## MARKING SCHEME JUNIOR CERTIFICATE EXAMINATION 2007 MATHEMATICS - HIGHER LEVEL - PAPER 1

#### GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
  - Blunders mathematical errors/omissions (-3)
  - Slips- numerical errors (-1)
  - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
  - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
  - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
  - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50

# **QUESTION 1**

| Part (a) | 10 marks | Att 3        |
|----------|----------|--------------|
| Part (b) | 25 marks | <b>Att 8</b> |
| Part (c) | 15 marks | Att 5        |

Part (a)

**(a)** 

### 10 marks

Att 3

Att 3

Express the speed 72 km/h in metres per second.

#### 10 marks

(a) 72 km=72000 m 1 hour =60×60 seconds =3600 seconds Speed = $\frac{72000}{60\times60} = \frac{72000}{3600} = 20$  m/s

### Blunders (-3)

- B1 Correct answer but no work shown  $(\mathscr{L})$
- B2 Error in decimal point
- B3 Conversion error once only
- B4 Error in using S/D/T formula
- B5 Mathematical error

### Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Answer not in required or simplified form

### Attempts (3 marks)

- A1 Correct expression for S/D/T and stops
- A2 Any correct conversion and stops

### Worthless (0)

| Part<br>Part |                                                                                                                                                                                                                                                                                                           | Att (5,3)<br>Att 5 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Ŕ            | 1981 the population of Peru was approximately $1 \cdot 8 \times 10^7$ .<br>7 1988 the population had increased by $2 \cdot 5$ million.<br>8 hat would be the approximate population of Peru in 1988?<br>9 press your answer in the form $a \times 10^n$ , where $n \in \mathbb{Z}$ and $1 \le a \le 10$ . |                    |

| b(i) |                                                       | 15 marks |                            | Att 5 |
|------|-------------------------------------------------------|----------|----------------------------|-------|
|      | $1 \cdot 8 \times 10^7 = 18.0 \times 10^6$ (millions) | or 1.    | $8 \times 10^7 = 18000000$ |       |
|      | Increase = $2 \cdot 5 \times 10^6$                    | 2.       | 5 million =2500000         |       |
|      | 1988: $18.0 \times 10^6 + 2.5 \times 10^6$            | 1988:    | 18000000 + 2500000         |       |
|      | 1988: $2 \cdot 05 \times 10^7$                        | 1988:    | 20500000                   |       |
|      |                                                       | 1988:    | $2.05 \times 10^{7}$       |       |

- B1 Correct answer but no work shown  $(\mathscr{L})$
- B2 Error in decimal point
- B3 Incorrect operation e.g. subtracts instead of adding
- B4 Only work shown 2.5 (millions) +  $1.8 \times 10^7 = 4.3 \times 10^7$

### Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Answer not in required or simplified form

### Misreadings (-1)

M1 1.8 taken as 2 and / or 2.5 taken as 3 and proceeds correctly to get  $2.3 \times 10^7$  with work shown

Attempts (5 marks) A1 States 1 million  $=10^6$ 

### Worthless (0)

| Part (b) (ii)           |                             | 10 marks            | Att 3      |  |  |  |
|-------------------------|-----------------------------|---------------------|------------|--|--|--|
| <ul> <li>(ii)</li></ul> |                             |                     |            |  |  |  |
| (b) (ii)                |                             | 10 marks            | Att 3      |  |  |  |
| (ii) Method I<br>Start  | = 12.000                    | = 12000             |            |  |  |  |
| Loss min                |                             | = 24                |            |  |  |  |
| After 1 m               |                             | = 11976             |            |  |  |  |
| Loss min                |                             |                     | 952        |  |  |  |
| After 2 m               |                             | = 11952.            |            |  |  |  |
| Loss min                | 3 = 0.023904                | = 23.               | 904        |  |  |  |
| After 3 m               | nins = 11.928144            | = 11928.            | 144        |  |  |  |
|                         | = 11.93                     | = 11928.            | 14         |  |  |  |
| Method I                |                             | 12000               |            |  |  |  |
| Start                   | •••                         | or $= 12000$        |            |  |  |  |
| After 1 m               |                             | $= 12000 \times$    | 0.998      |  |  |  |
|                         | = 11.976                    | = 11976             |            |  |  |  |
| After 2 m               | $\min = 11.976 \times 0.99$ | $98 = 11976 \times$ | 0.998      |  |  |  |
|                         | = 11.952048                 | $= 11952 \cdot 0$   | 48         |  |  |  |
| After 3 m               | $nins = 11.952048 \times$   | 0.998 = 11952.0     | 048 ×0·998 |  |  |  |
|                         | = 11.9281439                | $= 11928 \cdot 14$  | 439        |  |  |  |
|                         | = 11.93                     | $= 11928 \cdot 14$  | 4          |  |  |  |
| * Accept 1              | l · 93 kg or 11928 · 14 g   |                     |            |  |  |  |

Accept  $11 \cdot 93$  kg or  $11928 \cdot 14$  g

\* Candidates may offer other correct versions- e.g. Compound Interest depreciation formula

Blunders (-3)

- B1 Correct answer but no work shown  $(\mathscr{L})$
- B2 Error in decimal point
- Ignores cumulative loss of mass **B3**

Slips (-1)

- **S**1 Numerical errors to max of 3
- Fails to round off or incorrect rounding or, early rounding off, which affects answer S2
- Incorrect operation e.g. Adds instead of subtracting S3
- Each minute omitted e.g. stops after 2 minutes. Note: Stops after 1 minutes merits 2 S4 slips
- S5 Consistent error in percentage e.g. uses incorrect % or 0.98 method II
- Attempts (3 marks)
- Mentions 0.998 or 99.8% and stops A1

*Worthless* (0)

| <b>Part</b><br>(c) (i) |                                                                                                                                                                                         | Att (3,2)<br>Att 3 |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| (i)                    | 🖉 Simplify                                                                                                                                                                              |                    |
|                        | $\frac{2^5 \times 8^{\frac{2}{3}}}{64^{\frac{1}{2}} \times 4^2}.$                                                                                                                       |                    |
|                        | Give your answer in the form $2^n$ , where $n \in \mathbb{N}$ .                                                                                                                         |                    |
| c(i)                   | 10 marks                                                                                                                                                                                | Att3               |
| (i)                    | $\frac{2^5 \times 8^{\frac{2}{3}}}{64^{\frac{1}{2}} \times 4^2} = \frac{2^5 \times (8^{\frac{1}{3}})^2}{8 \times 16} = \frac{2^5 \times (2^2)}{2^3 \times 2^4} = \frac{2^7}{2^7} = 2^0$ |                    |
| or                     | $\frac{2^5 \times 8^{\frac{2}{3}}}{64^{\frac{1}{2}} \times 4^2} = \frac{32 \times 4}{8 \times 16} = \frac{128}{128} = 1 = 2^0$                                                          |                    |
|                        | Tith work $\frac{128}{128}$ or $\frac{2^5 \times 2^2}{2^3 \times 2^4}$ and stops merits 6 marks, 1 or $\frac{2^7}{2^7}$ and stops merits 9 <i>ders (-3)</i>                             |                    |
| B1<br>B2<br>B3         | Correct answer but no work shown ( <i>Æ</i> )<br>Error in decimal point<br>Index error once only                                                                                        |                    |
| Sling                  | (-1)                                                                                                                                                                                    |                    |

Slips (-1)

- S1 Numerical errors to max of 3
- S2 Answer not in required or simplified form

### Attempts (3 marks)

- A1 Any correct calculation/re-write in index or decimal form shown and stops
- A2 Correctly states a rule for indices

### Worthless (0)

| (c)(ii)         | 5 marks                                                                                                                                                                           | Att 2 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (ii) <i>K</i>   | Simplify $(\sqrt{6} - 2\sqrt{3})(5\sqrt{3} - 3\sqrt{6})$ ,<br>without the use of a calculator.<br>Express your answer in the form $a\sqrt{2} + b$ , where $a, b \in \mathbb{Z}$ . |       |
| (c)(ii)<br>(ii) | 5 marks                                                                                                                                                                           | Att 2 |

$$(\sqrt{6} - 2\sqrt{3})(5\sqrt{3} - 3\sqrt{6}) = \sqrt{6}(5\sqrt{3} - 3\sqrt{6}) - 2\sqrt{3}(5\sqrt{3} - 3\sqrt{6})$$
$$= 5\sqrt{18} - 3\sqrt{36} - 10\sqrt{9} + 6\sqrt{18}$$
$$= 5.3\sqrt{2} - 18 - 30 + 6.3\sqrt{2}$$
$$= 15\sqrt{2} - 48 + 18\sqrt{2}$$
$$= 33\sqrt{2} - 48 \text{ or } -48 + 33\sqrt{2}$$

- B1 Correct answer but no work shown  $(\mathscr{L})$
- B2 Distribution error once only
- B3 Sign error
- B4 Error in handling surds

### Slips (-1)

- S1 Numerical errors to max of 3
- S2 Answer not in required or simplified form

Attempts (2 marks)

A1 Any attempt at handling surds

### Worthless (0)

- W1  $\sqrt{6} = 2.449$  and/or  $\sqrt{3} = 1.7320$  without any relevant work
- W2 -1.3309 without any relevant work

# **QUESTION 2**

| Part (a) | 15 marks | Att 5 |
|----------|----------|-------|
| Part (b) | 15 marks | Att 5 |
| Part (c) | 20 marks | Att 6 |

| Part | : (a) | 15 marks                                                                                                                                                                    | Att 5 |
|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (a)  | Ľ     | An auctioneer sells a house for $\notin 830,000$ . The auctioneer's fee is 1.5% on the first $\notin 500,000$ and 2.5% on the remainder.<br>Calculate the auctioneer's fee. |       |

| (a) |                       |   | 15 marks | Att 5 |
|-----|-----------------------|---|----------|-------|
| (a) |                       |   |          |       |
|     | €830,000 - €500,000 = | = | €330,000 |       |
|     | 1.5% of €500,000 =    | = | €7500    |       |
|     | 2.5% of €330,000 =    | = | €8250    |       |
|     | - 1 A                 | = | €15,750  |       |

### Blunders (-3)

- B1 Correct answer but no work shown  $(\cancel{K})$
- B2 Error in decimal point
- B3 1.5 % of incorrect figure
- B4 2.5 % of incorrect figure if not consistent with B3
- B5 Mathematical error e.g. divides to find % or incorrect fraction for % each time if not consistent

#### Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Does not total auctioneer's fee

#### Attempts (5 marks)

- A1 Finds €330,000 and stops
- A2 Finds 1.5% or 2.5% of some relevant figure and stops -with work

### Worthless (0)

| Part (b)<br>Part (b) (i) |                                                                                                                                                                      |  | (10, 5) marks<br>10 marks |       |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------|-------|--|
| (b)                      | (b) (i) $\swarrow$ By putting the smallest number first, place the following numbers<br>in order: $\frac{10}{7}$ , $\sqrt{2}$ , $\frac{7}{2\sqrt{6}}$ , $(1.19)^2$ . |  |                           |       |  |
| <b>b(i)</b> (i)          |                                                                                                                                                                      |  | 10 marks                  | Att 3 |  |

| $\frac{10}{7} = 1.428571$ | $\sqrt{2} = 1 \cdot 4142$ | $\frac{7}{2\sqrt{6}}$ | $= \frac{7\sqrt{6}}{12} = 1.42$ | 886 $(1 \cdot 19)^2 = 1 \cdot 4161$ |
|---------------------------|---------------------------|-----------------------|---------------------------------|-------------------------------------|
|                           | $\sqrt{2}$ ,              | (1.19) <sup>2</sup> , | $\frac{10}{7}$ ,                | $\frac{7}{2\sqrt{6}}$               |
|                           | b                         | b                     | b                               | b                                   |
|                           | (1.41421)                 | (1.4161)              | (1.428571)                      | (1.42886)                           |
|                           | Α                         | В                     | С                               | D                                   |
|                           |                           |                       |                                 |                                     |

\* Accept decimal equivalents

\* Accept candidates values when arranging

Blunders (-3)

- B1 Correct answer but no work shown  $(\mathscr{L})$
- B2 Error in decimal point if affects answer

B3 Mathematical error, e.g.  $\frac{7}{2\sqrt{6}}$  as  $3 \cdot 5 (\sqrt{6})$ , if affects answer

B4 No order or incorrect order, but see S2

#### Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Reverses order

#### Attempts (3 marks)

A1 Finds decimal form of any of the given numbers and stops

| b(ii) |   | 5 marks                                                                                                           | Att 2 |
|-------|---|-------------------------------------------------------------------------------------------------------------------|-------|
| (ii)  | Ŕ | What sum of money invested at 2% per annum compound interest would produce interest of €306.04 after three years? |       |
| b(ii) |   | 5 marks                                                                                                           | Att 2 |

| Let P =100%                                      |                                                      |
|--------------------------------------------------|------------------------------------------------------|
| P year 1 =100                                    | P year $1 = x$                                       |
| I year $1 = 2$                                   | I year $1 = 0 \cdot 02x$                             |
| P year $2 = 102$                                 | P year $2 = 1 \cdot 02x$                             |
| I year $2 = 2 \cdot 04$                          | I year $2 = 0.0204x$                                 |
| P year $3 = 104 \cdot 04$                        | $P \text{ year } 3 = 1 \cdot 0404x$                  |
| I year $3 = 2.0808$                              | I year $3 = 0.020808x$                               |
| Amount = $106 \cdot 1208$                        | Amount = $1 \cdot 061208x$                           |
| I for 3 years = $6.1208\%$                       | I for 3 years = $0.061208x$                          |
| 6.1208%=€306.04                                  | 0·061208 <i>x</i> =€306·04                           |
| $1\% = \frac{€306 \cdot 04}{6 \cdot 1208} = €50$ | $x = \frac{\text{€306.04}}{0.061208} = \text{€5000}$ |
| 100% = €5000                                     |                                                      |

\* Candidates may use other correct methods

\* Candidates may use other starting figures e.g. €1000

Blunders (-3)

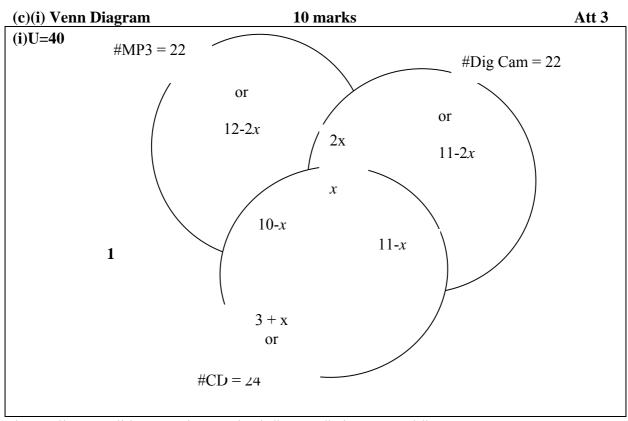
- B1 Correct answer but no work shown  $(\mathscr{L})$
- B2 Error in decimal point
- B3 Each year omitted e.g. works on 2 years.

### Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Rounding off which affects answer once only
- S3 Mathematical error when solving for *x*

#### Misreading (-1)

M1 Treats €306.04 as amount for 3 years (€288.39) or as interest for year 3 (€14 707.80) or P for year 1 (€324.77)


### Attempts (2 marks)

- A1 Let  $\notin 306.04 = 6\%$  and continues to find 100%
- A2 Ignores cumulating /compounding interest

#### Worthless (0)

| Part | 20 (10,5,5) marks         Att (3,2,2)                                                                                                                                                                                                                                                                                                                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c)  | A survey of 40 students was carried out to find how many owned an MP3 player, a digital camera or a CD player.<br>1 student does not own any of these.<br><i>x</i> students own all three, while 2 <i>x</i> own an MP3 player and a digital camera but not a CD player.<br>10 own an MP3 player and a CD player, while 11 own a digital camera and a CD |
|      | player.<br>22 own an MP3 player, 22 own a digital camera and 24 own a CD player.                                                                                                                                                                                                                                                                        |
|      | (i) $\swarrow$ Construct a Venn diagram and solve for <i>x</i> .                                                                                                                                                                                                                                                                                        |

(ii)  $\measuredangle$  Hence, calculate the percentage of students who own one item only.



\* Follow candidates work Check #MP3, #Dig Cam and #CD *Slip* (-1)

S1 Each missing or incorrect entry from the Venn diagram above; #U not required

Attempts (3 marks)

A1 Any single entry correct

- A2 Draws 3 intersecting circles and stops
- A3 No use of *x* in Venn diagram

| (c)(i)    |                                      | 5 marks              | Att 2 |
|-----------|--------------------------------------|----------------------|-------|
| (i) Z     | Construct a Venn diagram and         | solve for <i>x</i> . |       |
| c(i) Find | ling x                               | 5 marks              | Att 2 |
| Finding   | x                                    |                      |       |
| (i)       | 1 + 24 + 12 - 2x + 2x + 11 - 2x = 40 |                      |       |
|           | 48-2x = 40                           |                      |       |
|           | 2x = 8                               |                      |       |
|           | x = 4                                |                      |       |
|           |                                      |                      |       |
| * Fo      | llow candidate's work                |                      |       |

B1 Correct answer but no work shown  $(\mathscr{L})$ 

### Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Each transposing error to a maximum of 3
- S3 Each missing or incorrect entry from equation

### Attempts (2 marks)

A1 Any correct entry in the equation e.g. has .....=40

Worthless (0)

c (ii)

### 5 marks

Att 2

| • (   |                                                             |                                                               |       |
|-------|-------------------------------------------------------------|---------------------------------------------------------------|-------|
|       | (ii) 🗷 Hence, calculate the per                             | centage of students who own one item only                     |       |
| c (ii | )                                                           | 5 marks                                                       | Att 2 |
| (ii)  | 12-2x + 11- 2x + x + 3 = 26 - 3x  or<br>x = 4<br>26-12 = 14 | 12-2x = 12-8 = 4<br>11-2x = 11-8 = 3<br>x+3 = 7<br>4+3+7 = 14 |       |
| %     | $\frac{14}{40} \times 100 = 35\%$                           |                                                               |       |

Accept candidate's work from (i)

Blunders (-3)

\*

- B1 Correct answer but no work shown  $(\mathscr{L})$
- B2 Error in decimal point
- B3 Mathematical error

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Fails to find percentage, stops at 14
- S3 Finds % of incorrect figure or error in finding %

Misreading (-1)

M1 Finds % who own two items

### Attempts (2 marks)

A1 Finds % who own three items

Worthless (0)

|                      | <b>QUESTION 3</b>                                                                                                                                                                                                                                           |                |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Part (a)<br>Part (b) | 15 marks<br>20 marks                                                                                                                                                                                                                                        | Att 5<br>Att 7 |
| Part (c)             | 15 marks                                                                                                                                                                                                                                                    | Att 6          |
| Part (a)             | 15 marks                                                                                                                                                                                                                                                    | Att 5          |
| (a) 🖉                | Solve $\frac{3-2m}{5} = 3$ , where $m \in \mathbb{Z}$ .                                                                                                                                                                                                     |                |
| (a)                  | 15 marks                                                                                                                                                                                                                                                    | Att 5          |
| (a)<br>I             | $\frac{3-2m}{5} = 3$ $3-2m = 15$ $-2m = 15 - 3$ $m = -6$ $\frac{3}{5} - \frac{2m}{5} = 3$ $-\frac{2m}{5} = 3 - \frac{3}{5}$ $-\frac{2m}{5} = 3 - \frac{3}{5}$ $-\frac{2m}{5} = 2\frac{2}{5} = \frac{12}{5}$ $m = \frac{12}{5} \times -\frac{5}{2}$ $m = -6$ |                |

\* Accept verification as work

Blunders (-3)

- B2 Mathematical error
- B3 Sign error

### Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Answer not simplified or in required form
- S3 Each transposing error to a maximum of 3

### Attempts (5 marks)

A1 Trial and error but correct solution not found

### Worthless (0)

| <b>(b)</b> | (i) |          | 5 marks                  | Att 2 |
|------------|-----|----------|--------------------------|-------|
| (i)        | Ŕ   | Simplify | $2^{2} + 4^{2} = 20$     |       |
|            |     |          | $\frac{2x^2+4x-30}{x-3}$ |       |

| (b) ( | (i) | 5 marks                                                                                                                        | Att 2 |
|-------|-----|--------------------------------------------------------------------------------------------------------------------------------|-------|
| (i)   | I   | $\frac{2x^2 + 4x - 30}{x - 3} = \frac{2(x^2 + 2x - 15)}{x - 3} \text{ or } \frac{2(x + 5)(x - 3)}{x - 3} \text{ or } 2(x + 5)$ |       |
|       | II  | $\frac{2x^2 + 4x - 30}{x - 3} = \frac{(2x + 10)(x - 3)}{x - 3} \text{ or } 2x + 10$                                            |       |
|       | II  | $x-3)\frac{2x+10}{2x^{2}+4x-30}$ $\frac{2x^{2}-6x}{+10x-30}$ $\frac{10x-30}{0}$                                                |       |
| *     | A   | ccept $2x+10$ or $2(x+5)$ with work                                                                                            |       |

Accept 2x+10 or 2(x+5) with work

Blunders (-3)

Correct answer, but no work shown  $(\mathscr{L})$ B1

Incorrect other factor of  $2x^2 + 4x - 30$ B2

Error when dividing. B3

Note: If uses formula for solving a quadratic equation, apply blunders (-3) as in part b(ii)

Misreadings (-1) M1  $x^2 + 2x - 15$  and continues

Attempts (2 marks)

- A1 Some effort at factorising
- A2 Sets up division
- Multiplies numerator by denominator A3
- Any one entry correct A4

Worthless (0)

| (ii) $\bigotimes$ Solve $3x^2 + 9x + 10 = (2)$<br>one decimal place. | $(2x+2)^2 - 1$ and give your an            | nswers correct to                                  |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|--|--|--|--|
| Forming Quadratic Solving Quadratic                                  |                                            |                                                    |  |  |  |  |
| 5 marks Att 2                                                        | 10 marks                                   | Att 3                                              |  |  |  |  |
| (ii)                                                                 |                                            |                                                    |  |  |  |  |
| $3x^2 + 9x + 10 = (2x + 2)^2 - 1$                                    | $\frac{-b\pm\sqrt{b^2-4ac}}{2}$            |                                                    |  |  |  |  |
| $3x^2 + 9x + 10 = 4x^2 + 8x + 4 - 1$                                 | 2 <i>a</i>                                 |                                                    |  |  |  |  |
| $-x^2 + x + 7 = 0$ 5 marks                                           | a=1 $b=-1$                                 |                                                    |  |  |  |  |
| $x^2 - x - 7 = 0$                                                    | $-(-1)\pm\sqrt{(-1)^2}-$                   | $\frac{4(1)(-7)}{2} = \frac{1 \pm \sqrt{1+28}}{2}$ |  |  |  |  |
| x x /=0                                                              | 2(1)                                       | 2                                                  |  |  |  |  |
|                                                                      | $=\frac{1\pm\sqrt{29}}{2}=\frac{1\pm5}{2}$ | · 385                                              |  |  |  |  |
|                                                                      | $=\frac{1}{2}=\frac{1}{2}$                 | 2                                                  |  |  |  |  |
|                                                                      | $x = \frac{1 + 5 \cdot 385}{2}$            | or $x = \frac{1 - 5 \cdot 385}{2}$                 |  |  |  |  |
|                                                                      | $x = \frac{6 \cdot 385}{2}$                | $x = \frac{-4 \cdot 385}{2}$                       |  |  |  |  |
|                                                                      | $x = 3 \cdot 19$                           | $x = -2 \cdot 19$                                  |  |  |  |  |
|                                                                      | $x = 3 \cdot 2$                            | $x = -2 \cdot 2$                                   |  |  |  |  |

- B1 Correct answer, but no work shown  $(\mathscr{L})$
- B2 Error in squaring
- B3 Error in substitution once only
- B4 Error in quadratic formula once only
- B5 Error when applying quadratic formula once only
- B6 Correctly filled in formula and stops

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Fails to round off or rounds off incorrectly once only
- S3 Each transposing error to a maximum of 3

### Misreadings (-1)

M1 Omits -1

### Attempts (2 and/or 3 marks)

- A1 Correct formula or identifies a, b or c correctly and stops
- A2 Has simplified equation to linear and solves correctly for single value of x -max att 3

### Worthless (0)

| (c)                                                                                         | (i)                | Ø              | Solve the equation $3a^2 + 5a = 2$ .                                                                                                       |       |
|---------------------------------------------------------------------------------------------|--------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                             | (ii)               | Ľ              | Hence, or otherwise, find the two values of $t \in \mathbf{R}$ for which<br>$3\left(\frac{1}{t}\right)^2 + 5\left(\frac{1}{t}\right) = 2.$ |       |
|                                                                                             | (iii)              | Ŕ              | Verify your values for <i>t</i> from part (ii), above.                                                                                     |       |
| <b>c</b> (i)                                                                                |                    |                | 5 marks                                                                                                                                    | Att 2 |
| (i) <i>K</i>                                                                                | Solv               | e the e        | equation $3a^2 + 5a = 2$ .                                                                                                                 |       |
| (i)<br>$3a^{2} + 5a =$<br>$3a^{2} + 5a -$<br>(3a - 1)(a)<br>3a - 1 = 0<br>$a = \frac{1}{3}$ | (-2 = 0)<br>(+2) = | <i>i</i> + 2 = | 3a + 5a - 2 GN =-6                                                                                                                         |       |

\* If candidates uses formula apply slips and blunders as per b(ii) *Blunders* (-3)

- B1 Correct answer, but no work shown  $(\mathscr{L})$
- B2 Mathematical errors
- B3 Incorrect factors
- B4 Incorrect roots from factors
- B5 Only finds one solution

#### Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Each transposing error to a maximum of 3

#### Attempts (2 marks)

- A1 Correct formula or identifies a, b or c correctly and stops
- A2 Linear equation and solves correctly for single value of *a* -max att 2
- A3 Any attempt ay factorising

#### Worthless (0)

| c(ii)                                         |                                                                               | 5 marks                                                                                                                                          | Att 2 |
|-----------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (ii) 🗷 Hence                                  | e, or otherwise, find the                                                     | two values of $t \in \mathbf{R}$ for which                                                                                                       |       |
|                                               | $3\left(\frac{1}{t}\right)^2 + 5\left(\frac{1}{t}\right) =$                   | 2.                                                                                                                                               |       |
| c(ii)                                         |                                                                               | 5 marks                                                                                                                                          | Att 2 |
| (ii) Me                                       | thod I                                                                        | Method II                                                                                                                                        |       |
| $3\left(\frac{1}{t}\right)^2 + 5$ <b>From</b> | $5\left(\frac{1}{t}\right) = 2.$<br>$\mathbf{c(i)}$<br>$\frac{1}{t} \equiv a$ | $3\left(\frac{1}{t}\right)^2 + 5\left(\frac{1}{t}\right) = 2.$<br>$\frac{3}{t^2} + \frac{5}{t} - 2 = 0 \qquad \times t^2$<br>$3 + 5t - 2t^2 = 0$ |       |
| $\frac{1}{t} = \frac{1}{3}$                   | or $\frac{1}{t} = -2$                                                         | $2t^{2} - 5t - 3 = 0$ $(2t + 1)(t - 3) = 0$                                                                                                      |       |
| <i>t</i> = 3                                  | $\mathbf{or} \qquad t = -\frac{1}{2}$                                         | $t = -\frac{1}{2}  \text{or}  t = 3$                                                                                                             |       |

\* Accept candidate's answers from part (i)

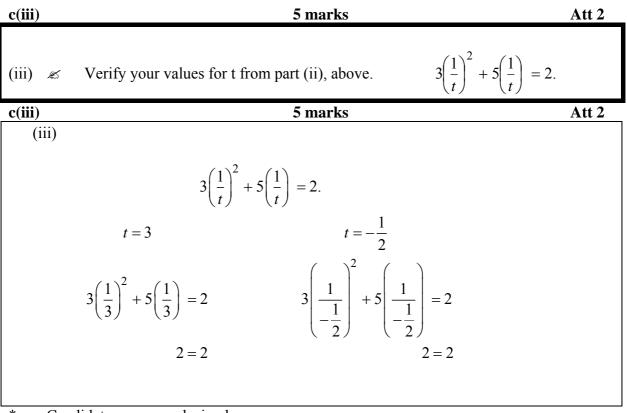
\* If candidate uses Method II apply slips and blunders as per previous sections *Blunders (-3)* 

B1 Correct answer, but no work shown  $(\mathscr{A})$ 

B2 Mathematical /sign errors

B3 Only finds one solution. Note if part (i) linear possible to gain 2 marks

### Slips (-1)


S1 Numerical errors to a max of 3

S2 Each transposing error to a maximum of 3

Attempts (2 marks)

A1 States  $a = \frac{1}{t}$  and stops

Worthless (0)



\* Candidates may use decimals

\* Allow candidate's values from previous section, see B3

### Blunders (-3)

- B1 Correct answer, but no work shown (🖉)
- B2 Only tests one value
- B3 Incorrect conclusion(s) for candidate's values

### Attempts (2 marks)

A1 Substitutes for one and/or two values and stops

|                                                                                                                                                                                                  | <b>QUESTION 4</b>                                                                                                                                                     |                                                                                                                                                                                                                          |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Part (a)<br>Part (b)<br>Part (c)                                                                                                                                                                 | 15 marks<br>25 marks<br>10 marks                                                                                                                                      |                                                                                                                                                                                                                          | Att 5<br>Att 9<br>Att 4 |
| Part (a)                                                                                                                                                                                         | <b>15 marks</b><br>3 4                                                                                                                                                |                                                                                                                                                                                                                          | Att 5                   |
| (a) $\swarrow$ When $x = \frac{1}{3}$                                                                                                                                                            | , find the value of $\frac{3}{x+1} + \frac{4}{x+5}$ .                                                                                                                 |                                                                                                                                                                                                                          |                         |
| (a)                                                                                                                                                                                              | 15 marks                                                                                                                                                              |                                                                                                                                                                                                                          | Att 5                   |
| Ι                                                                                                                                                                                                | II                                                                                                                                                                    | III                                                                                                                                                                                                                      |                         |
| $\frac{3}{x+1} + \frac{4}{x+5}$ $= \frac{3}{\frac{1}{3}+1} + \frac{4}{\frac{1}{3}+5}$ $= \frac{3}{\frac{4}{3}} + \frac{4}{\frac{16}{3}}$ $= \frac{9}{4} + \frac{12}{16}$ $= \frac{48}{16}$ $= 3$ | $\frac{3}{x+1} + \frac{4}{x+5}$ $\frac{1}{3} = 0.333 = 0.3$ $\frac{3}{0.333+1} + \frac{4}{0.333+5}$ $= \frac{3}{1.333} + \frac{4}{5.333}$ $= 2.250 + 0.7500$ $= 3.00$ | $\frac{3}{x+1} + \frac{4}{x+5}$ $= \frac{3(x+5) + 4(x+1)}{(x+1)(x+5)}$ $= \frac{7x+19}{(x+1)(x+5)}$ $= \frac{7(\frac{1}{3}) + 19}{(\frac{1}{3}+1)(\frac{1}{3}+5)}$ $= \frac{\frac{64}{3}}{\frac{64}{9}}$ $= \frac{9}{3}$ |                         |
|                                                                                                                                                                                                  |                                                                                                                                                                       | = 3                                                                                                                                                                                                                      |                         |

- B1 Correct answer but no work shown  $(\mathscr{L})$
- B2 Each different error when working with fractions
- B3 Decimal error each time Method II
- B4 Each different algebraic error Method III
- B5 Substitutes into expression and stops. Max loss after substitution is 3 marks

*Slips* (-1)

S1 Numerical errors to a max of 3

#### Attempts (3 marks)

A1 Finds Common Denominator and stops

A2 Equation  $\frac{3}{x+1} + \frac{4}{x+5} = \frac{1}{3}$  plus some correct step

Worthless (0)

| Part (b)<br>b(i) | (20,5) marks<br>20 marks                           | Att (7,2)<br>Att 7 |
|------------------|----------------------------------------------------|--------------------|
| (i) 🖉            | Factorise $6c + 12bd - 8d - 9bc$ .                 |                    |
| b(i)             | 20 marks                                           | Att 7              |
| (b) (i)          |                                                    |                    |
|                  | 6c + 12bd - 8d - 9bc                               |                    |
|                  | = 6c - 9bc - 8d + 12bd or $= 6c - 8d - 9bc + 12bd$ |                    |
|                  | = 3c(2-3b) - 4d(2-3b) = 2(3c-4d) - 3b(3c-4d)       |                    |
|                  | = (2-3b)(3c-4d) = (3c-4d)(2-3b)                    |                    |
| * Can            | didates may offer other correct versions           |                    |

Candidates may offer other correct versions

### Blunders (-3)

- B1 Correct answer, but no work shown  $(\mathbb{A})$ .
- B2 Error in sign when factorising and/or regrouping
- B3 Stops at 3c(2-3b)-4d(2-3b) or similar
- Answer givens as (2-3b)+(3c-4d) but (2-3b) and (3c-4d) merits full marks B4
- B5 Error in factors 3c(2-3b)+4d(3b-2) given as (2-3b)(3c+4d) or similar

### Attempts (7 marks)

- Any partial factorising and stops e.g. 6(c+2d)-8d-9bc A1
- A2 Any partial re-grouping and stops

Worthless (0)

| b(ii) | 5 marks                                                                       | Att 2 |
|-------|-------------------------------------------------------------------------------|-------|
| (ii)  | 🗷 Simplify                                                                    |       |
|       | (7x-2)(7x+2) - (5y-2)(5y+2)<br>and fully factorise the simplified expression. |       |
| b(ii) | 5 marks                                                                       | Att 2 |
| (ii)  |                                                                               |       |
|       | (7x - 2)(7x + 2) - (5y - 2)(5y + 2)                                           |       |
|       | $=49x^2 - 4 - [25y^2 - 4]$                                                    |       |
|       | $=49x^2 - 4 - 25y^2 + 4$                                                      |       |
|       | $=49x^2-25y^2$                                                                |       |
|       | =(7x-5y)(7x+5y)                                                               |       |

- B1 Correct answer, but no work shown  $(\mathbb{A})$ .
- B2 Distribution error
- B3 Sign error

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Does not factorise

### Attempts (2 marks)

A1 Any effort at multiplying out the brackets

### Worthless (0)

| Par  | t ( | $(\mathbf{c})$ |
|------|-----|----------------|
| I ai |     |                |

- (c) The distance from town A to town B is half the distance from town B to town C. The total journey from town A to town C, through town B, is 60 km. A car travels at *x* km/h from town A to town B. It increases its speed by 20 km/h on the journey from town B to town C. The total time for the journey is 50 minutes.
- $\swarrow$  Find the value of *x*.

| $A \longleftrightarrow B \longleftrightarrow C$              |   |                |                   |         |
|--------------------------------------------------------------|---|----------------|-------------------|---------|
| D 2D                                                         |   |                |                   |         |
| 3D=60                                                        |   | ,              | Table             |         |
| D=20                                                         |   | A→B            | В→С               | Marks   |
| A to $B = 20 \text{ km}$ B to $C = 40 \text{ km}$ I          | D | 20             | 40                | 5 I     |
| 20                                                           | S | x              | x+20              | or 5 II |
| Time from A to B = $\frac{20}{100}$                          | Т | 20             | 40                |         |
|                                                              |   | $\overline{x}$ | $\overline{x+20}$ |         |
| Time from B to C $\frac{40}{1+20}$                           |   |                |                   |         |
| x+20                                                         |   |                |                   |         |
|                                                              |   |                |                   |         |
| $\frac{20}{40} + \frac{40}{50} = \frac{50}{5} = \frac{5}{5}$ |   |                |                   |         |
| x + x + 20 = 60 = 6                                          |   |                |                   |         |
| 20(6)(x+20) + 40(6)(x) = 5(x)(x+20)                          |   |                |                   |         |
| $120x + 2400 + 240x = 5x^2 + 100x$                           |   |                |                   |         |
| $5x^2 - 260x - 2400 = 0$                                     |   |                |                   |         |
| $x^2 - 52x - 480 = 0$ III                                    |   |                |                   |         |
| (x-60)(x+8) = 0 5 Mark                                       | S |                |                   |         |
| x = 60  km/h                                                 |   |                |                   |         |

\* Note Correct Distances (20km and 40km) I or Speeds (*x* and *x*+20) II merits 5 marks Final 5 marks for finishing

Part I

Blunders (-3)

B1 Mathematical error

Slips (-1)

S1 Reverses distances - answer is a decimal in III

Attempts (2 marks)

- A1 Draws a diagram and stops
- A2 States ratios and stops

| Finishing                                                                                                          | 5 marks |   |     |              | A              | tt 2 |
|--------------------------------------------------------------------------------------------------------------------|---------|---|-----|--------------|----------------|------|
| $A \longleftrightarrow B \longleftrightarrow D$                                                                    | С       |   |     |              |                |      |
| D 2D<br>3D=60                                                                                                      |         |   |     | Table        |                |      |
| D=20 A to B =20 km B to C = 40 km I                                                                                |         |   | A→B | В→С          | Marks          |      |
| $\mathbf{A} \text{ to } \mathbf{D} = 20 \text{ km}  \mathbf{D} \text{ to } \mathbf{C} = 40 \text{ km}  \mathbf{I}$ |         | D | 20  | 40           | 5 I            |      |
| 20                                                                                                                 |         | S | x   | x+20         | <i>or</i> 5 II |      |
| Time from A to B = $\frac{20}{r}$                                                                                  |         | Т | 20  | 40           |                |      |
|                                                                                                                    |         |   | x   | <i>x</i> +20 |                |      |
| Time from B to C $\frac{40}{x+20}$                                                                                 |         |   |     |              |                |      |
| $\frac{20}{x} + \frac{40}{x+20} = \frac{50}{60} = \frac{5}{6}$ $20(6)(x+20) + 40(6)(x) = 5(x)(x+20)$               |         |   |     |              |                |      |
| $120x + 2400 + 240x = 5x^2 + 100x$                                                                                 |         |   |     |              |                |      |
| $5x^2 - 260x - 2400 = 0$                                                                                           |         |   |     |              |                |      |
| $x^2 - 52x - 480 = 0$                                                                                              | III     |   |     |              |                |      |
| (x-60)(x+8) = 0                                                                                                    | 5 Marks |   |     |              |                |      |
| x = 60  km/h                                                                                                       |         |   |     |              |                |      |

- B1 Correct answer, but no work shown  $(\not a )$ . (III)
- B2 Incorrect S/D/T relationship once only
- B3 Subtracts instead of adding 20km/h (II)
- B4 Sign error in setting up equation
- B5 Error when solving equation

Slips (-1)

S1 Numerical errors to a max of 3

Misreadings (-1)

M1 Expression not equal to 50/60 - conversion error

Attempts (2 and/ or 2)

- A1 S/D/T relationship and stops -2 marks (II)
- A2 x+20 and stops -2 marks (II) Note work at II can only merit A1 or A2
- A3 Any effort at forming an equation (III)

# **QUESTION 5**

|          | <b>V</b> ersition e                                                                  |       |
|----------|--------------------------------------------------------------------------------------|-------|
| Part (a) | 5 marks                                                                              | Att 2 |
| Part (b) | 25 marks                                                                             | Att 9 |
| Part (c) | 20 marks                                                                             | Att 7 |
| Part (a) | 5 marks                                                                              | Att 2 |
| (a) 🖄    | Graph on the number line the solution set of<br>$-98 \leq 10-12x, x \in \mathbb{N}.$ |       |
| (a)      | 5 marks                                                                              | Att 2 |
|          | -98 < 10 - 12x $-98 < 10 - 12x$                                                      |       |

|   | $-98 \le 10 - 12x$<br>$-98 - 10 \le -12x$<br>$-108 \le -12x$<br>$9 \ge x$ |       |            |         | $-98 \le 10 - 12x$<br>$12x \le 10 + 98$<br>$x \le 9$ |             |  |   |   |   |   |    |  |  |
|---|---------------------------------------------------------------------------|-------|------------|---------|------------------------------------------------------|-------------|--|---|---|---|---|----|--|--|
|   |                                                                           | <br>0 | <b>e</b> 1 | <br>2   | 3                                                    | 4           |  | 6 |   | 8 | 9 | 10 |  |  |
| * | -                                                                         | 0     | 1          | <u></u> | 5                                                    | T<br>O of m |  | v | / | 0 | ) | 10 |  |  |

\* Only required to show 0 to 9 of number line *Blunders (-3)* 

B1 Correct answer but no work shown  $(\mathscr{L})$ 

### Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Each transposing error to a maximum of 3
- S3 Solves and/or lists but does not graph on number line

### Attempts (2 marks)

- A1 Tests any value in the inequality and stops
- A2 Draws a number line and stops

### Worthless (0)

| <b>(b</b> ) |               | 25 (20,5) marks                                                                   | Att (7,2) |
|-------------|---------------|-----------------------------------------------------------------------------------|-----------|
| (b)         | (i)           | Let f be the function $f: x \to 2x^2 - 4x + 5$ .                                  |           |
|             |               | $\swarrow$ Draw the graph of <i>f</i> for $-2 \le x \le 4$ , $x \in \mathbf{R}$ . |           |
|             | ( <b>ii</b> ) | $\swarrow$ Use your graph to find the values of <i>x</i> for which $f(x) = 7$ .   |           |
| b(i)        |               | 20 marks                                                                          | Att 7     |
|             |               | $f(x) = 2x^2 - 4x + 5$                                                            |           |
|             |               | $f(-2) = 2(-2)^2 - 4(-2) + 5 = 8 + 8 + 5 = 21$                                    |           |
|             |               | $f(-1) = 2(-1)^2 - 4(-1) + 5 = 2 + 4 + 5 = 11$                                    |           |

| $f(2) = 2(2)^2 - 4(2) + 5 = 8 - 8 + 5 = 5$ |                                                 |    |    |    |    |     |     |  |  |
|--------------------------------------------|-------------------------------------------------|----|----|----|----|-----|-----|--|--|
|                                            | $f(3) = 2(3)^2 - 4(3) + 5 = -18 - 12 + 5 = -11$ |    |    |    |    |     |     |  |  |
|                                            | $f(4) = 2(4)^2 - 4(4) + 5 = 32 - 16 + 5 = 21$   |    |    |    |    |     |     |  |  |
| x                                          | -2                                              | -1 | 0  | 1  | 2  | 3   | 4   |  |  |
| $2x^2$                                     | 8                                               | 2  | 0  | 2  | 8  | 18  | 32  |  |  |
| -4x                                        | 8                                               | 4  | 0  | -4 | -8 | -12 | -16 |  |  |
| +5                                         | +5                                              | +5 | +5 | +5 | +5 | +5  | +5  |  |  |
| f(x)                                       | 21                                              | 11 | 5  | 3  | 5  | 11  | 21  |  |  |

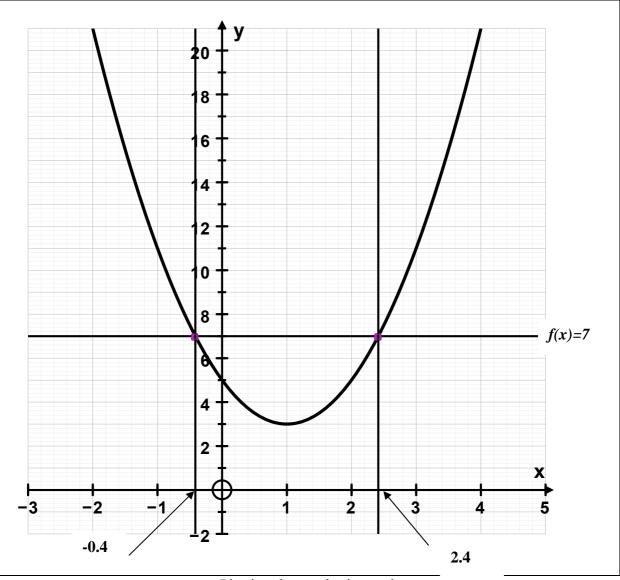
#### Values for quadratic graph

Blunders (-3)

- B1 Each incorrect f(x) without work.
- B2 *x* row added in, i.e. top row, or adds in extra row.
- B3 Treating the domain as -2 < x < 4, can incur 2 Blunders if both omitted.
- B4 Each different blunder which yields an incorrect row (full or part),
- B5 Avoids square for some (not all) values. See Attempts below

 $f(0) = 2(0)^2 - 4(0) + 5 = 0 + 0 + 5 = 5$ 

 $f(1) = 2(1)^2 - 4(1) + 5 = 2 - 4 + 5 = 3$ 


B6 Mathematical errors in tots, - apply once only.

### Slips (-1)

S1 Numerical errors to a max. of 3.

### Attempts (7 marks)

- A1 Omits  $2x^2$  or does not treat as  $2x^2$ , linear expression
- A2 Correct or partly correct table / values, but no graph drawn.



Plotting the quadratic graph

- \* Accept candidate's values from his/her table.
- Note If no values worked out, points on graph must be within tolerance,  $\pm 0.3$ , of where the graph should be, otherwise B4 each time

Blunders (-3)

- B1 Points not joined to form a reasonable graph or 'flat bottom'.
- B2 (x, y) plotted as (y, x), but apply once only, or reverses axes.
- B3 Scale not reasonably uniform once only
- B4 Blunder in plotting points from candidate's table / values.
- B5 Each point omitted if graph does not go reasonably close to where point should be
- B6 Points joined with straight lines.

## Attempts (7 marks)

A1 Scaled axes drawn graded but not labelled

| (b) (ii)   | 5 marks                                                              | Att 2 |  |  |  |  |  |
|------------|----------------------------------------------------------------------|-------|--|--|--|--|--|
| Ŕ          | Use your graph to find the values of <i>x</i> for which $f(x) = 7$ . |       |  |  |  |  |  |
| b(ii)      | 5 marks                                                              | Att 2 |  |  |  |  |  |
| (ii) See g | raph                                                                 |       |  |  |  |  |  |
|            | x = -0.4 and $x = 2.4$                                               |       |  |  |  |  |  |
| *Accept a  | *Accept answer consistent with candidates curve tolerance $\pm 0.3$  |       |  |  |  |  |  |

- B1 No indication on graph, each value
- B2 Indication on graph but no value given or value outside tolerance, each time
- B3 Only finds one value

### Attempts (2 marks)

- A1 Correctly solves f(x) = 7 by formula graph not used
- A2 f(7) found

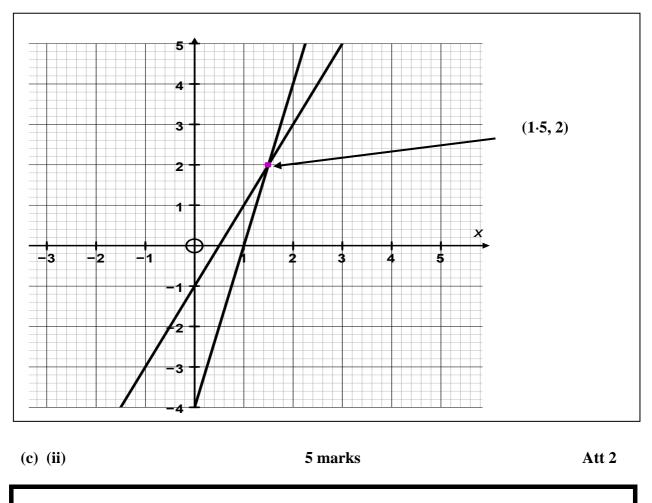
Worthless (0)

| Part (c) |               | 20 (10, 5 , 5) marks Att (3,2                                                                                              | 2,2) |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------|------|
| (c)      | (i)           | Let <i>f</i> be the function $f: x \to 2x - 1$ and <i>g</i> be the function $g: x \to 4x - 4$ .                            |      |
|          | Ø             | Using the same axes and scales, draw the graph of $f$<br>and the graph of $g$ , for $0 \le x \le 2$ , $x \in \mathbf{R}$ . |      |
|          | ( <b>ii</b> ) | From your graphs, write down the co-ordinates of the point of intersection of the two lines.                               |      |
|          | (iii)         | Check your answer to part (ii) by solving the simultaneous equations<br>y = 2x - 1<br>y = 4x - 4.                          |      |

| (c) (i)             |                        |       |       | 10 mark             | Att 3     |                        |        |       |
|---------------------|------------------------|-------|-------|---------------------|-----------|------------------------|--------|-------|
| <i>f</i> ::         | $x \rightarrow 2x - 1$ |       |       |                     | g         | $x \rightarrow 4x - 4$ |        |       |
| f(0) = 2(0)         | )-1=-1 (0,             | 1)    |       |                     | 8         | q(0)=4(0)-4=-4         | 4 (04) |       |
| f(1) = 2(1          | )-1=1 (1,.             | 1)    |       | g(1)=4(1)-4=0 (1,0) |           |                        |        |       |
| f(2)=2(2)-1=3 (2,3) |                        |       |       | g(2)=4(2)-4=4 (2,4) |           |                        |        |       |
| x                   | 0                      | 1     | 2     |                     | x         | 0                      | 1      | 2     |
| 2 <i>x</i>          | 0                      | 2     | 4     |                     | <i>4x</i> | 0                      | 4      | 8     |
| -1                  | -1                     | -1    | -1    |                     | -4        | -4                     | -4     | -4    |
| f(x)                | -1                     | 1     | 3     |                     | g(x)      | -4                     | 0      | 4     |
| Point               | (0,-1)                 | (1,1) | (2,3) |                     |           | (0,-4)                 | (1,0)  | (2,4) |

\* Only two points needed for each function but must have lines within domain Values and plotting for linear graphs

Blunders (-3)


- B1 Each incorrect value without work -once per line
- B2 x row added in, or adds in extra row once if consistent
- B3 Mathematical error in calculation once if consistent
- B4 Points not joined to form lines once only
- B5 (x, y) plotted as (y, x), but apply once only, or reverses axes.
- B6 Scale not reasonably uniform once only
- B7 Each different blunder in plotting points from candidate's table / values.
- B8 Only considers one function
- B9 Lines not extended to include full domain, once only

### Misreading (-1)

M1 Uses separate graphs for f(x) and g(x)

Attempts (3 marks)

- A1 Correct or partially correct tables/values but no graph drawn
- A2 Scaled axis drawn (for this part)



(ii) From your graphs, write down the co-ordinates of the point of intersection of the two lines.

(ii) Point of intersection = (1.5, 2) tolerance  $\pm 0.3$ \* Follow candidates work from (i)

### Blunders (-3)

- B1 Reverses order of co-ordinates
- B2 Indicates on graph only but does not name

| Check your answer to                       | part (ii) by solving the simultaneous equations<br>y = 2x - 1<br>y = 4x - 4. | 3     |
|--------------------------------------------|------------------------------------------------------------------------------|-------|
| (c) (iii)                                  | 5 marks                                                                      | Att 2 |
| c(iii)                                     | y = 2x - 1                                                                   |       |
|                                            | y = 4x - 4                                                                   |       |
| I                                          | II                                                                           |       |
| y = 2x - 1                                 | y = 2x - 1 x - 1                                                             |       |
| y=4x-4                                     | y = 4x - 4                                                                   |       |
| $4x - 4 = 2x - 1$ $2x = 3$ $x = 1 \cdot 5$ | -y = -2x + 1<br>y = -2x - 4<br>0 = -2x - 3                                   |       |
| $y = 2(1 \cdot 5) - 1$ $y = 3 - 1$         | $x = 1 \cdot 5$<br>$y = 2(1 \cdot 5) - 1$                                    |       |
| y = 3 + 1 $y = 2$                          | $y = 2(1 - 3)^{-1}$<br>y = 3 - 1                                             |       |
|                                            | y = 2                                                                        |       |
| * Candidates may use o                     | ther correct algebraic versions                                              |       |

Candidates may use other correct algebraic versions

### Blunders (-3)

- B1 Sign error
- B2 Mathematical error
- B3 Only finds one value

### Slips (-1)

- **S**1 Numerical errors to a max. of 3.
- S2 Each transposing error to a maximum of 3

### Attempts (2 marks)

- A1 Sets up equations and stops e.g. multiplies an equation by -1 or similar
- Correctly substitutes their values into both equations and stops A2

| <b>QUESTION 6</b>                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Part (b) 10                                                                                                                                                 | marks<br>marks<br>marks                                                                                                                                                                                                                                                              | Att 7<br>Att 4<br>Att 7 |
|                                                                                                                                                             | 20 marks                                                                                                                                                                                                                                                                             |                         |
| (a) $\swarrow$ Given that $f: x \to 3x + 1$ and $g$<br>solve for $x: f(x) = g(x), x$                                                                        |                                                                                                                                                                                                                                                                                      |                         |
| (a) 20                                                                                                                                                      | marks                                                                                                                                                                                                                                                                                | Att 7                   |
| (a)<br>f(x) = g(x)<br>$3x + 1 = 1 + x^{2}$<br>$3x = x^{2}$ $\Rightarrow x = 0 \text{ or } x = 3$<br>or<br>$x^{2} - 3x = 0$<br>x(x - 3) = 0<br>x = 0 $x = 3$ | f(x) = g(x)<br>$3x + 1 = 1 + x^{2}$<br>$x^{2} - 3x = 0$<br>$\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$<br>a = 1  b = -3  c = 0<br>$x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4(1)(0)}}{2(1)}$<br>$x = \frac{3 \pm \sqrt{9 - 0}}{2}$<br>$x = \frac{3 \pm 3}{2}  \text{or}  x = \frac{3 - 3}{2}$ |                         |

- B1 Correct answer, but no work shown  $(\mathscr{L})$
- B2 Mathematical errors
- B3 Incorrect factors
- B4 Incorrect roots from factors
- B5 Only finds one solution
- B6 Error in quadratic formula
- B7 Error when applying quadratic formula
- B8 Correct equation formed but fails to find roots
- Slips (-1)
- S1 Numerical errors to a max of 3
- S2 Each transposing error to a maximum of 3

Attempts (7 marks)

- A1 Solves f(x) and/ or g(x) = 0
- A2 Correct formula or identifies a, b or c correctly and stops
- A3 Graphical unless both solutions tested in both equations -merits full marks

### Worthless (0)

(b) (i)  $\swarrow$  Given that x = 2a + 1 and  $y = 2ax - 4a^2$ , express y in terms of a.

(ii)  $\swarrow$  Hence, or otherwise, find the value of x for which y = 4.

| Part (b) (i) |            | 5 marks          | Att 2 |
|--------------|------------|------------------|-------|
| (i)          | x = 2a + 1 | $y = 2ax - 4a^2$ |       |
|              | y = 2a(2a) | $(+ 1) - 4a^2$   |       |

Blunder (-3)

B1 Correct answer, but no work shown (🖉)

B2 Each incorrect substitution but see M1

Misreadings (-1)

M1 Expresses y in terms of x Answer y = x-1 (Allow in part (ii))

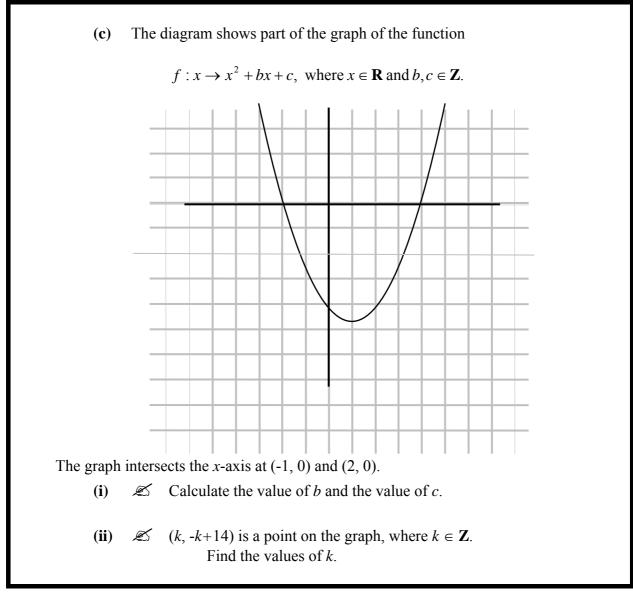
Attempts (2 marks)

A1 Substitutes a numerical value for x e.g. 0

Worthless (0)

| Part (b)      | (ii) 5 marks                                                                                                                                                                                                                                                         | Att 2 |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (b)(ii)       | $\swarrow$ Hence, or otherwise, find the value of x for which $y = 4$ .                                                                                                                                                                                              |       |
| <b>b</b> (ii) | 5 marks                                                                                                                                                                                                                                                              | Att 2 |
|               | $x = 2a + 1  \mathbf{I} \qquad y = 2ax - 4a^{2}  \mathbf{II} \\ y = 2a(2a + 1) - 4a^{2}  (i) \\ y = 4a^{2} + 2a - 4a^{2} \\ y = 2a \qquad \qquad or  y = 2a \\ y = 4 \\ x = 4 + 1 = 5 \qquad \qquad or  y = 2a \\ 4 = 2a \\ 2 = a \\ x = 2(2) + 1 = 5 \end{aligned}$ |       |

\* Errors in simplification of (i) are applied here


## Blunder (-3)

- B1 Correct answer, but no work shown  $(\mathscr{L})$
- B2 Mathematical errors e.g distribution
- B3 Sign error
- B4 Finds value of *a* and stops

Attempts (2 marks)

A1 Subs y = 4 in II and stops

### Worthless (0)



| (c)(i)       | 15 marks                                                                  | Att 5 |
|--------------|---------------------------------------------------------------------------|-------|
| The graph in | tersects the x-axis at $(-1, 0)$ and $(2, 0)$ .                           |       |
| (            | i) $\swarrow$ Calculate the value of <i>b</i> and the value of <i>c</i> . |       |
| (c) (i)      | 15 marks                                                                  | Att 5 |
| (c) (i)      |                                                                           |       |
|              | $f(x) = x^2 + bx + c$                                                     |       |
|              | $f(-1) = (-1)^2 + b(-1) + c = 0$ Eq 1                                     |       |

 $f(2) = (2)^{2} + b(2) + c = 0$  Eq 2

 $\times -1$ 

| *    | May read $c = -2$ off graph and then finds b, accept, | but see 'Note' in S2 |
|------|-------------------------------------------------------|----------------------|
| Blun | der (-3)                                              |                      |

- B1 Correct answer, but no work shown  $(\mathscr{L})$
- B2 Mathematical error.
- B3 Forms correct simultaneous equations and stops max loss in solving 3 marks
- B4 Incorrect factors from roots
- B5 Incorrect rule for 'Sum ' and 'Product' once if consistent

1 - b + c = 0-b + c = -1

4 + 2b + c = 02b + c = -4-b + c = -1

2(-1) + c = -4-2 + c = -4

b-c = 1 2b+c = -4 3b = -3b = -1

c = -2

B6 Takes an incorrect value of c and continues to find a value of b

#### Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Only finds one value (Note reads *c* off graph as -2 and stops, apply B1 also )
- S3 Finds correct quadratic but does not identify b and/or c

#### Attempts (5 marks)

- A1 Substitutes one value into f(x) and stops  $\neq 0$
- A2 States 'Sum'/ and or 'Product' rule and stops
- A3 Correctly marks in both points on a graph

#### Worthless (0)

| (ii) æ | (ii) $\swarrow$ ( <i>k</i> , - <i>k</i> +14) is a point on the graph, where $k \in \mathbb{Z}$ .<br>Find the values of <i>k</i> . |       |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|-------|--|
| c(ii)  | 5 marks                                                                                                                           | Att 2 |  |
| (ii)   | $f(x) = x^2 - x - 2$                                                                                                              |       |  |
|        | $f(k) = k^{2} - k - 2 = -k + 14$<br>$k^{2} - k - 2 = -k + 14$                                                                     |       |  |
|        | $k^2 = 16$ or $k^2 - 16 = 0$ or Formula                                                                                           |       |  |
|        | k = 4  or  k = -4 $(k-4)(k+4) = 0$                                                                                                |       |  |
|        | k = 4  or  k = -4                                                                                                                 |       |  |
|        |                                                                                                                                   |       |  |

\* Accept candidate's answer from (ii) *Blunder (-3)* 

- B1 Correct answer, but no work shown  $(\mathscr{L})$
- B2 Mathematical error
- B3 Incorrect roots from factors
- B4 Incorrect substitution

### Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Only finds one value for *k*

Attempts (2 marks)

- A1 Substitutes k into f(x) and stops  $f(x) = k^2 + b(k) + c \neq -k + 14$
- A2 Carries down from (i) and stops

### Worthless (0)