

JUNIOR CERTIFICATE 2008

MARKING SCHEME

MATHEMATICS

HIGHER LEVEL

PAPER 2

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips- numerical errors (-1)
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

QUESTION 1

Part (a)	15 marks	Att 5
Part (b)	15 (5,5,5) marks	Att 6(2,2,2)
Part (c)	20 (5,10,5) marks	Att 7(2,3,2)
Part (a)	15 marks	Att 5

The height and the diameter of a solid cylinder are both 8 cm in length.

Example Find the curved surface area of the cylinder correct to the nearest whole number.

15 marks

Att 5

CSA of cylinder $2 \pi r h = 2 (3.142) 4.8 = 201.088 \text{ cm}^2$

201 cm² to nearest whole number

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect substitution into correct formula
- B3 Incorrect *r*
- B4 Incorrect relevant area formula
- B5 Using a value of π which affects accuracy of answer

Slips (-1)

- S1 Arithmetic slips to a maximum of (-3)
- S2 Not rounding to nearest whole number

Attempts (5 marks)

- A1 Correct formula with some substitution
- A2 Correct r indicated

Worthless (0)

W1 Volume of cylinder

(b)(i)	5 marks	Att 2
$2l + 2 \pi r = 400$		
$l + \pi r = 200$		
$l+\pi\left(\frac{100}{\pi}\right)=200$	$\Rightarrow l + 100 = 200 \Rightarrow l = 100m$	

- B1 Correct answer without work shown (\mathscr{A})
- B2 Incorrect substitution into correct perimeter formula
- B3 Incorrect relevant perimeter formula
- B4 Using incorrect r
- B5 Using a value of π which affects accuracy of answer
- B6 Early rounding off which affects accuracy of answer
- Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (2 marks)

A1 Correct perimeter formula

Worthless (0)

W1 Area of rectangle and/or disc

(b)(ii) 5 marks	Att 2
1500 = 3(400) + 300	or $\frac{1500}{400} = 3.75$ laps
i.e three perimeters and 300m more from a	Starting at <i>a</i> the race finishes at
$\begin{vmatrix} ab \end{vmatrix} = \begin{vmatrix} bc \end{vmatrix} = \begin{vmatrix} cd \end{vmatrix} = 100$	d as it lies 0.75 laps or 300 m from a
Race finish	les at d

- B1 Correct answer without work shown (\mathscr{L})
- B2 <u>400</u>
- $\frac{1500}{1500}$
- B3 Early rounding off of answer from (b) (i) which affects accuracy of answer

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Misreadings (-1)

M1 Race in opposite direction i.e. adcb

Attempts (2 marks) A1 Finds number of complete perimeters

Worthless (0)

W1 $\frac{400}{1500}$ and stops

(b)(iii)	5 marks	Att 2
3 mins 26 sec = 206 sec		
Average speed = $\frac{1500}{206}$	= $7.28 \text{ m/sec} = 7.3 \text{ m/sec}$ to one decimal place	

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 3 mins \neq 180 secs
- B3 Speed = $\frac{206}{1500}$ m/sec
- B4 Speed expressed in metres per min

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (2 marks)

A1 Converting minutes to seconds

Worthless (0)

W1 Av Speed = product of distance by time

(c)(i)	5 marks	Att 2
Volume of golf ball (sphere) =	$\frac{4}{3}\pi r^{3} = \frac{4}{3}\pi 2^{3} \text{ or } \frac{32}{3}\pi \text{ cm}$	n^{3} or 10.67 π cm ³

- B1 Correct answer without work shown (\mathscr{A})
- B2 Incorrect substitution into correct formula
- B3 Incorrect relevant volume formula

Slips (-1)

- S1 Arithmetic slips to maximum (-3)
- S2 Answer not in terms of π

Attempts (2 marks)

A1 Indicates radius = half length of diameter

Worthless (0)

W1 Surface area of sphere

(c)(ii)	10 marks	Att 3
Volume of cylind	ler where $r = 5$ and $h = 6$	
$\pi r^2 h$	$= \pi 5^2 \times 6 \text{ or } 150 \pi \text{ cm}^3$	

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{A})
- B2 Incorrect r and /or incorrect h
- B3 Incorrect relevant volume formula

Slips (-1)

- S1 Arithmetic slips to maximum (-3)
- S2 Answer not in terms of π

Attempts (2 marks)

- A1 Indicates radius half length of diameter
- A2 Some indication of relevant height

Worthless (0)

W1 Surface area formula for cylinder

(c)(iii)	5 marks	Att 2
Let rise in cylinder $= h$	or Vol of water in cyl. + vo	l of sphere
$\pi 5^2 h = \frac{4}{3} \pi 2^3$	$\pi 5^2 \times 6 + \frac{4}{3} \pi 2^3$	$= 150\pi + \frac{32}{3}\pi = \frac{482}{3}\pi$
$25\pi h = \frac{32}{3}\pi$	Let height in cyli	nder = H
$25h = \frac{32}{3}$	$\pi 5^{2} H = \frac{482}{3} \pi$	
$h = \frac{32}{75} = 0.42666$	$25H = \frac{482}{3}$	H = 6.4266
h = 0.43 cm to 2 dec. place		4266-6 = 0.4266 = 0.43cm to 2 dec. places

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect squaring and /or cubing
- B3 Transposition error
- B4 Using a value of π which affects accuracy of answer
- B5 Incorrect substitution into correct formula
- B6 Incorrect *r*
- B7 Incorrect relevant volume formula
- B8 Early rounding off which affects accuracy of answer

Slips (-1)

- S1 Not rounding off to 2 dec places
- S2 Arithmetic slips to a maximum of (-3)
- S3 Leaving answer as 6 ·4266 or equivalent

Attempts (2 marks)

- A1 Volume of either sphere or cylinder carried forward from (c)(i) or (c)(ii)
- A2 Addition of volumes

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	20 (5,5,5,5) marks	Att 8 (2,2,2,2)
Part (c)	20 (5,5,5,5) marks	Att 8(2,2,2,2)

Part	(a)	10 marks	Att 3
(a)	<i>a</i> (3, 6) and <i>b</i> (-1, 3) are two points.		
Ľ	Find $ ab $.		

(a) 10 marks At 3
Formula:
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $|ab| = \sqrt{(3+1)^2 + (6-3)^2} = \sqrt{4^2 + 3^2} = \sqrt{25} \text{ or } 5$

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect relevant formula and continues
- B3 Switches both *x* and *y* in substitution

Slips (-1)

S1 Arithmetic errors

Attempts(3 marks)

- A1 Correct formula with or without some substitution
- A2 Subtracts the *x*'s and /or *y*'s

Part (b)		20 (5,5,5,5) marks Att	t 8(2,2,2,2)				
	The line L: $3x - 5y + 15 = 0$ and the line M: $3x + 4y - 12 = 0$ cut the x-axis at the points c and d respectively.						
	(i) Z	S Find the coordinates of c and d .					
	(ii) Z	S Find e , the point of intersection of L and M .					
	(iii) <i>Æ</i>	Show the lines L and M on a coordinate diagram on graph	paper.				
	(iv) Z	S Find the area of Δcde .					

d(4,0)

Blunders (-3)

c(-5,0)

- **B**1 Correct answer without work shown (\mathscr{L})
- B2 Transposition error.
- Finds point where L cuts the x- axis only **B**3
- B4 Finds point where M cuts x-axis only

Slips (-1)

- **S**1 Finds where L(or M) cuts both axes but does not identify c (or d) or incorrectly identifies c(or d)
- S2 Arithmetic slips to a maximum of (-3)

Misreadings (-1)

M1 Finds where both L and M intersect Yaxis

Attempts (2 marks)

Some attempt at substitution of 0 A1

(b)(ii)				Att 2			
	М:	3x + 4y -	12 = 0				
	L:	3x - 5y +					
		9y -	27 = 0	3x +	4(3) - 12 = 0		
		9_{V}	= 27		12 - 12 = 0		
		v	= 3	3x	= 0		
		2		x	= 0	<i>e</i> (0,3)	
* Not	e Acc	rept $(0,3) \in I$	L and $(0,3) \in \mathbb{R}$	M shown in each	1 case		

Note: Accept $(0,3) \in L$ and $(0,3) \in M$ shown in each case

Blunders (-3)

- **B**1 Correct answer without work shown (\mathscr{L})
- B2 Transposition error

Slips (-1)

- **S**1 Arithmetic slips to maximum (-3)
- S2 Not finding second co-ordinate

Attempts (2marks)

- A1 Any correct step and stops
- A2 Graphical solution correct

Worthless(0)

W1 Graphical solution incorrect

(h))(iv)	
U))(] V)	

5 marks

Att 2

Area = $\frac{1}{2} \cdot 9.3 = \frac{27}{2}$ or 13.5

* Accept any valid method

Blunders (-3)

- B1 Correct answer without work shown $(\not \! \! \boxtimes)$
- B2 Incorrect relevant area formula
- B3 Sum of areas of two smaller triangles not equal to area of required triangle

Slips (-1)

- S1 Arithmetic errors to a maximum of (-3)
- S2 Sum of areas of smaller triangles not found

Attempts (2 marks)

A1 Relevant area formula with some substitution

20(5,5,5,5) marks

p is the point (2, -3) and q is the point (-2, 1).

(i) \swarrow Find r, the midpoint of [pq].

K is the line through r, perpendicular to [pq].

- (ii) \swarrow Find the equation of *K*.
- (iii) \swarrow Show that s(3, 2) is on the line *K*.
- (iv) \swarrow Prove that the triangle Δpqs is isosceles.

(c)(i)	5 marks	Att 2
	r: $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{2-2}{2}, \frac{-3+1}{2}\right) = \left(\frac{0}{2}, \frac{-2}{2}\right) \text{ or } (0,-1)$	

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect relevant midpoint formula and continues
- B3 Mixes both *x* and *y* in substitution
- B4 Finds one co-ordinate only

Slips (-1)

S1 Arithmetic errors

Attempts (2 marks)

A1 Writes midpoint formula with or without substitution

(c)(ii)

5 marks

Att 2

(U)(M)	C manns	1100 -
Slope $pq = \frac{y_2 - y_1}{x_2 - x_1}$	$= \frac{-3-1}{2-2} = \frac{-4}{4} = -1$	
Slope $K = 1$	Equation K: $y - y_1 = m(x - x_1)$ y - 1 = 1(x - 0) y + 1 = x	

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect relevant formula and continues
- B3 Switches both *x* and *y* in substitution

Slips (-1)

- S1 Arithmetic errors
- S2 Incorrect perpendicular slope
- S3 Taking p or q instead of r for point on K

Attempts (2marks)

- A1 Correct slope formula and/or line formula with or without some substitution
- A2 Indicates product of perpendicular slopes equals -1

(c)(iii)		5 marks	l	Att 2
	s (3, 2)	on line	K		
	y + 1 = x	\Rightarrow	LHS: $2 + 1 = 3 = RHS$		

Blunders(-3)

- B1 Mixes *x* and *y* in substitution
- B2 Transposition error

Slips(-1)

S1 Arithmetic errors to maximum (-3)

Attempts(2 marks)

A1 Graphical solution correct

Worthless(0)

W1 Graphical solution incorrect

(c)(iv)
Formula :
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|sq| = \sqrt{(-2-3)^2 + (1-2)^2} = \sqrt{(-5)^2 + (-1)^2} = \sqrt{25+1} \text{ or } \sqrt{26}$$
$$|sp| = \sqrt{(-2-3)^2 + (3-2)^2} = \sqrt{(-5)^2 + (1)^2} = \sqrt{25+1} \text{ or } \sqrt{26}$$
Triangle Δpqs is isosceles

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect relevant formula and continues
- B3 Switches both *x* and *y* in substitution
- B4 Substitutes correctly for x and y in each case but does not simplify

B5 (-1) $^{2} \neq 1$

Slips (-1)

- S1 $|sq| \neq |sp|$ without a conclusion
- S2 Arithmetic errors to maximum (-3)

Attempts(2 marks)

- A1 Correct formula with or without some substitution
- A2 Incorrect relevant formula with some correct substitution

QUESTION 3

Part (a)	15 marks	Att 5
Part (b)	25 (20,5) marks	Att 9(7,2)
Part (c)	10 (3,3,3,1) marks	Att 3(1,1,1)
Part (a)	15 marks	Att 5

(a) 15 marks Att 5

$$|\angle acd| = |\angle bac| + |\angle abc| \text{ (exterior angle = sum of interior opposites)}}$$

$$|\angle abc| = |\angle acb| \text{ (isosceles triangle)}$$

$$= \frac{1}{2}(180^{\circ} - 30^{\circ}) = 75^{\circ}$$

$$|\angle acd| = 30^{\circ} + 75^{\circ} = 105^{\circ} \text{ or } |\angle acb| = 75^{\circ}$$

$$|\angle acd| = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

* Note: Some or all steps may be indicated on diagram drawn by candidate

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Sum of angles in triangle $\neq 180$
- B3 $|\angle acb| + |\angle acd| \neq 180$

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (5 marks)

A1 Diagram from examination paper drawn and equal angles indicated

Worthless (0)

W1 Diagram from examination paper either partially or fully drawn

11cm

* Accept constructions with a tolerance of 2 mm

Blunders(-3)

- B1 Each incorrect side
- B2 Constructing right angle between two sides

Attempts(7 marks)

A1 Any one correct side drawn

Blunders (-3) B1 Any step incorrect

Attempts (2 marks) A1 Triangle with vertices or angles indicated

Worthless (0) W1 Wrong theorem

(c)(i) 3 marks	Att 1
	$\begin{vmatrix} \angle bad \end{vmatrix} = 35^{\circ} + 35^{\circ} = 70^{\circ} \qquad \text{or taking quadrilateral } abed \\ \begin{vmatrix} \angle ade \end{vmatrix} = 180^{\circ} - 70^{\circ} = 110^{\circ} \qquad \begin{vmatrix} \angle bad \end{vmatrix} + \begin{vmatrix} \angle ade \end{vmatrix} + \begin{vmatrix} Ade \end{vmatrix} + Ade Ade \end{vmatrix} + Ade \end{vmatrix} + Ade Ade \end{vmatrix} + Ade Ade \end{vmatrix} + Ade Ade$	
		$abe + \angle bed = 360^{\circ}$
		$+ 90^{\circ} = 360^{\circ}$
	$\angle ade = 110^{\circ}$	
*	Note: Any blunder results in an attempt mark of 1.	

Note: Any blunder results in an attempt mark of 1.

Blunders (see * above)

- Correct answer without work shown (\mathscr{L}) **B**1
- B2 Sum of angles on straight line $\neq 180^{\circ}$
- B3 Sum of angles in quadrilateral $\neq 360^{\circ}$

Slips (-1)

Arithmetic slip(Max 2) **S**1

Attempts (1 mark)

Measure of any correct relevant angle indicated A1

Worthless (0)

W1 Diagram from examination paper either partially or fully reproduced

(c)(ii)

3 marks

$$\left| \angle adc \right| = \left| \angle cde \right| = \frac{1}{2} (110^{\circ}) = 55^{\circ}$$
$$\left| \angle acd \right| = 180^{\circ} - (35^{\circ} + 55^{\circ}) = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

* Note: Any blunder results in an attempt mark of 1.

* Some or all steps may be indicated on candidate's diagram

Blunders (See 1st * above)

- B1 Correct answer without work shown (\cancel{k})
- B2 Sum of angles in $\Delta adc \neq 180^{\circ}$
- B3 Sum of angles on line $\neq 180^{\circ}$

Slips (-1)

S1 Arithmetic slip (Max 2)

Worthless (0)

W1 Diagram from examination paper either partially or fully reproduced

(c)(iii) 3 marks	Att 1
	Measures of angles in Δadc are 90°, 55°, 35°	
	Measures of angles in Δabc are 90°, 35°, with remaining angle 55° (sum =180°)	
	Measures of angles in $\triangle dce$ are 90° (given), $ \angle cde = 55^{\circ} \Rightarrow \angle dce = 35^{\circ}$	
	\Rightarrow triangles equiangular	
*	Note: Any blunder results in an attempt mark of 1.	

* Some steps may be indicated on candidate's diagram

Blunders (See 1st * above)

B1 Sum of angles in any triangle $\neq 180$

Slips (-1)

- S1 Arithmetic slip(Max 2)
- S2 Showing a pair of the triangles are equiangular.

(c)(iv)	1 mark	hit or miss
<i>de</i> side opposite 35°		
<i>ce</i> side opposite 55°		
bc : ab = de :	ec = 3.5:5 = 7:10	

Att 1

QUESTION 4

QUESTION 4	
20 (15,5) marks	Att 7(5,2)
20 (15,5) marks	Att 7(5,2)
10 (5,5) marks	Att 4(2,2)
20(15,5) marks	Att 7(5,2)
	<i>b</i>
Cadb ,	
Zdac .	
	20 (15,5) marks 20 (15,5) marks 10 (5,5) marks

(a)(i)			15 marks	Att 5			
	$\left \angle bad \right = 90^{\circ}$ (angle in semi-circle)						
	$\left \angle abd \right =$	$\angle adb \mid$ (isosceles trian	igle)				
	$ \angle abd +$	$\angle adb \mid = 90^{\circ}$					
	∠adb =	45°					

* Some or all steps may be indicated on candidate's diagram

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Sum of measure of angles in triangle $\neq 180^{\circ}$

Slips (-1)

S1 Arithmetic slips to maximum of (-3)

Attempts (5 marks)

- A1 Angle at arc in semi-circle indicated as right angle
- A2 Correct angles indicated in isosceles triangle but value not found

Worthless (0)

W1 Diagram from examination paper reproduced either partially or fully

	$\begin{vmatrix} ac \\ = \\ cd \\ dac \end{vmatrix} = \begin{vmatrix} cd \\ dac \end{vmatrix}$ $\begin{vmatrix} dac \\ dac \\ dac \end{vmatrix} = 45^{\circ} \text{ since } \begin{vmatrix} dac \\ dac \\ dac \\ dac \end{vmatrix} = 45^{\circ}$
	$\left \angle cda \right = \left \angle dac \right $
	$\left \angle dac \right = 45^{\circ}$ since $\left \angle cda \right = 45^{\circ}$
*	Some or all steps may be indicated on candidate's diagram
Blun	ders (-3)
B1	Correct answer without work shown (\mathscr{K})
B2	Sum of angles in a triangle $\neq 180^{\circ}$
Slips	(1)
-	
S 1	Arithmetic slips to maximum of (-3)
Attor	unte (2 mantes)
Allen	$\begin{array}{l} npts (2 \ marks) \\ ac = cd \ indicated \end{array}$
AI	ac - ca mulcated
Wort	hless (0)
	Diagram from examination paper reproduced either partially or fully

5 marks

Att 2

(a)(ii)

(b)(i)	15 marks Att 5
	Given: Circle C, centre c on D, with chord $ab \perp D$, and $ab \cap D = \{p\}$
	Construction: Join ca and cbstep 1
	To Prove : $ ap = bp $
	Proof: $ ca = cb $ (radii) step 2
	$ \angle cpa = \angle cpb $ (right angles) step3 C
	cp = cp
	\Rightarrow RHS $\Rightarrow \Delta cap$ and Δcpb congruent step 4 D $\begin{pmatrix} c \\ p \end{pmatrix}$
	$\Rightarrow ap = bp \qquad \text{step5} \qquad \qquad$
	$\underline{\mathbf{or}} ca = cb \qquad (radii)$
	$\Rightarrow \angle cap = \angle cbp \text{(isosceles triangle) step2}$
	$ \angle cpa = \angle cpb $ (right angles)
	$\Rightarrow \angle acp = \angle bcp \qquad \text{step 3}$
	\Rightarrow ASA $\Rightarrow \triangle cap$ and $\triangle cpb$ congruent step 4
	$\Rightarrow ap = bp \qquad \text{step5}$
	<u>or</u> $ ca = cb $ (radii)
	$\Rightarrow \angle cap = \angle cbp \text{(isosceles triangle)} \text{step 2}$
	$ \angle cpa = \angle cpb $ (right angles)
	$\Rightarrow \angle acp = \angle bcp \qquad (\text{sum of angles in triangle = 180}) \qquad \text{step3}$
	$\Rightarrow cp = cp $
	\Rightarrow SAS $\Rightarrow \triangle cap$ and $\triangle cpb$ congruent step 4
	$\Rightarrow ap = bp \qquad \text{step5}$
	ome steps may be indicated on diagram

* Accept any other valid proofs

Blunders(-3)

- B1 Each step incorrect or omitted
- B2 Each step incomplete

Attempts(5marks)

A1 Diagram with circle drawn, and diameter or chord indicated

Worthless(0)

- W1 Wrong Theorem
- W2 Circle and nothing else

(b)(ii)

<u>MU</u>									5 ma	INS	
	dp	=	ds	sinc	e ca	<i>l</i> perpe	ndicu	ılar	bisect	or o	f [<i>ps</i>]
	dp	=	dq	+ !	pq	and	ds =	= (dr +	rs	
E	But	dq	=	dr	(the	eorem)					
		p	$q \mid =$	rs							

Blunders (-3)

B1 $|dp| \neq |ds|$

B2
$$|dq| \neq |dr|$$

B3 |qd| equals radius or equivalent

Slips (-1)

S1 Arithmetic slips to maximum of (-3)

Attempts (2 marks)

- A1 |dp| = |ds| indicated
- A2 |dq| = |dr| indicated
- A3 Steps towards showing Δcpd and Δcsd congruent
- A4 q as midpoint of [pd] or equivalent

Worthless (0)

W1 Diagram from examination paper reproduced either partially or fully

 $\begin{aligned} |\angle zyw| &= 50^{\circ} \text{ since diameter } zy \text{ perpendicular to } T \\ |\angle ywv| &= 50^{\circ} \text{ since } |yo| &= |wo| \text{ (radii)} \\ |\angle yow| &= 180^{\circ} - (50^{\circ} + 50^{\circ}) = 80^{\circ} \text{ or taking } \Delta yvw \\ \text{But } |\angle yow| &= 2 |\angle wvy| \\ |\angle wvy| &= 40^{\circ} \end{aligned} \qquad \begin{aligned} |\angle wvy| &= 180^{\circ} - |\angle vyw| + |\angle ywv| \\ &= 180^{\circ} - (90^{\circ} + 50^{\circ}) \\ &= 40^{\circ} \end{aligned}$

Some or all steps may be indicated on candidate's diagram.

Blunders (-3)

*

- B1 Correct answer without work shown (\mathscr{L})
- B2 $|\angle zyx| \neq 90^{\circ}$
- B3 Sum of angles in a triangle $\neq 180^{\circ}$
- B4 $\angle zyw \neq \angle ywv$
- B5 $\angle yow \mid \neq 2 \mid \angle wvy \mid$

Slips (-1)

S1 Arithmetic slips to a maximum of (-3)

Attempts (2 marks) A1 $|\angle zyw| = 50^{\circ}$ A2 |yo| = |wo| or equivalent

Worthless (0)

- W1 Diagram from examination paper reproduced either partially or fully
- W2 Angles at centre of circle indicated as right angles

(c)(ii) 5	marks	Att 2
Congruent triangles:		
Taking $\Delta y w v$ and $\Delta y w z$	or in Δ voy and Δ zow	
$\left \angle wyv \right = \left \angle ywz \right $ (both right angles)	ov = oz (radii)	step 1
[<i>wy</i>] common to both triangles	oy = ow	
[wv] and [yz] hypothenuse in each case		
\Rightarrow RHS \Rightarrow congruent triangles	\Rightarrow SAS \Rightarrow congruent triangles	5
$\Rightarrow zw = vy $	$\Rightarrow zw = vy $	step 3

* Note: Also possible to show Δ *voy* and Δ *zow* congruent by ASA

Otherwise:Taking
$$\Delta ywv$$
 and Δyzw $|wv|^2 = |wy|^2 + |vy|^2$ $|zy|^2 = |wy|^2 + |zw|^2$ $but |wv|^2 = |zy|^2$ since both diameters $\Rightarrow |wy|^2 + |vy|^2 = |wy|^2 + |zw|^2$ $\Rightarrow |vy|^2 = |zw|^2 \Rightarrow |vy| = |zw|$ step3

Blunders (-3)

- B1 Any step incorrect or omitted
- B2 Incorrect identification of hypotenuse

Slips (-1)

Attempts (2 marks)

- A1 Indicates pair of sides or pair of angles relevant to proving congruence
- A2 Sum of angles in a triangle = 180°

Worthless (0)

W1 Numerical values given to |vy| and |zw| from measurement on examination paper

QUESTION 5

Part (a)	5 marks	Att 2
Part (b)	35 (15,20) marks	Att 12(5,7)
Part (c)	10 (3 , 3 , 3 , 1) marks	Att 3(1,1,1)

Part (a)

5 marks

Att 2

 \swarrow Given that $\tan A = 4$, write $\cos A$ in the form $\frac{1}{\sqrt{x}}$, $x \in \mathbb{N}$.

(a)	5 marks	Att 2
	$\operatorname{Tan} A = 4 = \frac{4}{1} = \frac{opp}{adj}$	
	-	
	Let $hypotenuse = h$	
	$h^2 = 4^2 + 1^2 = 17 \implies h = \sqrt{17}$	
	$\cos A = \frac{adj}{hyp} = \frac{1}{\sqrt{17}}$	
	$hyp \sqrt{17}$	

Blunders(-3)

- B1 Correct answer without work shown (\cancel{K})
- B2 Incorrect ratio for *Tan* function
- B3 Pythagoras incorrect
- B4 Incorrect squaring
- B5 Incorrect ratio for Cos function

Slips(-1)

S1 Arithmetic slips

Attempts (2 marks)

- A1 *Tan* function or *Cos* function ratio correct
- A2 Pythagoras indicated

Find (i) \swarrow the distance between both airports, i.e. |bc|, (ii) \bowtie the distance airport *c* is from point *a*, i.e. |ac|, correct to the nearest km.

_	(b)(i)	15 marks	Att 5
	$\frac{25}{60}(384) = \frac{5}{12}(384) = 160 \text{ km}$		

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Early rounding off which affects accuracy of answer

Slips (-1)

- S1 Arithmetic errors to a maximum of (-3)
- S2 Mishandles converting 25 minutes in terms of hours

Attempts (5 marks)

A1 Use of 25 and 60

(b)(ii) 20 marks Att 7 $\begin{vmatrix} \angle cab \end{vmatrix} = 180^{\circ} - (36^{\circ} + 44^{\circ}) = 100^{\circ} \\
\frac{Sin100^{\circ}}{160} = \frac{Sin36^{\circ}}{|ac|} \Rightarrow \frac{160Sin36^{\circ}}{Sin100^{\circ}} = \frac{160(0.587785)}{0.9848} = 95.497 \\
95 \text{ km, to nearest km.}$

Blunders (-3)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect ratio in use of Sine Rule
- B3 Error in cross multiplication
- B4 Reads wrong page of tables or uses calculator in incorrect mode
- B5 Early rounding off which affects the answer
- B6 Sum of angles in triangle $\neq 180^{\circ}$

Slips (-1)

- S1 Arithmetic slips to maximum (-3)
- S2 Answer not to nearest km.

Misreadings (-1)

M1 Calculates ab

Attempts (7 marks)

- A1 Sine Rule with some substitution
- A2 Uses $|\angle cab| = 90^\circ$ and continues

Worthless (0)

- W1 Treats triangle as right angled
- W2 $\frac{100}{160} = \frac{36}{|ac|}$ or equivalent

(c)(i) 3 marks Att 1

$$Tan \ 30^{\circ} = \frac{|om|}{|mn|} = \frac{4}{|mn|} \Rightarrow \frac{1}{\sqrt{3}} = \frac{4}{|mn|} \Rightarrow |mn| = 4\sqrt{3} \text{ or } \frac{\sqrt{3}}{3} = \frac{4}{|mn|} \Rightarrow |mn| = \frac{12}{\sqrt{3}}$$

Note: Any blunder results in an attempt mark of 1.

Blunders (See * above)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Incorrect ratio for *Tan* function
- B3 Error in cross multiplication
- B4 Reads from page in tables not relevant to *Tan* function or uses calculator in incorrect mode

Slips (-1)

- S1 Arithmetic slip (Max 2)
- S2 Answer not in surd form

Attempts (1 mark)

A1 Indicates use of 4 in a relevant ratio

(c)(ii)	3 marks	Att 1
	$ on ^2 = 4^2 + (4\sqrt{3})^2 = 16 + 48 = 64 \implies on = 8 \text{ or } Sin30^\circ = \frac{4}{ on } \implies$	

Note: Any blunder results in an attempt mark of 1.

* Accept candidate's value from (c)(i)

Blunders (See 1st * above)

- B1 Correct answer without work shown (\mathscr{L})
- B2 Pythagoras incorrect
- B3 Incorrect squaring
- B4 $|on|^2 = 64$ and stops
- B5 Incorrect ratio for *Sine* function
- B6 Reads wrong page of tables or uses calculator in incorrect mode
- B7 Error in cross multiplication

Slips (-1)

*

S1 Arithmetic slip(Max 2).

Attempts (1 mark)

- A1 Pythagoras indicated
- A2 Sine Rule with some substitution

(c)(ii) 3 marks	Att 1
	12 (i.e. 8+4).	
*	Note: Any blunder results in an attempt mark of 1.	
*	Accept candidate's value for on	
Blun	lers (See 1 st * above)	
B1	Shows incorrect operator e.g. $ on - 4$ instead of $ on + 4$	
Atten	pts (1 mark)	
A2	Indicates some use of 4 or 8	
(c)(iv) 1 mark	hit or miss
	,	
	Area = $\frac{1}{2}$ base × perpendicular height = $4\sqrt{3} \times 12 = 48\sqrt{3}$	
	Area = $\frac{72}{2}$ base \wedge perpendicular fieldin = $4\sqrt{3} \wedge 12 = 40\sqrt{3}$	

or area = $6 \times (\text{Area} \Delta mon) = 6 \times (\frac{1}{2} \times 4\sqrt{3} \times 4) = 48\sqrt{3}$

QUESTION 6

Part (a)	15 marks	Att 5
Part (b)	15 (5,10)marks	Att 5(2,3)
Part (c)	20 (5,5,5,5) marks	Att 8(2,2,2,2)

Part (a)15 marksAtt 5

60 people were asked how they travelled to work. The following table is a summary of the results:

Type of transport	Public Transport	Car	Walk
No. of people	35	15	10

C Draw a pie chart to illustrate the above information.

- B1 Correct answer without work shown (\mathscr{A})
- B2 Sum of angles $\neq 360^{\circ}$
- B3 Divisor other than 60
- B4 Incorrect plotting

Slips (-1)

S1 Arithmetic slips to maximum of (-3)

Atempts (5 marks)

A1 Use of 360 indicated or implied

A2 Circle drawn

Worthless (0) W1 Bar Chart

t (b)	15 (5,10) marks						Att :	5(2,3)	
A profession shots taken i	U 1		ounds o	f golf ove	r a seas	son. Th	ne following	g were tl	he numt
69	66	70	70	71	70	68	71	76	72
69	74	75	73	77	70	73	74	66	74
69	74	74	70	75	73	69	76	80	72
73	69	79	72	69	74	79	73	77	72
69	67	70	69	68	70	70	71	68	66
(i)	€ C	omplete	the follo	wing freq	uency	table.			
	No. sl	nots per r	ound	66 - 69	69	- 72	72 – 75	75 -	81
	Numt	per of rou	inds						

[Note: 66 – 69 means 66 or more but less than 69, etc.]

(ii) 🖉 Using mid interval values, calculate the mean number of shots per round,

giving your answer correct to the nearest whole number.

Att	2

No. shots per round	66 - 69	69 - 72	72 – 75	75 - 81
Number of rounds	7	19	15	9

- B1 Omits any number (frequencies do not sum to 50)
- B2 Cumulative frequencies

Slips (-1)

S1 Arithmetic errors

Attempts (2 marks)

A1 Any one value filled in correctly into table

Worthless (0)

W1 Copies table and stops without making any further entries

(b)(ii)	10 marks	Att 3
	$Mean = \frac{7(67.5) + 19(70.5) + 15(73.5) + 9(78)}{50}$	
	$=\frac{472\cdot5+1339\cdot5+1102\cdot5+702}{50}$	
	$= \frac{3616 \cdot 5}{50}$	
	= 72.33 = 72 to nearest whole number	

* Accept candidates work from (b)(i)

- Blunders (-3)
- B1 Correct answer without work shown $(\not \! \! \boxtimes)$
- B2 Consistent incorrect mid interval value
- B3 Division by 4
- B4 Division by sum of mid intervals
- B5 Consistently adds interval value to frequency instead of multiplying

Slips (-1)

S1 Arithmetic slips to maximum (-3)

Attempts (3 marks)

- A1 One correct multiplication in numerator
- A2 Indicates division by 50
- A3 One correct midinterval

Worthless (0)

W1 Sum of frequencies divided by 4

Part (c)			20 (5,5,5,5) marks			Att 8(2,2,2,2)			
(c) At a Gard were the r	1 /	he speed of 10	00 vehicles pas	ssing was reco	rded. The follow	wing		
	Speed in km/h	0-20	20 - 40	40-60	60 - 80	80 - 100			
	No. of cars	8	24	40	18	10			
[Note: 20 – 40 means 20 or more but less than 40, etc.]									
	(i) Construct the cumulative frequency table.								
	(ii) On graph paper construct the ogive.								
	(iii) \swarrow Use your graph to estimate the median.								
	(iv) \bigotimes Use your graph to estimate the number of vehicles with a speed of at least 70 km/h.								

5 marks						
<20	<40	<60	<80	<100		
8	32	72	90	100		
	0	<20 <40	<20 <40 <60	<20 <40 <60 <80		

B1 Omits any number (sum \neq 100)

Slips (-1)

S1 Arithmetic slips to maximum (-3)

Attempts (2 marks)

- A1 Any one value filled in correctly into table
- A2 Any indication of addition of frequencies

Worthless (0)

W1 Copies table and stops

- B1 Incorrect scales
- B2 Plots points but not joined
- B3 Draws a 'cumulative' histogram
- B4 Draws a 'cumulative' cumulative ogive

Slips (-1)

- S1 Each incorrect plot
- S2 Each point omitted

Attempts (2 marks)

A1 Draws scaled axes and stops

(c)(i	ii) 5 marks	Att 2
	Median = 49	
*	Accept median consistent with candidate's work	
Blun	nders (-3)	
B1	Correct answer without work shown (\mathscr{K})	
B2	Takes 'median' from horizontal axis	
B3	Line drawn from incorrect starting point of correct axis for median	
B4	Work for median correct but not clearly marked	
Atte	mpts (2marks)	
A1	Draws line from 50 th frequency to ogive	
A2	Indicates use of 50	
(c)(i	v) 5 marks	Att 2
	No of vehicles with a speed of less than $70 \text{ km/hr} = 82 \text{ (using graph)}$	
	No. of vehicles with speed greater than 70 km/hr = $100 - 82 = 18$	
*	Accept answer consistent with candidate's work	

- B1 Correct answer without work shown (\mathscr{L})
- B2 Number of vehicles with speed of less than 70 km/hr

Attempts (2marks)

A1 Graphical indication of use of 70 km/hr