
B2 Number of vehicles with speed of less than $70 \mathrm{~km} / \mathrm{hr}$
Attempts (2marks)
A1 Graphical indication of use of $70 \mathrm{~km} / \mathrm{hr}$

