MARKING SCHEME JUNIOR CERTIFICATE EXAMINATION 2007 MATHEMATICS - HIGHER LEVEL - PAPER 2

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips- numerical errors (-1)
 - Misreadings (provided task is not oversimplified) (-1).

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

QUESTION 1

Part (a) Part (b) Part (c)			10(5,5) marks 20(5,5,10)marks 20(5,10,5) marks	Att (2,2) Att (2,2,3) Att (2,3,2)
Part (a)			10 (5,5) marks	Att (2,2)
(a)			base radius of 3 cm and a f 5 cm.	
	(i)	Ľ	Find <i>h</i> , the perpendicular height of the cone.	h 5 cm
	(ii)	Ŕ	Find the volume of the cone in terms of π .	3 cm
(a)(i)			5 marks	Att 2

	$5^2 = 3^2 + h^2 \implies h^2 = 16 \implies h = \sqrt{16}$ cm or 4 cm
Blun	ders (-3)
B1	Correct answer without work ()

Pythagoras incorrect Incorrect squaring $h^2 = 16$ and stops B2

B3

B4

Sli ps (-1)

S1 Arithmetic slips to a max of 3

Attempts (2 marks)

Pythagoras indicated A1

Diagram drawn with right angle indicated A2

(a)(ii)	5 marks	Att 2
V =	$\frac{1}{3}\pi r^2 h = \frac{1}{3}\pi 3^2 4 = 12\pi cms^3$	

Blunders (-3)

B1

Correct answer without work (🗷) Incorrect substitution into correct formula B2

Incorrect relevant volume formula and continues B3

Slips (-1)

- S1 Arithmetic slips to a max of 3
- S2 Answer not expressed in terms of π

Attempts (2 marks)

A1 Correct formula with some substitution

Worthless (0)

W1 πrl with or without substitution

(b) Cylinder

5 marks

Att 2

Volume of cylinder = $\pi r^2 h = \pi 25^2 65 \text{ cm}^3$

Blunders (-3)

- B1 Incorrect substitution into correct formula
- B2 Incorrect *h*
- B3 Incorrect relevant volume formula

Attempts (2 marks)

- A1 Correct formula with some substitution
- A2 Correct *h* indicated

Worthless (0)

W1 Area formula

Volume of hemisphere
$$= \frac{2}{3}\pi r^3 = \frac{2}{3}\pi 25^3 \text{ cms}^3$$

- B1 Incorrect substitution into correct formula
- B2 Incorrect relevant volume formula

Attempts (2 marks) A1 Correct formula without substitution

Worthless (0) W1 Area formula

Total volume	10 marks	Att3
$\pi 25^{2} 65 + \frac{2}{3} \pi 25^{3}$		
$= 40625\pi + 10416 \cdot 6667\pi$ = 51041 \cdot 66667\pi = 160352 \cdot 125 cms ³		
Total Volume = 160 litres		

Blunders (-3)

- B1 Correct answer without work (🗷)
- B2 Volume of container expressed as difference of both parts
- B3 Answer not expressed in litres
- B4 Using a value of π which affects accuracy of answer
- B5 Early rounding off which affects accuracy of answer
- B6 Incorrect squaring and/or cubing

Slips (-1)

- S1 Arithmetic slips to a max of 3
- S2 Not rounding to nearest litre

Attempts (3 marks)

- A1 Effort at calculating volume of either hemisphere or cylinder
- A2 Indication of conversion to litres

B1 Length l = 7 cm

B2 Length $l = 14\pi$ cm

Attempts (2 marks) A1 Length $l = 7\pi$ cm

Worthless (0) W1 Length = 16π or 8π

(c) (ii)		10 marks	Att 3
	Area of discs	$gle = 16\pi .14 = 224\pi \text{ cm}^2$ = 2 \pi \text{r}^2 = 2 \pi 7^2 = 98\pi \text{ cm}^2 = 224\pi - 98\pi = 126 \pi \text{ cm}^2	
Blunders (-3)			

B1 Correct answer without work (∠)

B2 Incorrect substitution into correct formula

- B3 Incorrect *r*
- B4 Value of *l* inconsistent with (c)(i)
- B5 Incorrect relevant area formula

B6 Area of one disc (rather than two)

Slips(-1)

- S1 Arithmetic slips to a max of 3
- S2 Answer not in terms of π

Attempts (3 marks)

- A1 Correct formula with some substitution
- A2 Area of rectangle indicated
- A3 Area of both discs indicated
- A4 Perimeter of rectangle and area of one or both discs and stops
- A5 Circumference of one or both discs and area of rectangle and stops

Worthless (0)

W1 Perimeter of rectangle and circumference of discs

(c) (iii)		5 marks		Att 2
	Percentage unused	$= \frac{126\pi}{224\pi}.100$	= 56.25%	

Blunders (-3)

- B1 Correct answer without work $(\boldsymbol{\varkappa})$
- B2 Ratio not simplified
- B3 Ratio inverted
- B4 Decimal error
- B5 Early rounding off which affects accuracy of answer
- B6 Ratio not converted to percentage

Slips (-1)

S1 Arithmetic slips to a max of 3

Attempts (2 marks)

- A1 Unused area expressed as a ratio
- A2 Any use of 100

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	20 (10,10)marks	Att (3,3)
Part (c)	20 (5,5,5,5) marks	Att (2,2,2,2)

art (a)	10 mark	S		Att 3
<i>p</i> (2	 , 4) and q (-1, 1) are two points. q is the midpoint of [pr]. <i>K</i> Find the co-ordinates of 	r.		
)	10 mark	S		Att 3
<i>p</i> -	10 mark → $q \rightarrow r$ 2,4) → $q(-1,1) \rightarrow r(-1-3, 1-3) = (-4,-2)$	or	q midpoint pr where $r(x,y)$ $\left(\frac{2+x}{2}, \frac{4+y}{2}\right) = (-1,1)$	Att 3

Blunders (-3)

B1 Correct answer without work (🗷)

B2 Substitutes for *r* correctly but point not found (translation method)

- B3 Takes r as midpoint of pq
- B4 Incorrect midpoint formula and continues
- B5 Mixes both x and y in substitution

B6 Finds one co-ordinate only

Slips (-1)

S1 Arithmetic slips to a max of 3

Misreading (-1)

M1 Takes p as midpoint of [qr]

Attempts (3 marks)

- A1 Writes midpoint formula without or with some substitution
- A2 Graphical solution correct

(i) \swarrow Find the slope of M.

(ii) \swarrow Find the equation of the line *N* through (4, -2), which is perpendicular to *M*. Give your answer in the form ax + by + c = 0, where *a*, *b* and $c \in \mathbb{Z}$.

(b) (i)		10 marks	Att 3
	(i)	Slope of $M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - 6}{4 - 0} = \frac{-8}{4}$ or -2	

Blunders (-3)

B1 Correct answer without work (\ll)

B2 Incorrect slope formula and continues

B3 Mixes both x and y in substitution

B4 Substitutes correctly but slope not found

Slips (-1)

S1 Arithmetic slips to a max of 3

Attempts (3 marks)

A1 Writes slope formula with or without some substitution

A2 Effort at difference of y's and/or difference of x's

(b) (ii)	10 marks	Att 3
	Slope of $N = \frac{1}{2}$ or $\frac{4}{8}$	
	Equation of N: $y - y_1 = m(x - x_1)$	
	$y2 = \frac{1}{2} (x - 4)$	
	$y + 2 = \frac{1}{2} (x - 4)$	
	2y+4 = x-4	
	x-2y-8 = 0.	

Blunders (-3)

B1 Correct answer without work (∠)

B2 Incorrect relevant formula and continues

- B3 Switches both *x* and *y* in substitution
- B4 Substitutes correctly for *x* and *y* but incorrect slope

B5
$$y + 2 = \frac{1}{2}(x-4)$$
 and stops

Slips (-1)

S1 Arithmetic slips to a max of 3

S2 *a, b, c* in integer form but not written as ax + by + c = 0

Attempts (3marks)

A1 Correct line formula with or without some substitution

A2 Indicates product of perpendicular slopes equals -1

Part (c)		20(5,5,5,5) marks	Att (2,2,2,2)
L is the	e line <i>x</i> –	2y + 2 = 0 and K is the line $x + 2y - 6 = 0$.	
(i)	Ø	Find the coordinates of u , the point of interse	ction of L and K .
(ii)	Ľ	L cuts the y-axis at the point v. Find the coor	dinates of <i>v</i> .
(iii)	Ľ	Show that $w(0, 3)$ is on the line <i>K</i> .	
(iv)	Ľ	Show that $ uw = uv $.	

(c)(i)		5 marks		Att 2
	x-2y+2 = 0 x+2y-6 = 0			
	$\frac{x+2y-6-0}{2x}$ -4 = 0			
	$\Rightarrow x = 2$	$2-2y+2=0 \Rightarrow y=2$	<i>u</i> (2,2)	

Accept $(2,2) \in L$ and $(2,2) \in K$ shown in each case

Blunders (-3)

*

- B1 Correct answer without work (∠)
- B2 Transposition error
- B3 No substitution for second value

Slips (-1)

S1 Arithmetic slips to a max of 3

Attempts (2marks)

- A1 Any correct step and stops
- A2 Effort at graphical solution e.g. lets x = 0 and/or y = 0

(c)(ii)

Att 2

$$x = 0 \implies 0-2y+2=0 \implies y=1$$

 $y = (0,1)$

Blunders (-3)

- B1 Correct answer without work (∠)
- B2 Takes y = 0 and finds x
- B3 Transposition error

Slips (-1)

S1 Arithmetic slips to a max of 3

Misreading (-1) M1 Takes K instead of L

Attempts (2marks)

A1 Graphical solution correct

< >	(
(c))(111)
(\mathbf{v})	

5 marks

 $0 + 2(3) - 6 = 6 - 6 = 0 \implies w(0,3)$ on K

Att 2

- Blunders (-3)
- B1 Correct answer without work (🗷)
- B2 Mixes x and y in substitution

Slips (-1)

S1 Arithmetic slips to a max of 3

Attempts (2 marks)

A1 Graphical solution correct

A2 Any effort at substitution

Worthless (0)

W1 Graphical solution incorrect

(c)(iv)

5 marks

Att 2

Formula

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$|uw| = \sqrt{(2 - 0)^2 + (2 - 3)^2} = \sqrt{2^2 + (-1)^2} = \sqrt{4 + 1} \text{ or } \sqrt{5}$$

$$|uv| = \sqrt{(2 - 0)^2 + (2 - 1)^2} = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} \text{ or } \sqrt{5}$$

$$|uw| = |uv|$$

Blunders (-3)

- B1 Correct answer without work (🗷)
- B2 Incorrect relevant formula and continues
- B3 Switches both *x* and *y* in substitution
- B4 Substitutes correctly for *x* and *y* in each case but does not simplify

B5 (-1) $^{2} \neq 1$

Slips (-1)

S1 $|uw| \neq |uv|$ without a conclusion from work

S2 Arithmetic slips to a max of 3

Attempts(2 marks)

- A1 Correct formula with or without some substitution
- A2 Incorrect relevant formula with some correct substitution
- A3 Effort at translation

QUESTION 3

Part (a) Part (b) Part (c)	10 marks 25 (15,10) marks 15 (5,5,5) marks	Att 3 Att (5,3) Att (2,2,2)
Part (a)	10 marks	Att 3
has a base of lengt sides are each 10 c	gle shown in the diagram, h 12 cm and the other two m in length. e perpendicular height of the	h $10 cm$ $12 cm$
(a)	10 marks	Att 3
$10^{-} = h^{-} + \frac{10^{-}}{10^{-}} = h^{-} + \frac{10^{-}}{1$	t max of 3 d and stops	

- (i) A Prove that if two sides of a triangle are equal in measure, then the angles opposite these sides are equal in measure.
- (ii) Each of the three figures labelled A, B and C shown below in the box on the right is the image of the figure shown in the box on the left under a transformation. For each of A, B and C, state what the transformation is (translation, central symmetry, axial symmetry or rotation) and in the case of a rotation, state the angle.

(b)(i)

15 marks

Att 5

* Some steps may be indicated on the diagram

Blunders(-3)

- B1 Each step incorrect or omitted
- B2 Each step incomplete

Attempts (5marks)

A1 Diagram with triangle drawn and equal sides indicated

Worthless(0)

- W1 Wrong Theorem
- W2 Triangle and nothing else

(b)(ii)		10 marks	Att 3
	A	Axial Symmetry	
	В	Central Symmetry or Rotation 180°	
	С	Rotation 90°(clockwise) or 270° (anti-clockwise)	

- * Accept angle of rotation without reference to clockwise or anticlockwise
- * One correct transformation 4 marks
- * Two correct transformations 7 marks
- * Three correct transformations 10 marks

Slips (-1)

S1 No angle or incorrect angle of rotation

Attempts (3 marks)

A1 Any attempt at drawing the original figure under one of the given transformations

(c)(i)

5 marks

Att2

$$\frac{6}{|ac|} = \frac{6}{10} \Rightarrow |ac| = 10 \Rightarrow |ce| = 4$$

Blunders(-3)

B1 Correct answer without work (\ll)

B2
$$\frac{6}{|ec|} = \frac{6}{10}$$

B3 $\frac{|ac|}{6} = \frac{6}{10}$ or equivalent

B4 Transposition error

Slips (-1)

S1 Arithmetic slips to a max of 3

Attempts (2marks)

A1 |ac| = 10 and stops

A2 Any effort at a relevant ratio

Worthless (0)

W1 |ce| = 10 without work shown

(c) (ii)

Blunders(-3)

B1 Correct answer without work (🖉)

B2 $|db| \neq \frac{1}{2} |ec|$

B3
$$\frac{|ad|}{2} = \frac{6}{10}$$
 or equivalent $|ad| = 4$

B4
$$\frac{|\alpha u|}{2} = \frac{4}{6}$$
 or equivalent

B5 Transposition error

Slips (-1)

S1 Arithmetic slips to a max of 3

Attempts (2marks)

- A1 Some effort at ratio and stops
- A2 |db| = 2 and stops

Worthless (0) W1 |ad| = 6 without work

Blunders (-3)

B1 Correct answer without work (🗷)

B2 Inverted ratio

Slips (-1)

S1 Arithmetic slips to a max of 3

Misreadings (-1) M1 Finding | *ac* |

Attempts (2 marks) A1 Addition of more sides than required (work shown) Att 2

Part (a)	10 (5,5) marks	Att (2,2)
Part (b)	20 marks	Att 7
Part (c)	20 (5,10,5) marks	Att (2,3,2)

QUESTION 4

* Accept work on diagram

Blunders(-3)

- B1 Correct answer without work (\ll)
- B2 Sum of angles in triangle $\neq 180^{\circ}$
- B3 Incorrectly indicates equal sides in isosceles triangle

Slips

S1 Arithmetic slips to a max of 3

Attempts(2 marks)

- A1 |oc| = |ob| indicated and stops
- A2 Angle sum of triangle = 180°

Worthless(0)

W1 Assumes any angle in $\triangle ocb$ is a right angle and stops

(a)(ii)

*

$$| < aco | = 40^{\circ}$$
 since $| < acb | = 90^{\circ}$ (angle in semi-circle)
 $| ao | = | co |$ (radii)
 $\Rightarrow | \angle bac | = 40^{\circ}$

Accept any correct approach

Blunders (-3)

- B1 Correct answer without work (🗷)
- B2 Sum of angles in triangle $\neq 180^{\circ}$
- B3 Incorrectly indicates equal sides in isosceles triangle
- B4 $| < acb | \neq 90^{\circ}$

Slips

S1 Arithmetic slips to a max of 3

Attempts (2 marks)

A1 Indicates sum of angles in a triangle equals 180°

- A2 Identifies |acb| right angle
- A3 States straight line angle = 180° and stops

Worthless (0)

W1 Assumes any angle in Δoac is a right angle

measure of the angle at the circumference, standing on the same arc.

* Some steps may be indicated on diagram

Blunders(-3)

- B1 Each incorrect or omitted step
- B2 Each step incomplete
- B3 Theorem proven for angle in semicircle

Attempts (7marks)

- A1 Diagram with angle at centre and/or angle at arc indicated
- A2 Diagram with angle in a semicircle

Attempts (2marks)

A1 Indicates angle at centre of circle

Worthless (0)

- W1 Assumes *e* is centre of circle
- W2 States that angles are alternate angles

(0	c) (ii)	10 marks	Att 3
	$ \angle bad = \angle bcd (given ab = cd given $	n) en (on arc ac) or $ <$ aeb $ = <$ ced $ $ congruent by ASA	(vertically opposite) step 2 step 3

Some steps may be indicated on diagram drawn by candidate

Blunders (-3)

*

- B1 Correct answer without work (*z*)
- B2 Each step incorrect or omitted
- B3 Each step incomplete

Attempts (3marks)

A1 Diagram with triangles drawn and equal angles from (c)(i) indicated

Worthless (0)

- W1 Diagram from examination paper either partially or totally drawn
- W2 [*ab*] and [*cd*] parallel and stops

(c) (iii)	5 marks	Att 2
	ae = ce and $ be = ed $ due to congrue ae + ed = ce + be ad = bc .	ent triangles in (c)(ii)

Correct answer without work (∠) B1

 $|ae| \neq |ce|$ and/or $|be| \neq |ed|$ B2

Attempts (2 marks)

A1

Expression in terms of ratios |ad| = |ae| + |ed| and stops A2

Worthless (0)

- W1 Assuming either or both triangles are isosceles triangles
- W2 Taking *e* as centre of circle

QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	20(5,10,5) marks	Att (2,3,2)
Part (c)	20(10,5,5) marks	Att (3,2,2)

Part (a)	10 marks	Att 3
Æ	If sin $A = -\frac{1}{2}$, find the two values for the angle A, where	$0^{\circ} \le A \le 360^{\circ}.$

(a)	10 marks	Att 3
	Sin $A = -\frac{1}{2}$ in 3 rd and 4 th Quadrants	
	$A = 180^{\circ} + 30^{\circ}$ and $360^{\circ} - 30^{\circ} = 210^{\circ}$ and 330° .	

Blunders (-3)

- B1 Correct answer without work (∠)
- B2 Second value of A not found
- B3 Value(s) of A not in range $0^{\circ} \le A \le 360^{\circ}$
- B4 Identifies incorrect quadrant(s)

Slips (-1)

S1 Arithmetic slips to a max of 3

Attempts (3 marks)

- A1 Circle with all four quadrants indicated
- A2 Some indication of the use of 30°
- A3 Right angled triangle with A, -1, 2 indicated

A4 Sine
$$A = \frac{opp}{hyp}$$

Worthless (0)

W1 Incorrect answer without work

(b)(i)	5 marks	Att 2
	$ ac ^{2} = 9^{2} + 12^{2} = 81 + 144 = 225$	
	$ ac = \sqrt{225}$ or 15 km	

- B1 Correct answer without work (\mathbb{A})
- B2 Pythagoras incorrect
- B3 Incorrect squaring
- B4 $|ac|^{2} = 225$ and stops

Slips (-1)

S1 Arithmetic slips to a max of 3

Attempts (2 marks)

- A1 Pythagoras indicated
- A2 Reference to 3,4,5 and stops
- A3 Calculates | < acb | or | < cab | and stops

Worthless (0)

W1 Assigning a value to either *<bac* or *<bca*(with or without further work)

$$Tan 53.13^{\circ} = \frac{|cd|}{15} \Rightarrow |cd| = 15 Tan 53.13^{\circ} \text{ or } Tan 36.87^{\circ} = \frac{15}{|cd|}$$
$$= 15(1.333) = 19.999 \text{ km} \Rightarrow |cd| = \frac{15}{Tan 36.87^{\circ}} = \frac{15}{0.75}$$
$$|cd| = 19.999$$
$$|cd| = 20 \text{ km to nearest km}$$

- B1 Correct answer without work (∠)
- B2 Incorrect ratio for *Tan* function
- B3 Error in cross multiplication
- B4 Reads wrong page of tables or uses calculator in incorrect mode

Slips (-1)

- S1 Arithmetic slips to a max of 3
- S2 Slip reading tables (wrong column)
- S3 Fails to distinguish between degrees and minutes and degrees in decimal form

Attempts (3marks)

- A1 Indicates use of |cd| in a ratio
- A2 Indicates use of 15 or equivalent in a ratio

A3
$$Tan A = \frac{opp}{adj}$$
 or $Tan 36.87^{\circ}$ or $Tan 53.13^{\circ}$ and stops

(b)(iii) 5 marks Att 2

$$|ad|^2 = 20^2 + 15^2 = 400 + 225 = 625 \text{ km}$$
 or $Sine 36.87^\circ = \frac{15}{|ad|}$
 $|ad| = 25 \text{ km}$ $|ad| = \frac{15}{0.6} = 25 \text{ km}$
Total = 12 + 9 + 20 + 25 = 66 km

Blunders (-3)

- B1 Correct answer without work (∠)
- B2 Pythagoras incorrect

B3 Incorrect squaring

B4 $|ad|^2 = 625$ and stops

- B5 Incorrect ratio for *Trig* function
- B6 Error in cross multiplication
- B7 Reads wrong page of tables or uses calculator in incorrect mode
- B8 Incorrect ratio for Sine Rule

Slips (-1)

- S1 Arithmetic slips to a max of 3
- S2 Each side omitted in sum after calculation of | *ad* |
- S3 |ac| included in sum

Attempts (2 marks)

- A1 Pythagoras indicated
- A2 Reference to 3,4,5 and stops

(c) (i)	10 marks	Att 3
	$\frac{Sine10^{\circ}}{Sine20^{\circ}} = \frac{Sine20^{\circ}}{Sine20^{\circ}}$	
	12 x	
	$x = \frac{12 Sine 20}{Sine 10^0}$	
	_ 12(·342)	
	=23.6405 = 23.64m to 2 decimal places	

- B1 Correct answer without work (*A*)
- B2 Incorrect ratio in use of Sine Rule
- B3 Error in cross multiplication
- B4 Reads wrong page of tables or uses calculator in incorrect mode
- B5 Early rounding off which affects the answer

Slips (-1)

- S1 Arithmetic slips to a max of 3
- S2 Answer not to 2 decimal places

Attempts (3marks)

- A1 Sine Rule with some substitution
- A2 Identifies 150° or 10°

Worthless (0)

W1 Treats triangle as right angled

(c) (ii) 5 marks Att 2

$$Sine 30^\circ = \frac{h}{x} = \frac{h}{23 \cdot 64} \implies h = 23 \cdot 64 \ Sine 30^\circ = 23 \cdot 64 (\cdot 5) = 11 \cdot 82m$$

Blunders (-3)

- B1 Correct answer without work (🗷)
- B2 Incorrect ratio for Trig function
- B3 Error in cross multiplication
- B4 Reads wrong page of tables or uses calculator in incorrect mode
- B5 Rounding early which affects answer

Slips (-1)

- S1 Arithmetic slips to a max of 3
- S2 Answer not to two decimal places

Attempts (2marks)

- A1 Indicates use of *h* in a ratio
- A2 Indicates use of 23.64 or equivalent in a ratio

A3 Tan
$$30^\circ = \frac{h}{w}$$
 or Tan $60^\circ = \frac{w}{h}$ or writes value of Tan 30° or Tan 60°

(c) (iii)

5 marks

* This solution can be achieved in a variety of ways using trigonometric methods

Blunders (-3)

- B1 Correct answer without work (🗷)
- B2 Pythagoras incorrect
- B3 Incorrect squaring
- B4 $w^2 = 419.1372$ and stops
- B5 Incorrect ratio for Trig function
- B6 Error in cross multiplication
- B7 Reads wrong page of tables or uses calculator in incorrect mode
- B8 Incorrect ratio for Sine Rule
- B9 Early rounding which affects answer

Slips (-1)

- S1 Arithmetic slips to a max of 3
- S2 Calculates w + 12 and stops
- S3 Answer not to two decimal places

Attempts (2 marks)

- A1 Pythagoras indicated
- A2 Indicates use of *h* and/or *x* values in a ratio

Part (a)	10 marks	Att 3
Part (b)	20 (10,5,5)marks	Att (3,2,2)
Part (c)	20 (5,5,10) marks	Att (2,2,3)

Part (a)	10 marks	Att 3		
In 4	In 4 games, a soccer player scored 1, x , 4 and 3 goals respectively.			
The	The mean number of goals scored by the player per game was 2.			
Ŕ	Find the number of goals scored in the second game i.e. the value of x .			
(9)	10 marks	A ## 3		

(a)	10 marks		Att 3	
	$\frac{1+x+4+3}{4} = 2 \implies 8 + x = 8 \implies$	x = 0		

- Correct answer without work (∞) B1
- B2 Incorrect denominator
- B3 Error in transposition
- B4 8x in numerator
- B5 12x in numerator

Slips (-1)

Arithmetic slips to a max of 3 **S**1

Attempts (3 marks)

- Adds some or all of the numbers A1
- A2 Indication of division by 4
- $\frac{1+x+4+3}{4}$ and stops A3

Over a period of one month, the owner of a factory recorded the number of days that each of his 50 employees was absent from work. The following table shows the results. No. days absent 0 2 3 4 5 1 7 9 11 12 7 No. of employees 4 (i) Ø Find the mean number of days the employees were absent. Ø Find the percentage of employees who were absent for more than **(ii)** the mean number of days. Write down the mode. (iii)

(b) (i)	10 marks	Att 3
	$\frac{7(0) + 9(1) + 11(2) + 12(3) + 7(4) + 4(5)}{7 + 9 + 11 + 12 + 7 + 4}$	
	$\frac{0+9+22+36+28+20}{50} = \frac{115}{50} = 2\cdot3$	

Blunders (-3)

- B1 Correct answer without work (\mathbb{A})
- B2 Transposition error
- B3 Division by 6
- B4 Division by 15 (sum of class intervals)
- B5 Consistently adds interval value to frequency instead of multiplying
- B6 $\frac{50}{115}$ and continues

Slips (-1) S1 Arithmetic slips to a max of 3

Attempts (3 marks)

- A1 One correct multiplication in numerator
- A2 Indicates use of 50
- A3 Sum of frequencies divided by 6

Worthless (0)

W1 $\frac{15}{6}$

(b) (ii)	5 marks		Att 2
Percentage greater than mean =	$\frac{(12+7+4).100}{50}$	= 46%	
* Accept candidates answer from b(i)			

- B1 Correct answer without work (\$\not\$)
- 2 Divisor other than 50
- B3 Not applying percentage to answer

Slips (-1)

- S1 Arithmetic slips to a max of 3
- S2 Omits one of the relevant values above mean

Attempts (2 marks)

- A1 Indicates division by 50
- A2 Adds two or more relevant values
- A3 Indicates some use of 100

<u>(b) (iii)</u>			5 marks	Att 2
	Mode	=	3.	

Blunders (-3)

B1 Mode =12

Attempts (2 marks)

- A1 Indication of division by 2
- A2 Rearranges frequencies and finds the mode of these

B1 One box = 0.8 and continues

Slips (-1)

S1 Arithmetic slips to a max of 3

S2 Each incorrect entry

Attempts (2 marks)

A1 8, 12, 12, 16, 8 for frequencies

A2 One box = 1.25 and stops

A3 Work with base and stops

Worthless (0)

W1 Copies table and stops without making any further entries

(c) (ii)

*

Accept candidate's frequency table

Blunders (-3)

B1 Subtracting frequencies instead of adding

Slips (-1)

- S1 Arithmetic slips to a max of 3
- S2 Each incorrect entry

Attempts (2 marks)

- A1 Any one value filled correctly into table
- A2 Any indication of addition of frequencies

Worthless (0)

- W1 Copies table and stops
- W2 Repeats (c) (i) table

- * Accept median clearly marked on graph
- * Accept median in the range 20-25 years

- B1 Incorrect scales
- B2 Plots points but not joined
- B3 Draws a 'cumulative' histogram
- B4 Draws a 'cumulative' cumulative ogive
- B5 Line drawn from incorrect starting point of correct axis for median
- B6 Uses horizontal axis for starting point for median

Slips (-1)

- S1 Each incorrect plot
- S2 Each point omitted
- S3 Work for median correct but outside tolerance

Attempts (3 marks)

A1 Correct scale on base axis