MARKING SCHEME
 JUNIOR CERTIFICATE EXAMINATION 2007 MATHEMATICS - HIGHER LEVEL - PAPER 2

GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions
- Slips- numerical errors
- Misreadings (provided task is not oversimplified)
\& means that work relevant to correct answer must be shown for full marks Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5.50$ may be written as $€ 5,50$.

QUESTION 1

Part (a)	10(5,5) marks	Att (2,2)
Part (b)	20($5,5,10$)marks	Att (2,2,3)
Part (c)	20(5,10,5) marks	Att (2,3,2)
Part (a)	$10(5,5)$ marks	Att (2,2)

(a) A cone has a base radius of 3 cm and a slant height of 5 cm .
(i)

Find h, the perpendicular height of the cone.
(ii) Find the volume of the cone in terms of π.

(a)(i)

5 marks
Att 2
$5^{2}=3^{2}+h^{2} \Rightarrow h^{2}=16 \Rightarrow h=\sqrt{16} \mathrm{~cm}$ or 4 cm
Blunders (-3)
B1 Correct answer without work (
B2 Pythagoras incorrect
B3 Incorrect squaring
B4 $\quad h^{2}=16$ and stops
Sli ps (-1)
S1 Arithmetic slips to a max of 3
Attempts (2 marks)
A1 Pythagoras indicated
A2 Diagram drawn with right angle indicated
(a)(ii)
$V=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \pi 3^{2} 4=12 \pi \mathrm{cms}^{3}$
Blunders (-3)
B1 Correct answer without work (es)
B2 Incorrect substitution into correct formula
B3 Incorrect relevant volume formula and continues

Slips (-1)
S1 Arithmetic slips to a max of 3
S2 Answer not expressed in terms of π
Attempts (2 marks)
A1 Correct formula with some substitution
Worthless (0)
W1 $\pi r l$ with or without substitution
Part (b)
$20(5,5,10)$ marks
$\operatorname{Att}(2,2,3)$

A hot water container is in the shape of a hemisphere on top of a cylinder as shown. The hemisphere has a radius of 25 cm and the container has a height of 90 cm .

25
Find the internal volume of the container in litres, giving your answer correct to the nearest litre.

(b) Cylinder

 5 marksAtt 2

Volume of cylinder $=\pi \mathrm{r}^{2} h=\pi 25^{2} 65 \mathrm{~cm}^{3}$
Blunders (-3)
B1 Incorrect substitution into correct formula
B2 Incorrect h
B3 Incorrect relevant volume formula
Attempts (2 marks)
A1 Correct formula with some substitution
A2 Correct h indicated

Worthless (0)

W1 Area formula

Volume of hemisphere $=\frac{2}{3} \pi \mathrm{r}^{3}=\frac{2}{3} \pi 25^{3} \mathrm{cms}^{3}$

Blunders (-3)

B1 Incorrect substitution into correct formula
B2 Incorrect relevant volume formula

Attempts (2 marks)

A1 Correct formula without substitution
Worthless (0)
W1 Area formula

Total volume
10 marks
Att3
$\pi 25^{2} 65+\frac{2}{3} \pi 25^{3}$
$=40625 \pi+10416 \cdot 6667 \pi$
$=51041 \cdot 66667 \pi=160352 \cdot 125 \mathrm{cms}^{3}$
Total Volume $=160$ litres

Blunders (-3)

B1 Correct answer without work (e)
B2 Volume of container expressed as difference of both parts
B3 Answer not expressed in litres
B4 Using a value of π which affects accuracy of answer
B5 Early rounding off which affects accuracy of answer
B6 Incorrect squaring and/or cubing
Slips (-1)
S1 Arithmetic slips to a max of 3
S2 Not rounding to nearest litre
Attempts (3 marks)
A1 Effort at calculating volume of either hemisphere or cylinder
A2 Indication of conversion to litres

A rectangular piece of metal has a width of $16 \pi \mathrm{~cm}$.
Two circular pieces, each of radius
7 cm , are cut from the rectangular piece, as shown.
(i) Find the length, l, of the rectangular
 piece of metal.
(ii) Calculate the area of the metal not used (i.e. the shaded section), giving your answer in terms of π.
(iii) Express the area of the metal not used as a percentage of the total area.
(c) (i) 5 marks

Att 2

$$
l=14 \mathrm{~cm}
$$

Blunders (-3)
B1 Length $l=7 \mathrm{~cm}$
B2 Length $l=14 \pi \mathrm{~cm}$
Attempts (2 marks)
A1 Length $l=7 \pi \mathrm{~cm}$
Worthless (0)
W1 Length $=16 \pi$ or 8π
(c) (ii)

Att 3

$$
\begin{aligned}
\text { Area of rectangle } & =16 \pi .14=224 \pi \mathrm{~cm}^{2} \\
\text { Area of discs } & =2 \pi \mathrm{r}^{2}=2 \pi 7^{2}=98 \pi \mathrm{~cm}^{2} \\
\text { Unused } & =224 \pi-98 \pi=126 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Blunders (-3)

B1 Correct answer without work ((
B2 Incorrect substitution into correct formula
B3 Incorrect r
B4 Value of l inconsistent with (c)(i)
B5 Incorrect relevant area formula
B6 Area of one disc (rather than two)

Slips(-1)
S1 Arithmetic slips to a max of 3
S2 Answer not in terms of π
Attempts (3 marks)
A1 Correct formula with some substitution
A2 Area of rectangle indicated
A3 Area of both discs indicated
A4 Perimeter of rectangle and area of one or both discs and stops
A5 Circumference of one or both discs and area of rectangle and stops
Worthless (0)
W1 Perimeter of rectangle and circumference of discs
(c) (iii)

5 marks
Att 2

$$
\text { Percentage unused } \quad=\frac{126 \pi}{224 \pi} \cdot 100=56.25 \%
$$

Blunders (-3)
B1 Correct answer without work ((
B2 Ratio not simplified
B3 Ratio inverted
B4 Decimal error
B5 Early rounding off which affects accuracy of answer
B6 Ratio not converted to percentage
Slips (-1)
S1 Arithmetic slips to a max of 3
Attempts (2 marks)
A1 Unused area expressed as a ratio
A2 Any use of 100

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	$20(10,10)$ marks	Att $(3,3)$
Part (c)	$20(5,5,5,5)$ marks	Att $(2,2,2,2)$

Part (a) 10 marks

Att 3
$p(2,4)$ and $q(-1,1)$ are two points.
q is the midpoint of [pr].
2 Find the co-ordinates of r.
(a)
10 marks

Att 3

$$
\begin{array}{cc}
p \rightarrow q \rightarrow r \\
p(2,4) \rightarrow q(-1,1) \rightarrow r(-1-3,1-3)=(-4,-2) & \text { or }
\end{array} \quad \begin{gathered}
q \text { midpoint pr where } r(x, y) \\
\\
r=\left(\frac{2+x}{2}, \frac{4+y}{2}\right)=(-1,1) \\
\end{gathered}
$$

Blunders (-3)
B1 Correct answer without work (()
B2 Substitutes for r correctly but point not found (translation method)
B3 Takes r as midpoint of $p q$
B4 Incorrect midpoint formula and continues
B5 Mixes both x and y in substitution
B6 Finds one co-ordinate only
Slips (-1)
S1 Arithmetic slips to a max of 3
Misreading (-1)
M1 Takes p as midpoint of [$q r]$

Attempts (3 marks)

A1 Writes midpoint formula without or with some substitution
A2 Graphical solution correct
$(0,6)$ and $(4,-2)$ are two points on the line M.
(i) Find the slope of M.
(ii) Find the equation of the line N through (4, -2), which is perpendicular to M.

Give your answer in the form $a x+b y+c=0$, where a, b and $c \in \mathbf{Z}$.
(b) (i)

10 marks
Att 3
(i) Slope of $M=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-6}{4-0}=\frac{-8}{4}$ or -2

Blunders (-3)
B1 Correct answer without work (Σ)
B2 Incorrect slope formula and continues
B3 Mixes both x and y in substitution
B4 Substitutes correctly but slope not found
Slips (-1)
S1 Arithmetic slips to a max of 3
Attempts (3 marks)
A1 Writes slope formula with or without some substitution
A2 Effort at difference of y 's and/or difference of x 's

(b) (ii)

10 marks
Att 3

$$
\begin{gathered}
\text { Slope of } N=\quad \frac{1}{2} \text { or } \frac{4}{8} \\
\text { Equation of } N: y-y_{1}=m\left(x-x_{1}\right) \\
y--2=1 / 2(x-4) \\
y+2=1 / 2(x-4) \\
2 y+4=x-4 \\
x-2 y-8=0 .
\end{gathered}
$$

Blunders (-3)

B1 Correct answer without work (\&)
B2 Incorrect relevant formula and continues
B3 Switches both x and y in substitution
B4 Substitutes correctly for x and y but incorrect slope
B5 $y+2=\frac{1}{2}(x-4)$ and stops

Slips (-1)

S1 Arithmetic slips to a max of 3
S2 a, b, c in integer form but not written as $a x+b y+c=0$

Attempts (3marks)

A1 Correct line formula with or without some substitution
A2 Indicates product of perpendicular slopes equals -1
Part (c)
20(5,5,5,5) marks
Att (2,2,2,2)
L is the line $x-2 y+2=0$ and K is the line $x+2 y-6=0$.
(i) Find the coordinates of u, the point of intersection of L and K.
(ii) L cuts the y-axis at the point v. Find the coordinates of v.
(iii) Show that $w(0,3)$ is on the line K.
(iv) Show that $|u w|=|u v|$.
(c)(i)

$$
\begin{align*}
& x-2 y+2=0 \\
& x+2 y-6=0 \\
& \hline 2 x \quad-4=0 \tag{2,2}\\
& \Rightarrow \quad x=2
\end{align*}
$$

$$
2-2 y+2=0 \Rightarrow y=2
$$

* \quad Accept $(2,2) \in \mathrm{L}$ and $(2,2) \in \mathrm{K}$ shown in each case

Blunders (-3)

B1 Correct answer without work (e)
B2 Transposition error
B3 No substitution for second value
Slips (-1)
S1 Arithmetic slips to a max of 3
Attempts (2marks)
A1 Any correct step and stops
A2 Effort at graphical solution e.g. lets $x=0$ and/or $y=0$

$$
x=0 \Rightarrow 0-2 y+2=0 \Rightarrow y=1{ }_{v=(0,1)}
$$

Blunders (-3)

B1 Correct answer without work (\&)
B2 Takes $y=0$ and finds x
B3 Transposition error
Slips (-1)
S1 Arithmetic slips to a max of 3
Misreading (-1)
M1 Takes K instead of L

Attempts (2marks)
A1 Graphical solution correct

(c)(iii)	5 marks	Att 2
$0+2(3)-6=6-6=0 \Rightarrow w(0,3)$ on K		

Blunders (-3)

B1 Correct answer without work ((๘)
B2 Mixes x and y in substitution
Slips (-1)
S1 Arithmetic slips to a max of 3
Attempts (2 marks)
A1 Graphical solution correct
A2 Any effort at substitution

Worthless (0)

W1 Graphical solution incorrect

Formula $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
|u w|= & \sqrt{(2-0)^{2}+(2-3)^{2}}=\sqrt{2^{2}+(-1)^{2}}=\sqrt{4+1} \text { or } \sqrt{5} \\
|u v|= & \sqrt{(2-0)^{2}+(2-1)^{2}}=\sqrt{2^{2}+1^{2}}=\sqrt{4+1} \text { or } \sqrt{5} \\
& |u w|=|u v|
\end{aligned}
$$

Blunders (-3)
B1 Correct answer without work ($£$)
B2 Incorrect relevant formula and continues
B3 Switches both x and y in substitution
B4 Substitutes correctly for x and y in each case but does not simplify
B5 $(-1)^{2} \neq 1$

Slips (-1)
S1 $|u w| \neq|u v|$ without a conclusion from work
S2 Arithmetic slips to a max of 3
Attempts(2 marks)
A1 Correct formula with or without some substitution
A2 Incorrect relevant formula with some correct substitution
A3 Effort at translation

QUESTION 3

Part (a)	10 marks	Att 3
Part (b)	$25(15,10)$ marks	Att $(5,3)$
Part (c)	$15(5,5,5)$ marks	Att $(2,2,2)$

Part (a)

10 marks

Att 3
The isosceles triangle shown in the diagram, has a base of length 12 cm and the other two sides are each 10 cm in length.
es
Find h, the perpendicular height of the triangle.

(a)

10 marks
Att 3

$$
10^{2}=h^{2}+6^{2} \Rightarrow h^{2}=64 \Rightarrow h=\sqrt{64} \text { or } 8 \mathrm{~cm}
$$

Blunders (-3)
B1 Correct answer without work ((2)
B2 Pythagoras incorrect
B3 Incorrect squaring
B4 $\quad h^{2}=64$ and stops
Slips (-1)
S1 Arithmetic slips to a max of 3
Attempts (3 marks)
A1 Pythagoras indicated
A2 Reference to 3, 4, 5 and stops
A3 Using 12 in any version of Pythagoras
A4 States $\frac{12}{2}=6$
(i) Prove that if two sides of a triangle are equal in measure, then the angles opposite these sides are equal in measure.
(ii) Each of the three figures labelled A, B and C shown below in the box on the right is the image of the figure shown in the box on the left under a transformation. For each of A, B and C, state what the transformation is (translation, central symmetry, axial symmetry or rotation) and in the case of a rotation, state the angle.

(b)(i) 15 marks

Att 5

Given: Triangle abc with $|a b|=|b c|$
To prove: $|<b a c|=|<b c a|$
Construction: Construct [bd], where d is the midpoint of $[a c]$ step1
Proof: Taking $\Delta a b d$ and $\Delta b c d, \quad|a b|=|b c|$ (given)

$$
\begin{array}{ll}
|b d|=|b d|(\text { same line segment }) & \text { step2 } \\
|d a|=|d c|(d \text { midpoint }[a c] & \text { step3 }
\end{array}
$$

$\Delta a b d$ and $\Delta b c d$ congruent by SSS step4
$\Rightarrow|<b a c|=|<b c a| \quad$ step5
or Construction: From b drop a perpendicular to $[a c]$ intersecting $[a c]$ at d step1
Proof: Taking $\Delta a b d$ and $\Delta b c d,|a b|=|b c|$ (given)
$|b d|=|b d|$ (same line segment) step2
$|<b d a|=|<b d c|$ (both right angles) step3

$\Delta a b d$ and $\Delta b c d$ congruent by RHS step4
$\Rightarrow|<b a c|=|<b c a| \quad$ step5
or Construction: Let the bisector of $<a b c$ meet $[a c]$ at d step1
Proof: Taking $\Delta a b d$ and $\Delta b c d,|a b|=|b c|$ (given)

$$
\begin{array}{lc}
|b d|=|b d|(\text { same line segment }) & \text { step2 } \\
|<a b d|=|<c b d| \text { (Construction) } & \text { step3 } \\
\Delta a b d \text { and } \Delta b c d \text { congruent by SAS } & \text { step } 4 \\
\Rightarrow|<b a c|=|<b c a| & \text { step } 5
\end{array}
$$

* Some steps may be indicated on the diagram

Blunders(-3)

B1 Each step incorrect or omitted
B2 Each step incomplete

Attempts (5marks)

A1 Diagram with triangle drawn and equal sides indicated

Worthless(0)

W1 Wrong Theorem
W2 Triangle and nothing else
(b)(ii) 10 marks
Att 3
A Axial Symmetry
B Central Symmetry or Rotation 180°
C Rotation 90° (clockwise) or 270° (anti-clockwise)

* Accept angle of rotation without reference to clockwise or anticlockwise
* One correct transformation 4 marks
* Two correct transformations 7 marks
* Three correct transformations 10 marks

Slips (-1)

S1 No angle or incorrect angle of rotation
Attempts (3 marks)
A1 Any attempt at drawing the original figure under one of the given transformations

In the triangle $a b c, b c \| d e,|a e|=|d e|=6$ and $|b d|=1 / 2|c e|$.

$$
|b c|=10 .
$$

(c)(i)

$$
\frac{6}{|a c|}=\frac{6}{10} \Rightarrow|a c|=10 \Rightarrow|c e|=4
$$

Blunders(-3)
B1 Correct answer without work (
B2 $\quad \frac{6}{|e c|}=\frac{6}{10}$
B3 $\quad \frac{|a c|}{6}=\frac{6}{10}$ or equivalent
B4 Transposition error
Slips (-1)
S1 Arithmetic slips to a max of 3
Attempts (2marks)
A1 $|a c|=10$ and stops
A2 Any effort at a relevant ratio

Worthless (0)
W1 $|c e|=10$ without work shown

$$
\frac{|a d|}{2}=\frac{6}{4} \quad \Rightarrow|a d|=3
$$

Blunders(-3)
B1 Correct answer without work (๕)
B2 $\quad|d b| \neq 1 / 2|e c|$
B3 $\frac{|a d|}{2}=\frac{6}{10}$ or equivalent
B4 $\frac{|a d|}{2}=\frac{4}{6}$ or equivalent
B5 Transposition error
Slips (-1)
S1 Arithmetic slips to a max of 3
Attempts (2marks)
A1 Some effort at ratio and stops
A2 $|d b|=2$ and stops
Worthless (0)
W1 $|a d|=6$ without work
(c) (iii) 5 marks

Att 2

$$
|a b|=|a d|+|d b|=3+2 \text { or } 5
$$

Blunders (-3)
B1 Correct answer without work (e)
B2 Inverted ratio
Slips (-1)
S1 Arithmetic slips to a max of 3
Misreadings (-1)
M1 Finding $|a c|$
Attempts (2 marks)
A1 Addition of more sides than required (work shown)

QUESTION 4

Part (a)	$10(5,5)$ marks	Att (2,2)
Part (b)	20 marks	Att 7
Part (c)	$20(5,10,5)$ marks	Att $(2,3,2)$
Part (a)	$10(5,5)$ marks	Att (2,2)

$[a b]$ is the diameter of a circle of centre o.
$|\angle o c b|=50^{\circ}$.
(i) Find $|\angle b o c|$.
(ii) Find $|\angle b a c|$.

(a)(i)

Att 2

$$
\begin{aligned}
|o c|=|o b| \Rightarrow|<o c b|=|<o b c|=50^{\circ} \Rightarrow & |\angle b o c|=180^{\circ}-\left(50^{\circ}+50^{\circ}\right) \\
& |\angle b o c|=80^{\circ}
\end{aligned}
$$

* Accept work on diagram

Blunders(-3)
B1 Correct answer without work ($₫$)
B2 Sum of angles in triangle $\neq 180^{\circ}$
B3 Incorrectly indicates equal sides in isosceles triangle
Slips
S1 Arithmetic slips to a max of 3

Attempts(2 marks)

A1 $|o c|=|o b|$ indicated and stops
A2 Angle sum of triangle $=180^{\circ}$

Worthless(0)

W1 Assumes any angle in $\Delta o c b$ is a right angle and stops

$$
\begin{aligned}
& |<a c o|=40^{\circ} \text { since }|<a c b|=90^{\circ} \text { (angle in semi-circle) } \\
& |a o|=|c o|(\text { radii }) \\
& \quad \Rightarrow|\angle b a c|=40^{\circ}
\end{aligned}
$$

* Accept any correct approach

Blunders (-3)
B1 Correct answer without work (
B2 Sum of angles in triangle $\neq 180^{\circ}$
B3 Incorrectly indicates equal sides in isosceles triangle
B4 $|<a c b| \neq 90^{\circ}$
Slips
S1 Arithmetic slips to a max of 3
Attempts (2 marks)
A1 Indicates sum of angles in a triangle equals 180°
A2 Identifies $|a c b|$ right angle
A3 States straight line angle $=180^{\circ}$ and stops

Worthless (0)

W1 Assumes any angle in Δ oac is a right angle

Prove that the measure of the angle at the centre of the circle is twice the measure of the angle at the circumference, standing on the same arc.
(b)

20 marks

Att 7

Given: Circle C, centre c, with points a, b, d on arc
Construction: Join $a c, b c, a d, b d$
Join $d c$ and produce to x Step1
To prove: $|<a c b|=2|<a d b|$

Proof:
$|a c|=|c d|$. both radii
$\Rightarrow|<c a d|=|<a d c|$ angles in isosceles triangle step 2
But $|<a c x|=|<c a d|+|<a d c|$
exterior $=$ sum interior opposites \quad step 3
$\Rightarrow|<a c x|=2|<a d c| \quad$ step 4
Similarly $|<b c x|=2|<b d c| \quad$ step 5
$\Rightarrow|<a c x|+|<b c x|=2|<a d c|+2|<b d c|$
$\Rightarrow|<a c b|=2|<a d b| \quad$ step 7

* Some steps may be indicated on diagram

Blunders(-3)

B1 Each incorrect or omitted step
B2 Each step incomplete
B3 Theorem proven for angle in semicircle

Attempts (7marks)

A1 Diagram with angle at centre and/or angle at arc indicated
A2 Diagram with angle in a semicircle
$[a b]$ and $[c d]$ are chords of the
circle as shown and $|a b|=|c d|$.
The chords $[a d]$ and $[b c]$ intersect at the point e.
(i) \quad State why $|\angle b a d|=|\angle b c d|$.
(ii) Prove that the triangles $b a e$ and dce are congruent.
(iii) Prove $|a d|=|b c|$.

(c) (i)

5 marks
Att 2
Same arc

Attempts (2marks)
A1 Indicates angle at centre of circle

Worthless (0)

W1 Assumes e is centre of circle
W2 States that angles are alternate angles
(c) (ii)

10 marks

Att 3

$|\angle b a d|=|\angle b c d|$ (given)
$\begin{array}{ll}|a b|=|c d| \text { given } & \text { step } 1 \\ \mid<\text { abc }|=|<\text { adc } \mid(\text { on arc ac) or } \mid<\text { aeb }|=|<\text { ced } \mid(\text { vertically opposite) }) & \text { step } 2\end{array}$
step 1
Triangles bae and dce are congruent by ASA
step 3

* Some steps may be indicated on diagram drawn by candidate

Blunders (-3)

B1 Correct answer without work (es)
B2 Each step incorrect or omitted
B3 Each step incomplete

Attempts (3marks)

A1 Diagram with triangles drawn and equal angles from (c)(i) indicated

Worthless (0)

W1 Diagram from examination paper either partially or totally drawn
W2 $[a b]$ and $[c d]$ parallel and stops

$$
\begin{aligned}
& |a e|=|c e| \text { and }|b e|=|e d| \text { due to congruent triangles in (c)(ii) } \\
& |a e|+|e d|=|c e|+|b e| \\
& |a d|=|b c| .
\end{aligned}
$$

Blunders (-3)

B1 Correct answer without work (
B2 $|a e| \neq|c e|$ and/or $|b e| \neq|e d|$
Attempts (2 marks)
A1 Expression in terms of ratios
A2 $\quad|a d|=|a e|+|e d|$ and stops
Worthless (0)
W1 Assuming either or both triangles are isosceles triangles
W2 Taking e as centre of circle

QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	$20(5,10,5)$ marks	Att $(2,3,2)$
Part (c)	$20(10,5,5)$ marks	Att (3,2,2)

Part (a)
10 marks
Att 3
If $\sin A=-\frac{1}{2}$, find the two values for the angle A, where $0^{\circ} \leq A \leq 360^{\circ}$.
(a)

10 marks
Att 3

$$
\begin{aligned}
& \operatorname{Sin} A=-\frac{1}{2} \text { in } 3^{\text {rd }} \text { and } 4^{\text {th }} \text { Quadrants } \\
& A \quad=180^{\circ}+30^{\circ} \quad \text { and } 360^{\circ}-30^{\circ}=210^{\circ} \text { and } 330^{\circ} .
\end{aligned}
$$

Blunders (-3)

B1 Correct answer without work ($(\underset{\text { B }}{ }$
B2 Second value of A not found
B3 Value(s) of A not in range $0^{\circ} \leq A \leq 360^{\circ}$
B4 Identifies incorrect quadrant(s)
Slips (-1)
S1 Arithmetic slips to a max of 3
Attempts (3 marks)
A1 Circle with all four quadrants indicated
A2 Some indication of the use of 30°
A3 Right angled triangle with A, $-1,2$ indicated
A4 Sine $A=\frac{o p p}{h y p}$

Worthless (0)

W1 Incorrect answer without work

In the diagram opposite, abcd represents the course taken in a triathlon. Competitors must swim the 9 km from a to b, then run the 12 km from b to c and cycle from c to d and back to a.
$|\angle a d c|=36 \cdot 87^{\circ}$.

(i) Find the distance from a to c.
(ii) Find the distance from c to d, correct to the nearest km .
(iii) Find the total length of the course.
(b)(i)

$$
\begin{gathered}
|a c|^{2}=9^{2}+12^{2}=81+144=225 \\
|a c|=\sqrt{225} \text { or } 15 \mathrm{~km}
\end{gathered}
$$

Blunders (-3)
B1 Correct answer without work (e)
B2 Pythagoras incorrect
B3 Incorrect squaring
B4 $|a c|^{2}=225$ and stops
Slips (-1)
S1 Arithmetic slips to a max of 3

Attempts (2 marks)

A1 Pythagoras indicated
A2 Reference to 3,4,5 and stops
A3 Calculates $|<a c b|$ or $|<c a b|$ and stops
Worthless (0)
W1 Assigning a value to either $<b a c$ or $<b c a$ (with or without further work)

$$
\begin{array}{ll}
\text { Tan } 53.13^{\circ}=\frac{|c d|}{15} \Rightarrow|c d|=15 \operatorname{Tan} 53.13^{\circ} & \text { or }
\end{array} \quad \text { Tan36.87 }=\frac{15}{|c d|}, \begin{array}{ll}
=15(1.333)=19.999 \mathrm{~km} & \Rightarrow|c d|=\frac{15}{\operatorname{Tan} 36.87^{0}}=\frac{15}{0.75} \\
|c d|=19.999 &
\end{array}
$$

$$
|c d|=20 \mathrm{~km} \text { to nearest } \mathrm{km}
$$

Blunders (-3)

B1 Correct answer without work (es)
B2 Incorrect ratio for Tan function
B3 Error in cross multiplication
B4 Reads wrong page of tables or uses calculator in incorrect mode

Slips (-1)

S1 Arithmetic slips to a max of 3
S2 Slip reading tables (wrong column)
S3 Fails to distinguish between degrees and minutes and degrees in decimal form

Attempts (3marks)

A1 Indicates use of $|c d|$ in a ratio
A2 Indicates use of 15 or equivalent in a ratio
A3 Tan $A=\frac{o p p}{a d j}$ or $\operatorname{Tan} 36.87^{\circ}$ or $\operatorname{Tan} 53.13^{\circ}$ and stops
(b)(iii)

5 marks
Att 2

$$
\begin{array}{rlr}
|a d|^{2}=20^{2}+15^{2}=400+225=625 \mathrm{~km} & \text { or } & \operatorname{Sine} 36.87^{\circ}=\frac{15}{|a d|} \\
|a d| \quad=25 \mathrm{~km} & |a d|=\frac{15}{0.6}=25 \mathrm{~km}
\end{array}
$$

$$
\text { Total }=12+9+20+25=66 \mathrm{~km}
$$

Blunders (-3)
B1 Correct answer without work ($₫$)
B2 Pythagoras incorrect
B3 Incorrect squaring
B4 $|a d|^{2}=625$ and stops
B5 Incorrect ratio for Trig function
B6 Error in cross multiplication
B7 Reads wrong page of tables or uses calculator in incorrect mode
B8 Incorrect ratio for Sine Rule

Slips (-1)

S1 Arithmetic slips to a max of 3
S2 Each side omitted in sum after calculation of $|a d|$
S3 $|a c|$ included in sum
Attempts (2 marks)
A1 Pythagoras indicated
A2 Reference to $3,4,5$ and stops
Part (c)

The diagram shows an office block built on a river bank. From a point on the opposite river bank the angle of elevation of the top of the office block is 30°. From a point

12 m further back the angle of elevation is 20°.
(i) Find x, correct to 2 decimal places.
(ii) Find h, the height of the office block, correct to 2 decimal places.
(iii) Find w, the width of the river, correct to 2 decimal places.
(c) (i)

10 marks
Att 3

$$
\begin{aligned}
\frac{\text { Sine } 10^{0}}{12} & =\frac{\text { Sine } 20^{0}}{x} \\
x & =\frac{12 \text { Sine } 20}{\text { Sine } 10^{0}} \\
& =\frac{12(\cdot 342)}{\cdot 1736} \\
& =23.6405=23.64 \mathrm{~m} \text { to } 2 \text { decimal places }
\end{aligned}
$$

Blunders (-3)

B1 Correct answer without work (es)
B2 Incorrect ratio in use of Sine Rule
B3 Error in cross multiplication
B4 Reads wrong page of tables or uses calculator in incorrect mode
B5 Early rounding off which affects the answer
Slips (-1)
S1 Arithmetic slips to a max of 3
S2 Answer not to 2 decimal places
Attempts (3marks)
A1 Sine Rule with some substitution
A2 Identifies 150° or 10°
Worthless (0)
W1 Treats triangle as right angled

(c) (ii)

5 marks
Att 2

$$
\text { Sine } 30^{\circ}=\frac{h}{x}=\frac{h}{23 \cdot 64} \Rightarrow h=23 \cdot 64 \text { Sine } 30^{\circ}=23 \cdot 64(\cdot 5)=11 \cdot 82 \mathrm{~m}
$$

Blunders (-3)
B1 Correct answer without work (\&)
B2 Incorrect ratio for Trig function
B3 Error in cross multiplication
B4 Reads wrong page of tables or uses calculator in incorrect mode
B5 Rounding early which affects answer

Slips (-1)

S1 Arithmetic slips to a max of 3
S2 Answer not to two decimal places
Attempts (2marks)
A1 Indicates use of h in a ratio
A2 Indicates use of 23.64 or equivalent in a ratio
A3 $\operatorname{Tan} 30^{\circ}=\frac{h}{w}$ or $\operatorname{Tan} 60^{\circ}=\frac{w}{h}$ or writes value of $\operatorname{Tan} 30^{\circ}$ or $\operatorname{Tan} 60^{\circ}$

$$
\begin{gathered}
x^{2}=h^{2}+w^{2} \Rightarrow \quad 23 \cdot 64^{2}=11 \cdot 82^{2}+\mathrm{w}^{2} \\
\mathrm{w}^{2}=558 \cdot 8496-139 \cdot 7124=419 \cdot 1372 \\
w=20 \cdot 47284=20 \cdot 47 \mathrm{~m} \text { to } 2 \text { decimal places }
\end{gathered}
$$

* This solution can be achieved in a variety of ways using trigonometric methods

Blunders (-3)

B1 Correct answer without work (\AA)
B2 Pythagoras incorrect
B3 Incorrect squaring
B4 $w^{2}=419 \cdot 1372$ and stops
B5 Incorrect ratio for Trig function
B6 Error in cross multiplication
B7 Reads wrong page of tables or uses calculator in incorrect mode
B8 Incorrect ratio for Sine Rule
B9 Early rounding which affects answer
Slips (-1)
S1 Arithmetic slips to a max of 3
S2 Calculates $w+12$ and stops
S3 Answer not to two decimal places
Attempts (2 marks)
A1 Pythagoras indicated
A2 Indicates use of h and/or x values in a ratio

QUESTION 6

Part (a)	10 marks	Att 3
Part (b)	$20(10,5,5)$ marks	Att $(3,2,2)$
Part (c)	$20(5,5,10)$ marks	Att $(2,2,3)$

Part (a)
10 marks
Att 3
In 4 games, a soccer player scored 1, x, 4 and 3 goals respectively.
The mean number of goals scored by the player per game was 2 .
es
Find the number of goals scored in the second game i.e. the value of x.
(a)

10 marks
Att 3

$$
\frac{1+x+4+3}{4}=2 \Rightarrow 8+x=8 \Rightarrow \quad x=0
$$

Blunders (-3)

B1 Correct answer without work (\varangle)
B2 Incorrect denominator
B3 Error in transposition
B4 $8 x$ in numerator
B5 12x in numerator
Slips (-1)
S1 Arithmetic slips to a max of 3
Attempts (3 marks)
A1 Adds some or all of the numbers
A2 Indication of division by 4
A3 $\frac{1+x+4+3}{4}$ and stops

Over a period of one month, the owner of a factory recorded the number of days that each of his 50 employees was absent from work. The following table shows the results.

No. days absent	0	1	2	3	4	5
No. of employees	7	9	11	12	7	4

(i) Find the mean number of days the employees were absent.
(ii) Find the percentage of employees who were absent for more than the mean number of days.
(iii) Write down the mode.
(b) (i)

10 marks
Att 3

$$
\begin{aligned}
& \frac{7(0)+9(1)+11(2)+12(3)+7(4)+4(5)}{7+9+11+12+7+4} \\
& \frac{0+9+22+36+28+20}{50}=\frac{115}{50}=2 \cdot 3
\end{aligned}
$$

Blunders (-3)
B1 Correct answer without work (()
B2 Transposition error
B3 Division by 6
B4 Division by 15 (sum of class intervals)
B5 Consistently adds interval value to frequency instead of multiplying
B6 $\quad \frac{50}{115}$ and continues
Slips (-1)
S1 Arithmetic slips to a max of 3
Attempts (3 marks)
A1 One correct multiplication in numerator
A2 Indicates use of 50
A3 Sum of frequencies divided by 6
Worthless (0)
W1 $\frac{15}{6}$
(b) (ii)
Percentage greater than mean $=\frac{(12+7+4) \cdot 100}{50} \quad=46 \%$

* Accept candidates answer from b(i)

Blunders (-3)

B1 Correct answer without work (\&)
2 Divisor other than 50
B3 Not applying percentage to answer
Slips (-1)
S1 Arithmetic slips to a max of 3
S2 Omits one of the relevant values above mean
Attempts (2 marks)
A1 Indicates division by 50
A2 Adds two or more relevant values
A3 Indicates some use of 100
(b) (iii)
Mode $=3$.

Blunders (-3)
B1 Mode $=12$

Attempts (2 marks)

A1 Indication of division by 2
A2 Rearranges frequencies and finds the mode of these

Part (c)

The distribution of the ages of people living in an apartment block is shown in the histogram below.

(i) Given that there are 10 people in the $0-10$ age group, copy and complete the frequency table below.

Ages in years	$0-10$	$10-20$	$20-25$	$25-30$	$30-50$
No. of people	10				

[Note: 10 - 20 means 10 years or more but less than 20 years old, etc.]
(ii) Copy and complete the cumulative frequency table below.

Ages in years	<10	<20	<25	<30	<50
No. of people					

(iii) Construct an ogive and use it to estimate the median age.
(c) (i)

5 marks
Att 2
(i)

Ages in years	$0-10$	$10-20$	$20-25$	$25-30$	$30-50$
No. of people	10	$\mathbf{1 5}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{1 0}$

Blunders (-3)
B1 One box $=0.8$ and continues
Slips (-1)
S1 Arithmetic slips to a max of 3
S2 Each incorrect entry
Attempts (2 marks)
A1 8, 12, 12, 16, 8 for frequencies
A2 One box $=1.25$ and stops
A3 Work with base and stops
Worthless (0)
W1 Copies table and stops without making any further entries

Ages in years	<10	<20	<25	<30	<50	
No. of people	$\mathbf{1 0}$	$\mathbf{2 5}$	$\mathbf{4 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$	

* Accept candidate's frequency table

Blunders (-3)
B1 Subtracting frequencies instead of adding
Slips (-1)
S1 Arithmetic slips to a max of 3
S2 Each incorrect entry
Attempts (2 marks)
A1 Any one value filled correctly into table
A2 Any indication of addition of frequencies
Worthless (0)
W1 Copies table and stops
W2 Repeats (c) (i) table
(c) (iii)

* Accept median clearly marked on graph
* Accept median in the range 20-25 years

Blunders (-3)
B1 Incorrect scales
B2 Plots points but not joined
B3 Draws a 'cumulative' histogram
B4 Draws a 'cumulative' cumulative ogive
B5 Line drawn from incorrect starting point of correct axis for median
B6 Uses horizontal axis for starting point for median
Slips (-1)
S1 Each incorrect plot
S2 Each point omitted
S3 Work for median correct but outside tolerance
Attempts (3 marks)
A1 Correct scale on base axis

