

JUNIOR CERTIFICATE EXAMINATION 2006 MATHEMATICS - HIGHER LEVEL - PAPER 1 MARKING SCHEME

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips- numerical errors (-1)
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

QUESTION 1

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 6
Part (c)	20 marks	Att 6

Part	(a)	10 marks	Att 3
(a)	The	price of a DVD increases from $\notin 12 \cdot 50$ to $\notin 13 \cdot 75$.	
	Ľ	Express this increase as a percentage of the original price.	

(a) 10	marks Att 3
Ι	II
Increase = $\notin 13.75 - \notin 12.50 = \notin 1.25$ Percentage Increase = $\frac{1.25}{12.50} \times 100 = 10\%$	$\frac{13.75}{12.50} = 1.10 \Longrightarrow 110\%$
	Increase = 10%

Blunders (-3)

- B2 Each error in decimal point
- B3 Stops at $\frac{1}{10}$ (Method I) or 1.10 (Method II)
- B4 Expresses as a percentage of €13.75. Note: With work stops at 0.909 incurs B3 also

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (3 marks)

A1 Finds $\in 1.25$ and stops - with work

Worthless (0)

Part	(b)(i)	10 marks	Att 3
(b)	(i)	 The time taken by Jack to travel from Derry to Waterford, a distance of 378 km, is 6 hours. His return journey from Waterford to Derry, by the same route, takes an extra 45 mins. 	?

(i)	Outward journey	Inward journey
	(Derry -Waterford)	(Waterford -Derry)
	Speed = $\frac{378 \text{km}}{6\text{h}}$ = 63km/h	Speed = $\frac{378 \text{km}}{6.75 \text{h}} = 56 \text{km/h}$
	Difference	63 km/h - 56 km/h = 7 km/h

* Candidates may offer other correct versions

Blunders (-3)

- B1 Correct answer but no work shown (\mathscr{A})
- B2 Error in S/D/T formula once only
- B3 Each different conversion error e.g. uses 6.45h for inward journey
- B4 Fails to calculate reduction in speed
- B5 Each error in decimal point

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Stops at 63 km/h-56 km/h

Misreadings (-1)

M1 Correct answer but not in km/h e.g. 116.666 m/min or 1.9444 m/s

Attempts (3 marks)

		378km	., 378km
AI	Defines outward and/or inward speed only e.g.		and/or — and stops
	1 5 0	6h	6.75h

- A2 Correct expression for S/D/T
- A3 Converts 45 mins to 0.75 h and stops
- A4 States 1 hour = 60 minutes
- A5 Defines and calculates one speed only

Worthless (0)

W1 Incorrect answer and no work shown

Part (b)

Part (b) (ii)	10 marks	Att 3					
(b) (ii)	Jill has a gross income of €50000.						
	Her total income tax payable amounts to €10460.						
	The standard rate cut off point is €32 000.						
	The standard rate of tax is 20% and the higher rate is 42%.						
	K What are Jill's tax credits for the year?						

Part b (ii)		10	marks	Att 3
(ii)	€32000 @ 20%	=	€6400	
	€18000 @ 42%	=	€ <u>7560</u>	
	Total Tax	=	€ 13960	
	Tax Paid	=	€ 10460	
	Tax Credits	=	€3500	

* Candidates may offer other correct versions

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{A})
- B2 Each error in decimal point.
- B3 Mathematical error, e.g. 20% or 42% taken as some incorrect fraction. Note: May incur 2 blunders.
- B4 20% of some incorrect figure or 42% of some incorrect figure. Note: May incur 2 blunders.
- B5 Error in calculating total tax
- B6 Incorrect or no tax credits calculated

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Stops at €13960 €10460

Attempts (3 marks)

A1 Finds 20% correctly of some figure and stops -with work shown

A2 Writes
$$20\% = \frac{1}{5}$$

A3 Shows some knowledge of tax credits e.g. writes Tax Payable = Total tax - Tax credits

Worthless (0)

(c)10(5, 5) marksAtt (2,2)(c)(i) \swarrow By rounding to the nearest whole number, estimate the value of $\frac{\sqrt{42 \cdot 91 + 21 \cdot 3}}{17 \cdot 56 - 3 \cdot 7 \times 4 \cdot 2}$.Then, evaluate $\frac{\sqrt{42 \cdot 91 + 21 \cdot 3}}{17 \cdot 56 - 3 \cdot 7 \times 4 \cdot 2}$, correct to two decimal places.

(c) (i) H	Estimate				5 marks	Att 2
(i)	$\frac{\sqrt{43+21}}{18-16} =$	$=\frac{\sqrt{64}}{2}=$	$\frac{8}{2}$	= 4.		

* Accept rounding down / up of final answer.

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each error in decimal point.
- B3 Each different error in precedent.
- B4 Mathematical error eg $\sqrt{43+21}$ as $\sqrt{43} + \sqrt{21}$ or $\sqrt{-12}$ taken as $\frac{1}{2}$ or invalid cancelling

Slips (-1)

- S1 Numerical errors to max of 3
- S2 Error in rounding to the nearest whole number, (e.g. 42.91 rounds to 42) each time to a max of 3
- S3 With work stops at $\frac{8}{2}$

Attempts (2 marks)

A1 Some correct rounding to nearest whole number.

Worthless (0)

(c) (i) Evaluate	5	marks		Att 2
(i)	$\frac{\sqrt{64.21}}{17.56 - 15.54} = \frac{8.013}{2.02}$	=	3.966=	3.97.	
*	Do not penalise same error if already	ady pe	enalised in E	Stimate above.	

* Accept correct answer without work

Blunders (-3)

- B1 Each error in decimal point
- B2 Each different error in precedent.
- B3 Mathematical error

Slips (-1)

- S1 Numerical errors to max of 3
- S2 Fails to round off or incorrect rounding or, early rounding off, which affects answer
- S3 Answer givens as 3.96 or 3.966 with no work shown

Attempts (2 marks)

A1 Some correct calculation done

Worthless (0)

- W1 Incorrect answer and no work shown but, note S3 above
- W2 3.9 or 4.0 without work

(c) (ii) 10	marks	Att 3		
 (ii) A sum of money was invested at compound interest for two years. The interest rate for each year was 5%. After the two years the sum amounted to €5512.50. 				
Calculate the original su	um of money invested.			
(c) (ii) 10	marks	Att 3		
(ii) $\notin 1$ amounts to $(1.05)^2 = \notin 1.1025$	I 2 5			
Sum invested = $\frac{00011}{1.102}$	$\frac{213}{25} = \text{€}5000$			
II A year 2 = $\notin 5512.50$ 105% of P year 2 P year 2 = $\frac{\notin 5512.50}{1.05}$ = $\notin 5250$ A year 1= $\notin 5250$ 105% of P year 1 P year 1 = $\frac{\notin 5250}{1.05}$ = $\notin 5000$	III P year 1 =100% I year 1 = 5% P year 2 = 105% I year 2 = 5.25% Amount = 110.25% 110.25% = €5512.5 100% = $\frac{€5512.5}{110.25} \times 100$ = €5000			

* Candidates may offer other correct versions- e.g. may use Compound Interest formula *Blunders* (-3)

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each error in decimal point
- B3 Working backwards subtracts 5% for each year, once only, with work (Answer €4975.03)
- B4 Stops at €5250 with work
- B5 Mathematical error

Slips (-1)

S1 Numerical errors to max of 3

Attempts (3 marks)

- A1 Ignores cumulating subtracts 10% of €5512.50 with work shown
- A2 States correct CI formula and stops -even though not required by syllabus
- A3 Mentions 105%

Worthless (0)

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 6
Part (c)	20 marks	Att 6

Part	a (a) 10 marks	Att 3
(a)	Derek processed 390 passport applications during the month of July. He processed 10% fewer applications during the month of August.	
	How many applications did he process in August?	

Part (a)	10 marks	
\mathbf{I} $390 \times 0.9 = 351 \qquad \text{or}$	II 10% = 39 390 - 39 = 351	

Blunders (-3)

- B1 Correct answer, but no work shown (\ll).
- B2 Each error in decimal point
- B3 Expresses 10% or 90% as incorrect fraction
- B4 Fails to subtract 39 or adds 39 to 390

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (3 marks)

- A1 States $10\% = \frac{1}{10}$ or similar
- A2 Mentions 90% with work

Worthless (0)

Part (b)		20 (10, 10) marks	Att 3, 3
(b)	70 teenage 30 had trav 26 had trav and 28 had 12 had trav 8 had trave while <i>x</i> ha 4 teenager Twice as r France and	ers responded to a survey about holiday destinations. velled to France, velled to Spain I travelled to Italy. velled to both France and Spain, elled to both Spain and Italy, d travelled to France and Italy only. s had travelled to all three countries. nany had never travelled to any of these destinations as had I Italy only.	ad travelled to
	(i) 💉	Represent the above information on a Venn diagram.	
	(ii) <i>K</i>	Find the number of teenagers who had travelled to Franc	e only.

* Special Case Marking

Blunders (-3)

B1 Each incorrectly placed or missing cardinal number from above

Attempts (3 marks)

- A1 Any one correct item in above
- A2 Draws Venn diagram of three intersecting circles and stops

(b) (ii)	10 marks	Att 3
(ii)		
	26 + (18 - x) + x + (20 - x) + 2x = 70 or equivalent	
	$64 + \boldsymbol{x} = 70$	
	x = 70 - 64	
	$\boldsymbol{x} = \boldsymbol{6}$	
	Number who travelled to, France only $18-6 = 12$	
* 10	ant andidated answers from above even if concretes frection and/or	nagativa

Accept candidates' answers from above even if generates fraction and/or negative answer, but see A1 below

Blunders (-3)

- B1 Correct answer, but no work shown (\mathbb{A}) .
- B2 Each different error in forming equation
- B3 Each different error in balancing equation
- B4 Fails to find number who travelled to 'France only'
- B5 Mathematical error

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (3 marks)

A1 Answer consistent with incorrect Venn diagram work at (i), but oversimplified

Worthless (0)

Part (c)		20 (10,10) marks Att	(3,3)
(c)	(i)	A merchant buys tea for $\notin 3 \cdot 29$ per kg and then sells it at a profit of 60% of the cost price to a customer in England. The exchange rate is £1 (sterling) = $\notin 1 \cdot 46$.	
	 ✓ Calculate the selling price of the tea in £ sterling, correct to two decimal places. (ii) The exchange rate changes to £1 (sterling) = €1 · 50. The selling pristerling, remains the same. 		
		Calculate the merchant's percentage profit in this case, correct to the nearest whole number.	

(c) (i)	10	marks Att 3
(i)	I	П
	$\in 3 \cdot 29 \times 1 \cdot 6 = \in 5 \cdot 264$	Works in £ sterling from start
	$\frac{\pounds 5 \cdot 264}{1.46} = \pounds 3 \cdot 605 = \pounds 3 \cdot 61$	$\frac{\cancel{\text{e}3} \cdot 29}{1 \cdot 46} = \pounds 2 \cdot 2534$
	or	$\pounds 2 \cdot 2534 \times 1 \cdot 6 = \pounds 3 \cdot 6054 = \pounds 3 \cdot 61$
	60%=€1.974	or
	$\in 3 \cdot 29 + \in 1 \cdot 974 = \in 5 \cdot 264$	$60\% \ of \ \pounds 2 \cdot 2534 = \pounds 1 \cdot 352$
	€5.264 52 605 - 52 61	Selling price = $\pounds 1 \cdot 352 + \pounds 2 \cdot 2534$
	$\frac{1}{1\cdot 46} = \texttt{L}5 \cdot \texttt{OUS} \approx \texttt{L}3 \cdot \texttt{OI}$	$= \pounds 3 \cdot 6054 \approx \pounds 3 \cdot 61$

* Candidates may offer other correct versions

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L})
- B2 Each error in decimal point
- B3 Incorrect fraction for 60%
- B4 Error in exchange rate e.g. multiplies to get £ sterling
- B5 Mishandle profit e.g. subtracts or fails to add
- B6 Mixes or works with two currencies each time.
- B7 Leaves answer as $\notin 5.26$ or $\notin 5.264$, fails to convert.

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Early rounding off that affects answer each time. Note: needs 4 decimal points in intermediate stages
- S3 Fails to round off or rounds off incorrectly

Attempts (3 marks)

- A1 Finds 60% of $\in 3.29$ with work and stops
- A2 Write 60% as a fraction/ decimal and stops
- A3 Calculates the exchange rate for $\in 1$ and stops -with work

Worthless (0)

(c) (ii)	10 marks	Att 3
New r	ate Sterling	
New income	€3 · 29	62 102
$\pounds 3 \cdot 61 \times 1 \cdot 50 = \pounds 5 \cdot 415$	1.5	$= \pm 2 \cdot 193$
$\Pr{ofit} = $	New Pr	$ofit = \pounds 3 \cdot 61 - \pounds 2 \cdot 193 = \pounds 1 \cdot 416$
% Pr of $it = \frac{2 \cdot 125}{3 \cdot 29} \times 100 = 64 \cdot 58\% \approx 65\%$	% Profi	$t = \frac{1 \cdot 416}{2 \cdot 193} \times 100 = 64 \cdot 56\% \approx 65\%$

- * Accept candidates' answer from part (i)
- * Candidates may offer other correct versions
- * Do not penalise the same error again in this section but see B6

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{A})
- B2 Each error in decimal point
- B3 Error in handling exchange rate
- B4 Calculates % of incorrect figure

B5 Fails to calculate %, stops at $\frac{2 \cdot 125}{3 \cdot 29} \times 100$ or equivalent

- B6 Mixes or works with two currencies each time.
- B7 Error in finding new profit

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Early rounding off that affects answer each time
- S3 Fails to round off or rounds off incorrectly

Attempts (3 marks)

A1 Correctly converts £3.61 or €3.29 using the new rate and stops - with work shown

Worthless (0)

QUESTION 3 Part (a) 10 marks Att (2,2) Att (3,3) Part (b) 20 marks Att (3,3) Part (c) 20 marks 5,5 marks Att 2,2 Part (a)

(i)	Simplify	$(64)^{\frac{3}{2}}$.
(ii)	Simplify	$(64)^{2/3}$.

(a)(i)	5 marks	Att 2
Ι	II	III
	$\frac{3}{1}$ $\frac{1}{1}$	Calculator
($(64)^{\overline{2}} = (64^3)^2 = 262144^2 = 512$	
$(64)^{\frac{3}{2}} - (64^{\frac{1}{2}})^{\frac{1}{2}} - 8^{3}$		$64^{1.5} = 512$
$(04)^2 - (04)^2 - 8$		
(or) $= 2^9$		
(or) $= 512$		

- Accept correct answer without work, no (\swarrow) Accept 8³, 2⁹ or 512 for full marks *
- *

Blunders (-3)

- B1 Each index error
- Finds 8 (I) or 262144 (II) only and stops B2

Attempts (2 marks)

- Writes $\frac{3}{2} = 1 \cdot 5$ A1
- A2 Some correct work with indices

Worthless (0)

W1
$$\frac{64 \times 3}{2}$$

(a)(ii) 5 marks Att 2 III Π Calculator $(64)^{\frac{2}{3}} =$ $(64)^{\frac{2}{3}} = (64^2)^{\frac{1}{3}} = 4096^{\frac{1}{3}} = 16$ $= 4^{2}$ 64 $64^{0.66} = 15.56$ accept (or) $=2^{4}$ (or) =16

Accept correct answer without work no (\mathscr{K}) Accept 4², 2⁴ and 16 for full marks. *

*

Blunders (-3)

Each index error B1

B2 Finds 4 (I) or 4096 (II) only and stops

Slip (-1)

Uses 0.6 or 0.7 in <u>calculator</u> - gives 12.125 and 18.38 respectively **S**1

Attempts (2 marks)

- Writes $\frac{2}{3} = 0.6 \text{ or } 0.7$ A1
- A2 Some correct work with indices

Worthless (0)

 64×2 W1 3

(b)	(10, 10) marks	Att(3,3)			
(b)	Let the cost of a meal for an adult be $\in x$ and the cost of a meal for a chi	ld be €y.			
	The cost of a meal for 3 adults and 2 children amounts to €125.				
	The cost of a meal for 2 adults and 3 children amounts to €115.				
	(i) Write down two equations in <i>x</i> and <i>y</i> to represent this information.				
	(ii) Solve these equations to find the cost of an adult's meal and the cost of a child's meal.				

(b) (i)	10 marks	Att 3
(i)	3x + 2y = 125	
	2x + 3y = 115	

* One correct equation merits 7 marks

Blunders (-3)

- B1 One correct equation only and stops
- Incorrect or missing term, once per equation Mathematical error B2
- B3

Attempts (3 marks)

- Writes 3x and /or 2x only A1
- A2 Writes 2y and/or 3y only

(b) (ii)	10 marks	Att 3
(ii)	3x + 2y = 125 x - 2 $-6x - 4y = -250$	
	$2x + 3y = 115 \mathbf{x} 3$ $6x + 9y = 345$	
	5y = 95	
	<i>y</i> =19	
	3x + 2(19) = 125	
	3x = 125 - 38	
	3x = 87	
	x = 29	
	Cost of adult's meal $=$ $\in 29$	
	Cost of child's meal $=$ $\in 19$	

* Accept candidates answers from (i) even if leads to negative values

* No standard work but verifies correct values in both equations accept for 10 marks

Blunders (-3)

- B1 Correct answer, but no work shown (🗷)
- B2 Each different error in balancing equations e.g. fails to multiply across completely
- B3 Mathematical error
- B4 Calculates the value of either *x* or *y* correctly and stops
- B5 Substitutes for incorrect variable at final step

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Finds y = 19 but substitutes some other value eg 1.9

Attempts (3 marks)

- A1 Some correct relevant work
- A2 5x = 125 x = 25 or similar, oversimplified
- A3 Writes *x* in terms of *y* or vice versa and stops

Worthless (0)

Part (c)			20 (10,10) marks	Att (3,3)
(c)	(i)	Ŕ	Express in its simplest form: $\frac{1}{2x-3} - \frac{1}{2x+3}.$	
	(ii)	Ľ	Hence, or otherwise, solve the equation: $\frac{1}{2x-3} - \frac{1}{2x+3} = \frac{6}{7}, x \in \mathbb{Z}.$	

Part (c)(i)			10 marks		Att 3
(i)	1	1	$\frac{1(2x+3)-1(2x-3)}{2}$	2x+3-2x+3	6
(1)	$(2\boldsymbol{x}-3)$	(2x+3)	$(2\boldsymbol{x}-3)(2\boldsymbol{x}+3)$	$(2\boldsymbol{x}-3)(2\boldsymbol{x}+3)$	(2x-3)(2x+3)

* Accept common denominator as (2x-3)(2x+3) - penalise incorrect multiplication in part c(ii)

Blunders (-3)

- B1 Correct answer, but no work shown (🖉)
- B2 Incorrect common denominator or mishandles common denominator
- B3 Each different error in distributive law
- B4 Mathematical /sign errors
- B5 Fails to add like terms in simplified numerator

Slips (-1)

S1 Numerical slips to a max of 3

Attempts (3 marks)

- A1 Correct common denominator and stops
- A2 Leaves out denominator

Worthless (0)

- W1 Incorrect answer and no work shown
- W2 Subtracts to get $\frac{0}{-6x}$

Part (c)(ii)

10 marks

6			
(2x-3)(2	$(x+3)^{-7}$		
$\frac{6}{2} = \frac{6}{2}$	6		
$4x^2 - 9$	7		
$24x^2 - 54 =$	= 42		
$24x^2 = 96$			
$x^{2} = 4$ or	$\boldsymbol{x}^2-4=0$	or	Formula
$x = \pm 2$	$(\boldsymbol{x} - 2)(\boldsymbol{x} + 2) = 0$		
	x = 2 or $x = -2$		

* If part (i) mishandled but correct common denominator in (ii) award attempt (3marks) for (i) - assuming 0 at part (i)

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L})
- B2 Incorrect common denominator e.g. error in multiplying out
- B3 Each different error in balancing the equation
- B4 Mathematical /sign errors
- B5 Incorrect factors
- B6 Incorrect roots from factors
- B7 Stops at $x^2 = 4$ or equivalent. Max loss after this point is 3 marks

Slips (-1)

- S1 Numerical errors to a max of 3
- S2 Only finds one solution

Attempts (3 marks)

- A1 Multiplies out common denominator correctly and stops
- A2 Solves a linear equation
- A3 Carries down answer from (i)

Worthless (0)

QUESTION 4

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 8
Part (a)	10 marks	Att 3
🙇 Express in	its simplest form:	
_	2x - [3 - (4 - 3x)] + 6.	
Part (a)	10 marks	Att 3
2x - [3 - (4 - 3x)] + 6	$\overline{6} = 2x - [3 - 4 + 3x] + 6 = 2x - 3 + 4 - 3x + 6 = 7$	- <i>x</i>

$$2x - [3 - (4 - 3x)] + 6 = 2x - 3 + (4 - 3x) + 6 = 2x - 3 + 4 - 3x + 6 = 7 - x$$

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{A})
- B2 Each different error in distributive law
- B3 Treats as an equation but award full marks if Left Hand Side is 7-x
- B4 Order of operation error if affects answer
- B5 Mathematical error e.g. gives 2x-3+4-3x+6 as 6x, or similar, but if happens after 7-x no penalty

Slips (-1)

S1 Numerical slips to a max of 3

Misreading (-1)

M1 Copies incorrectly but does not oversimplify

Attempts (3 marks)

Note: There must be some work of merit to award attempt

- A1 Simplifies/removes one bracket and stops
- A2 Substitutes a number for *x* and calculates value of expression

Worthless (0)

Part (b)	20 (10,5,5)marks	Att (3,2,2)
(i)	Solve $x^2 - 4x - 8 = 0$, giving your answer in the form $a \pm a\sqrt{b}$, where $a, b \in \mathbf{N}$.	
(ii)	Factorise $9x^2 - 16y^2$.	
(iii)	The length of one side of a rectangle is $x + 4$. The area of the rectangle is $x^2 + 16x + 48$. \swarrow Find an expression in <i>x</i> for the length of the other side.	
Part (b)(i)	10marks	Att 3

* Can be done by completing the square

Blunders (-3)

- B1 Correct answer, but no work shown (\mathbb{A})
- B2 Each error in quadratic formula
- B3 Each different incorrect substitution but b = 4 and $c = 8 \rightarrow$ one blunder
- B4 Mathematical error in sign e.g. (-4.1.-8) as -32
- B5 Mathematical error in squaring $(-4)^2$ as -8 or similar
- B6 Ignores a minus in square root e.g. $\sqrt{-48}$ taken as $\sqrt{48}$
- B7 Error in handling surds or no work with surds
- B8 Invalid cancelling answer given as $2 \pm 4\sqrt{3}$ or similar

B9 Stops at
$$\frac{4\pm 4\sqrt{3}}{2}$$

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (3 marks)

A1 Correct formula or incorrect relevant formula with some correct substitution and stops

Worthless (0)

- W1 Incorrect answer and no work shown
- W2 Tries to factorise

Part (b)(ii)

5 marks

(ii) $9x^2 - 16y^2 = (3x - 4y)(3x + 4y)$

* Accept correct answer and no work - no (\ll).

Blunders (-3)

- B1 Errors in sign. e.g. (3x+4y)(3x+4y)
- B2 Stops at 3x(3x+4y) 4y(3x+4y).
- B3 Incorrect factorisation of one term, e.g. (3x-16y)(3x+16y).
- B4 Answer given as (3x 4y) + (3x + 4y), but (3x 4y) and (3x + 4y) merits full marks

Attempts (2 marks)

- A1 Any correct factors of $9x^2$ and / or $16y^2$.
- A2 (9x-16y)(9x+16y).
- A3 Indicates some knowledge of the difference of two squares

Part (b)(iii)	5 marks	Att 2
(iii) $x^{2} + 16x + 48 = (x + 4)(x + 12)$		
(x+12) other side or	or	By formula, roots to find factors
$\boldsymbol{x}^2 + 16\boldsymbol{x} + 48 \div (\boldsymbol{x} + 4) = (\boldsymbol{x} + 12)$		

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L})
- B2 Incorrect other factor of $x^2 + 16x + 48$ with work shown
- B3 Each different error in indices and signs when dividing.
- B3 Each term omitted or incorrect when dividing
- B4 Each error in multiplication/subtraction when dividing

B5 Stops at roots when using quadratic formula

Note: If uses formula for solving a quadratic equation, apply blunders (-3) as in part b(i)

Attempts (2 marks)

- A1 States area = lb
- A2 Some effort at factorising
- A3 Indicates division
- A4 Pick a specific value for x to find other side not in terms of x

Worthless (0)

Part (c)		20 (5, 5, 5, 5) marks	Att (2,2,2,2)
(c)	A fa	rmer must feed bales of hay to his cattle for a total of 90 days.	
	He f	eeds the cattle 540 bales of hay over a number of days.	
	Thei	r average consumption over this period is x bales per day.	
	(i)	Write an expression in <i>x</i> for the number of days taken to consume	e
		the 540 bales.	
	If th	e average consumption is increased by 1 bale per day, then the ca	ttle consume 300
	bales	s in the remaining days.	
	(ii)	Write an expression in x for the number of days taken to consume	e
		the 300 bales.	
	(iii)	Using the above information, write an equation in <i>x</i> .	
	(iv)	\swarrow Solve this equation to find the value of <i>x</i> and the number of taken to consume the first 540 bales.	days

Part (c)(i)		5 marks	Att 2
(i)	540		
(1)	r		

Blunders (-3)

B1 Number of days = $\frac{x}{540}$

Attempts (2 marks)

A1 Gives answer as 540.*x*

A2 Any correct relevant step, e.g. trial and error, award once only in (i) and (ii)e.g. $\frac{540}{90} = 6$

Part (c)(ii)		5 marks	Att 2
(ii)	$\frac{300}{x+1}$	or $90 - \frac{540}{r}$	

Blunders (-3)

B1 Inverts e.g. $\frac{x+1}{300}$ but do not penalised if already blundered in (i)

B2 Uses *x* -1

B3 Sign error in 90 - $\frac{540}{x}$

Attempts (2 marks)

A1 Gives answer as 300(x+1)

Part	(c)(iii)	5 ma	arks	Att 2
(iii)	$\frac{540}{x} + \frac{300}{x+1} =$	90 or	equivalent	
*	Accept candidate's answe	er from (i) and (ii)	above	
ዯ	If no work, or no work of Att 2 from parts (i) and/or	merit, at parts (1)	and/or (11) but states above, award A	tt 2 and
Blun	ders (-3)			
B1	Sign error in setting up e	quation has $\frac{540}{x}$ -	$\frac{300}{x+1} = 90$	
B2	Expression not equal to 9	0		
<i>Slips</i> S1	(-1) Writes correct expression	with required term	ms but no equal sign	
Atten	npts (2 marks)			
Al	Incorrect expression but i	uses data from (1)	and (11)	
A2	$\frac{340}{x} + 90 - \frac{340}{x} = 90$			
Part	(c)(iv)	5 ma	ırks	Att 2
(iv)				
		$\frac{540}{x} + \frac{300}{x+1} = 90$		
		$540(\boldsymbol{x}+1)+300\boldsymbol{x}$	$=90(x^2+x)$	
		540 + 540x + 300x	$z = 90x^2 + 90x$	
		$90x^2 - 750x - 540$	0 = 0	
		$3\boldsymbol{x}^2-25\boldsymbol{x}-18=0$		
		(3x+2)(x-9)=0)	
		$\boldsymbol{x} = 9$		
		$\frac{540}{9} = 60$		
	Number of days $=$	60		
Blun	ders (-3)			
B1	Correct answer, but no w	ork shown (🗷)		
B2	Mathematical /sign error			
В3 В4	Each different error in ha	stributive law		
B4 B5	Correct factors and stops	rancing equation		
B6	Incorrect factors			
B7	Errors using quadratic for	rmula - see questi	on 4(b) (i)	
Slips	(-1)	1	× / ×/	
S1	Numerical errors to a may	x of 3		

S1 Numerical errors to a max of 3

S2 Leaves answer as 9

Attempts (2 marks)

A1 No quadratic due to previous errors merits attempt at most

Worthless (0)

QUESTION 5

Part	(a)	10 marks	Att 3
Part	(b)	20 marks	Att 7
Part (c)		20 marks	Att 8
Part	(a)	10 marks	Att 3
 (a) The temperature on Sunday is x°. The temperature rose by 3° each day. The temperature then dropped by 4° Ø Derive on expression in x for the 		x° . uch day for the next two days.	
		bed by 4° each day for the next three days. In x for the temperature on the fifth day (i.e. Friday).	

Part (a)			10 marks	Att 3
(a)	Sunday	=	x°	
	Monday	=	$x^{\circ}+3^{\circ}$	
	Tuesday	=	$x^{\circ} + 3^{\circ} + 3^{\circ} = x^{\circ} + 6^{\circ}$	
	Wednesday	=	$x^{\circ} + 6^{\circ} - 4^{\circ} = x^{\circ} + 2^{\circ}$	
	Thursday	=	$x^{\circ} + 2^{\circ} - 4^{\circ} = x^{\circ} - 2^{\circ}$	
	Friday	=	$x^{\circ} - 2^{\circ} - 4^{\circ} = x^{\circ} - 6^{\circ}$	
	or			
	$x^{\circ}+2(3^{\circ})-3(4^{\circ})$	$= x^{\circ}$	$+ 6^{\circ} - 12^{\circ} = x^{\circ} - 6^{\circ}$	

* Uses a specific value for x° on Sunday and gives the correct value for Friday, attempt (3) only, however if rewrites Friday value as a correct expression in x° accept for full mark

Blunders (-3)

- B1 Correct answer, but no work shown (\mathbb{A})
- B2 Each day omitted or incorrect
- B3 Mathematical error
- B4 Fails to simplify

Slips (-1)

S1 Numerical errors to max of 3

Attempts (3 marks)

- A1 Takes a particular value for *x* see note above *
- A2 Special cases 3+3-4-4 = -6 or 3x, 6x, 2x, -2x, -6x

Worthless (0)

Part (b)	20 marks	Att 7
(b)	Let <i>f</i> be the function $f: x \rightarrow 35x - 5x^2$. Draw the graph of <i>f</i> for $0 \le x \le 7$, $x \in \mathbf{R}$.	

20 marks

Att 7

		x = 0	1	2 3	4	5	6 7	l
	f(x)		30 3	50 60	60	50	30 0	
	$f(x) = 35x - 5x^2$							
f(0) = 3	$f(0) = 35(0) - 5(0)^2 = 0$ $f(1) = 35(1) - 5(1)^2 = 30$							
f(2) = 3	5(2)-5(2	$)^{2} = 50$	f((3) = 35(3)	$(-5(3)^2 =$	= 60		
f(4) = 3	5(4)-5(4	$)^{2} = 60$	f((5) = 35(5)	$-5(5)^2 =$	50		
f(6) = 3	5(6)-5(6	$)^{2} = 30$	f(7) = 35(7)	$-5(7)^2 =$: 0		
		, ,	<i>5</i>	, , ,				
x	0	1	2	3	4	5	6	7
35x	0	35	70	105	140	175	210	245
$-5x^2$	0	-5	-20	-45	-80	-125	-180	-245
f(x)	0	30	50	60	60	50	30	0

Blunders (-3)

Values for quadratic graph

B1 Each incorrect f(x) without work.

B2 x row added in, i.e. top row, or adds in extra row.

B3 Treating the domain as 0 < x < 7, can incur 2 Blunders if both omitted.

- B4 Each different blunder which yields an incorrect row (full or part), eg. $5(-x)^2$ or $(-5x)^2$ for $-5x^2$.
- B5 Avoids square for some (not all) values. See Attempts below
- B6 Mathematical errors in tots, e.g. 105 45 = -60, but apply once only.
- B7 Uses graph of $f: x \to 5x^2 35x$, avoids $5x^2$ or graph of $7x x^2$

Slips (-1)

S1 Numerical errors to a max. of 3.

Attempts (7 marks)

- A1 Omits $-5x^2$ or does not treat as $5x^2$, linear expression
- A2 Correct or partly correct table / values but no graph drawn.

Plotting the quadratic graph

* Accept candidate's values from the table.

Blunders (-3)

- B1 Points not joined to form a reasonable graph or 'flat top'.
- B2 (x, y) plotted as (y, x), but apply once only, or reverses axes.
- B3 Scale not reasonably uniform can apply to each axis
- B4 Each different blunder in plotting points from candidate's table / values.
- B5 Each point omitted
- B6 Points joined with straight lines.

Attempts (7 marks)

A1 Scaled axes drawn.

Part	(c)			20 (5,5,5,5) marks At	t (2,2,2,2)
	(c)	The	formu	la for the height, y metres, of a ball above ground level, x se	conds after
		it is f	ired v	rertically into the air, is given by:	
				$y = 35x - 5x^2.$	
		Use	your §	graph from part (b) to estimate:	
		(i)	Ľ	the maximum height reached by the ball	
		(ii)	Ľ	the height of the ball after $5 \cdot 5$ seconds.	
		0			
		On ty	vo oc	casions the ball is 20 metres above the ground.	
		(iii)	Ø	Use your graph from part (b) to estimate the two times when occurred.	n this
*	Note	: If gr	aph is	linear award at most attempts marks (2,2,2,0) in (c)	
Part	(c)(i)			5 marks	Att 2
(i)	Max	at $x =$	= 3 · 5	s $f: 3.5 \rightarrow 61 \text{ m}$	
*	Acce	pt ans	wer c	onsistent with candidates curve tolerance ± 2 but must be g	reater than
Blun	00 , s ders (-3)			
B1	No ii	ndicati	ion or	graph	
B2	Indic	ation	on gra	aph but no value given or value outside tolerance	
B3	x(tim	e) val	ue of	maximum only	
B4	Ansv	ver 60	if no	t already penalised for 'flat top' in part (b), graph	
Slins	(-1)				
Slps Sl	Give	s coor	dinate	es of maximum rather than maximum values	
Atter	npts (2	2mark	s)		
A1	Poin	t indic	ated o	on graph only	
Wort	thless	(0)			
W1	Ansv	ver ind	consis	tent with candidate's graph	
Part	(c)(ii)		5 marks	Att 2
(ii)	x	=	5.5	$f: 5 \cdot 5 \rightarrow 41 \mathrm{m}$	
*	Acce	ept ans	wer c	onsistent with candidates curve tolerance ± 2	
Blun	ders (-3)			
B1	No in	ndicati	ion or	graph	
B2	Indic	ation	on gra	aph but no value given or value outside tolerance	
Atter	Attempt (2)				
Al	Find	s from	func	tion only	
Part	(c)(III	l)		10 (5, 5) marks	Att (2, 2)
(iii)	f(x)	= 20	m	\rightarrow $x = 0.6 \text{ s and } x = 6.4 \text{ s}$	
* D1	Acce	ept ans	wer c	onsistent with candidates curve tolerance $\pm 0 \square B$	
Blun D1	Blunders (-3) P1 No indication on graph, each value				
DI R7	1 INO INDICATION ON GRAPH, CACH VALUE 1 Indication on graph but no value given or value outside tolerance, each time				
Atter	nnts ('	2 marl	on gra	ipin out no value given of value outside toterance, each time	
Al	Corr	ectly s	olves	f(x) = 20 by formula (Att 2 + Att 2)	
-			. 20		

QUESTION 6

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 8

Part (a)	10 marks	Att 3
(a)	Given that:	
	$v^2 = u^2 + 2as.$	
	\swarrow Write <i>s</i> in terms of <i>v</i> , <i>u</i> and <i>a</i> .	

Part (a)	10 marks	Att 3
	$v^2 = u^2 + 2as$	
	$v^2 - u^2 = 2as$	
	$\frac{v^2-u^2}{2a}=s$	
	$s = \frac{v^2 - u^2}{2a}$ or $s = \frac{u^2 - v^2}{-2a}$ or $s = \frac{v^2}{2a} - \frac{u^2}{2a}$ or equivalent	

Blunders (-3)

- B1 Correct answer, but no work shown (\mathbb{A}) .
- B2 Each different transposition error

B3 Stops at
$$-s = \frac{u^2 - v^2}{2a}$$

- B4 Replaces u, v and/or a by a numerical value each variable replaced, and then solves correctly
- B5 Mathematical error

S1 Stops at
$$2s = \frac{v^2 - u^2}{a}$$

Misreadings (-1) M1 Solves correctly for *a*

Attempts (3 marks)

- A1 Solves correctly for *u* or *v*
- A2 Assigns numerical values to *a*, *u* and *v* to find s correctly
- A3 Any correct transposition and stops

Part (b)(i)	10 marks	Att 3
(iii)	Factorise	$17x - 5x^2$.	
(ii)	Factorise	$6x^2 - 19x + 10$.	
(i)	\land Factorise	2l-kl + km-2m.	

	••	`	
	1		
۰.			

2l - kl + km - 2m = l(2-k) - m(2-k) = (l-m)(2-k)

$$2l - kl + km - 2m = 2l - 2m + km - kl = 2(l - m) - k(l - m) = (2 - k)(l - m)$$

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each different error in sign when factorising and/or regrouping
- B3 Stops at l(2-k)- m(2-k) or similar e.g. l(2-k)-m(-k+2)
- B4 Answer givens as (l-m)+(2-k) but (l-m) and (2-k) merits full marks
- B5 Error in factors l(2-k) + m(k-2) given as (2-k)(l+m) or similar

Attempts (3 marks)

- A1 Some effort at regrouping
- A2 Stops at l(2-k) + m(k-2) or similar

Worthless (0)

(ii) Round Brackets:	Big X	Guide Number
$6x^2 - 19x + 10$	$6x^2 - 19x + 10$	$6x^2 - 19x + 10$ GN = +60
=(3x-2)(2x-5)	3x -2	$=6x^2-15x-4x+10$
	2x -5	=3x(2x-5)-2(2x-5)
	=(3x-2)(2x-5)	$=(2\boldsymbol{x}-5)(3\boldsymbol{x}-2)$

Blunders (-3)

- B1 Incorrect factors of $6x^2$.
- B2 Incorrect factors of +10
- B3 Incorrect middle term
- B4 Leaves as

$$3x$$
 -2 -2 -5

or
$$3x(2x-5)-2(2x-5)$$

- B5 Gives factors as (3x-2) + (2x-5) but (3x-2) and (2x-5) merits full marks
- B6 Each error in quadratic formula -see Q4 (b) (i)
- B7 Each different mathematical error when using the quadratic formula

B8 Uses formula to get
$$x = \frac{2}{3}$$
 and $x = \frac{5}{2}$ and stops

B9 Incorrect factors from roots

Attempts (2 marks)

- A1 Any correct factors of $6x^2$ or +10
- A2 States correct quadratic formula and stops
- A3 Correct, Guide Number, and stops

Part (b)(iii)	5 marks	Att 2
(iii) $17x - 5x^2 = x(17 - 5x)^2$		
Note: If uses quadratic formula see	e Q4 (b) (i)	
Blunders (-3)		
	$(17, 5^2)$	

- B1 Distribution or sign error e.g. has $x(17-5x^2)$ D2 Einda and factor only a = (17, 5x)
- B2 Finds one factor only e.g. (17-5x)
- B3 States as x + (17-5x), but $x \underline{and} (17-5x)$ merits full marks

Attempts (2 marks)

- A1 Any correct factors of 17x or $-5x^2$
- A2 States correct quadratic formula and stops

(c) Let f be the function $f: x \to 1 - 3x$ and g be the function $g: x \to 1 - x^2$. (i) \swarrow Find f(-2) and g(5). (ii) \bowtie Express f(x+1) in the form ax + b, a and $b \in \mathbb{Z}$. (iii) \bowtie Solve for x:f(x+1) = f(-2) + g(5).

Part	(c)(i)	(5,5) marks		Att 2,2
(i)	f(-2) = 1 - 3(-2) = 7	$g(5) = 1 - (5)^2$	= 1 - 25 = -24	
*	Slips and blunders apply to each	h calculation		

Blunders (-3)

- B1 Correct answer without any work (🗷) each part
- B2 Each different mathematical error e.g. 5^2 as 10
- B3 Sign error

Slips (-1)

S1 Numerical errors to a max of 3, each part

Attempts (2 marks)

A1 Stops at f(-2) = 1 - 3(-2)

A2 Stops at $g(5) = 1 - 5^2$

Worthless (0)

W1 Incorrect answer and no work shown - each part

W2 Solves f(x) = 2 and/or g(x) = 5 - each part

Part (c)(ii)		5 marks	Att 2
(ii)	f(x+1)	= 1-3(x+1) = 1-3x-3 = -3x-2	

Blunders (-3)

- B1 Correct answer without any work (\mathscr{A})
- B2 Distribution error
- B3 Sign error
- B4 Mathematical error

Slips (-1)

S1 Numerical errors to a max of 3

Attempts (2marks)

- A1 Special case, lets x = numerical value and finds f(x+1) correctly
- A2 f(x+1) = f(x) + 1 = 2 3x or f(x+1) = f(x) + f(1) found correctly

Worthless (0)

- W1 Incorrect answer and no work shown
- W2 Solves f(x) = x + 1

Part (c)(iii)		5 marks	Att 2
(iii)	-3x-2 = 7 + (-24)		
	-3x = 7 - 24 + 2		
	-3x = -15		
	x = 5		
*	Accept candidates answers fro	om parts (i) and (ii)	

Blunders (-3)

- B1 Correct answer without any work (\mathbb{A})
- B2 Each different error balancing equation
- B3 Sign errors

Slips (-1)

S1 Numerical errors to max of 3

Attempts (2 marks)

A1 Any correct substitution in given equation

Worthless (0)