Coimisiún na Scrúduithe Stáit State Examinations Commission

JUNIOR CERTIFICATE EXAMINATION 2006
MATHEMATICS - HIGHER LEVEL - PAPER 1
MARKING SCHEME

GENERAL GUIDELINES FOR EXAMINERS

1. Penalties of three types are applied to candidates' work as follows:

- Blunders - mathematical errors/omissions
- Slips- numerical errors
- Misreadings (provided task is not oversimplified)

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.
2. When awarding attempt marks, e.g. Att(3), note that

- any correct, relevant step in a part of a question merits at least the attempt mark for that part
- if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
- a mark between zero and the attempt mark is never awarded.

3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
4. The phrase "hit or miss" means that partial marks are not awarded - the candidate receives all of the relevant marks or none.
5. The phrase "and stops" means that no more work is shown by the candidate.
6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
7. The sample solutions for each question are not intended to be exhaustive lists - there may be other correct solutions.
8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
9. The same error in the same section of a question is penalised once only.
10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
11. A serious blunder, omission or misreading results in the attempt mark at most.
12. Do not penalise the use of a comma for a decimal point, e.g. $€ 5.50$ may be written as $€ 5,50$.

QUESTION 1

Part (a)	$\mathbf{1 0}$ marks	Att $\mathbf{3}$
Part (b)	$\mathbf{2 0}$ marks	Att $\mathbf{6}$
Part (c)	$\mathbf{2 0}$ marks	Att $\mathbf{6}$
Part (a)	$\mathbf{1 0}$ marks	Att $\mathbf{3}$
(a)The price of a DVD increases from $€ 12 \cdot 50$ to $€ 13 \cdot 75$. Express this increase as a percentage of the original price.		

(a) $\mathbf{1 0}$ marks
\mathbf{I}
Increase $=€ 13 \cdot 75-€ 12 \cdot 50=€ 1 \cdot 25$
Percentage Increase $=\frac{1.25}{12.50} \times 100=10 \%$
:---

Blunders (-3)

B1 Correct answer but no work shown (S)
B2 Each error in decimal point
B3 Stops at $\frac{1}{10}$ (Method I) or 1.10 (Method II)
B4 Expresses as a percentage of $€ 13 \cdot 75$. Note: With work stops at 0.909 incurs B3 also
Slips (-1)
S1 Numerical errors to a max of 3

Attempts (3 marks)
A1 Finds $€ 1 \cdot 25$ and stops - with work
Worthless (0)
W1 Incorrect answer and no work shown
(b) (i) The time taken by Jack to travel from Derry to Waterford, a distance of 378 km , is 6 hours.
His return journey from Waterford to Derry, by the same route, takes an extra 45 mins.

By how many km / h is his average speed slower on the return journey?

(i) \begin{tabular}{ll}

Outward journey
(Derry - Waterford)
:---
(Waterford -Derry)

Speed $=\frac{378 \mathrm{~km}}{6 \mathrm{~h}}=63 \mathrm{~km} / \mathrm{h}$
\end{tabular}\quad Speed $=\frac{378 \mathrm{~km}}{6.75 \mathrm{~h}}=56 \mathrm{~km} / \mathrm{h}$

Difference $63 \mathrm{~km} / \mathrm{h}-56 \mathrm{~km} / \mathrm{h}=7 \mathrm{~km} / \mathrm{h}$
Candidates may offer other correct versions

Blunders (-3)

B1 Correct answer but no work shown ()
B2 Error in S/D/T formula - once only
B3 Each different conversion error e.g. uses 6.45 h for inward journey
B4 Fails to calculate reduction in speed
B5 Each error in decimal point

Slips (-1)
S1 Numerical errors to a max of 3
S2 Stops at $63 \mathrm{~km} / \mathrm{h}-56 \mathrm{~km} / \mathrm{h}$

Misreadings (-1)

M1 Correct answer but not in km / h e.g. $116.666 \mathrm{~m} / \mathrm{min}$ or $1.9444 \mathrm{~m} / \mathrm{s}$

Attempts (3 marks)

A1 Defines outward and/or inward speed only e.g. $\frac{378 \mathrm{~km}}{6 \mathrm{~h}}$ and/or $\frac{378 \mathrm{~km}}{6.75 \mathrm{~h}}$ and stops
A2 Correct expression for $\mathrm{S} / \mathrm{D} / \mathrm{T}$
A3 Converts 45 mins to 0.75 h and stops
A4 States 1 hour $=60$ minutes
A5 Defines and calculates one speed only

Worthless (0)

W1 Incorrect answer and no work shown

Part (b) (ii)
(b) (ii) Jill has a gross income of €50000.

Her total income tax payable amounts to $€ 10460$.
The standard rate cut off point is $€ 32000$.
The standard rate of tax is 20% and the higher rate is 42%.
\& What are Jill's tax credits for the year?

Part b (ii)
10 marks
Att 3
(ii)

$€ 32000 @ 20 \%$	$=$	$€ 6400$
€ $18000 @ 42 \%$	$=$	$€ 7560$
Total Tax	$=$	$€ 13960$
Tax Paid	$=$	$€ 10460$
Tax Credits	$=$	$€ 3500$

Candidates may offer other correct versions

Blunders (-3)

B1 Correct answer, but no work shown (S)
B2 Each error in decimal point.
B3 Mathematical error, e.g. 20\% or 42% taken as some incorrect fraction. Note: May incur 2 blunders.
B4 20% of some incorrect figure or 42% of some incorrect figure. Note: May incur 2 blunders.
B5 Error in calculating total tax
B6 Incorrect or no tax credits calculated
Slips (-1)
S1 Numerical errors to a max of 3
S2 Stops at $€ 13960-€ 10460$
Attempts (3 marks)
A1 Finds 20% correctly of some figure and stops -with work shown
A2 Writes $20 \%=\frac{1}{5}$
A3 Shows some knowledge of tax credits e.g. writes Tax Payable $=$ Total tax - Tax credits
Worthless (0)
W1 Incorrect answer and no work shown
(c) (i) By rounding to the nearest whole number, estimate the value of

$$
\frac{\sqrt{42 \cdot 91+21 \cdot 3}}{17 \cdot 56-3 \cdot 7 \times 4 \cdot 2}
$$

Then, evaluate $\frac{\sqrt{42 \cdot 91+21 \cdot 3}}{17 \cdot 56-3 \cdot 7 \times 4 \cdot 2}$, correct to two decimal places.
(c) (i) Estimate

5 marks
Att 2
(i) $\frac{\sqrt{43+21}}{18-16}=\frac{\sqrt{64}}{2}=\frac{8}{2}=4$.

Accept rounding down / up of final answer.

Blunders (-3)

B1 Correct answer, but no work shown (S).
B2 Each error in decimal point.
B3 Each different error in precedent.
 cancelling

Slips (-1)

S1 Numerical errors to max of 3
S2 Error in rounding to the nearest whole number, (e.g. $42 \cdot 91$ rounds to 42) each time to a max of 3
S3 With work stops at $\frac{8}{2}$
Attempts (2 marks)
A1 Some correct rounding to nearest whole number.

Worthless (0)
W1 Incorrect answer and no work shown

(c) (i) Evaluate

(i) $\quad \frac{\sqrt{64.21}}{17.56-15.54}=\frac{8.013}{2.02} \quad=\quad 3.966=3.97$.

* Do not penalise same error if already penalised in Estimate above.
* Accept correct answer without work

Blunders (-3)
B1 Each error in decimal point
B2 Each different error in precedent.
B3 Mathematical error

Slips (-1)

S1 Numerical errors to max of 3
S2 Fails to round off or incorrect rounding or, early rounding off, which affects answer
S3 Answer givens as 3.96 or 3.966 with no work shown
Attempts (2 marks)
A1 Some correct calculation done

Worthless (0)

W1 Incorrect answer and no work shown but, note S3 above
W2 3.9 or 4.0 without work
(ii) A sum of money was invested at compound interest for two years. The interest rate for each year was 5%. After the two years the sum amounted to $€ 5512 \cdot 50$.

Calculate the original sum of money invested.
(c) (ii)

10 marks
Att 3

* Candidates may offer other correct versions- e.g. may use Compound Interest formula Blunders (-3)
B1 Correct answer, but no work shown (2).
B2 Each error in decimal point
B3 Working backwards subtracts 5\% for each year, once only, with work (Answer €4975.03)
B4 Stops at $€ 5250$ with work
B5 Mathematical error

Slips (-1)

S1 Numerical errors to max of 3

Attempts (3 marks)

A1 Ignores cumulating - subtracts 10% of $€ 5512.50$ with work shown
A2 States correct CI formula and stops -even though not required by syllabus
A3 Mentions 105\%

Worthless (0)

W1 Incorrect answer and no work shown

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 6
Part (c)	20 marks	Att 6

Part (a)
10 marks
Att 3
(a) Derek processed 390 passport applications during the month of July. He processed 10% fewer applications during the month of August.
2 How many applications did he process in August?

Part (a)	10 marks	Att 3		
	\mathbf{I}	II		
	$390 \times 0 \cdot 9=351$	or		$10 \%=39$
:---				

Blunders (-3)

B1 Correct answer, but no work shown (S).
B2 Each error in decimal point
B3 Expresses 10% or 90% as incorrect fraction
B4 Fails to subtract 39 or adds 39 to 390

Slips (-1)
S1 Numerical errors to a max of 3
Attempts (3 marks)
A1 States $10 \%=\frac{1}{10}$ or similar
A2 Mentions 90% with work

Worthless (0)
W1 Incorrect answer and no work shown
(b)

70 teenagers responded to a survey about holiday destinations.
30 had travelled to France,
26 had travelled to Spain and 28 had travelled to Italy. 12 had travelled to both France and Spain, 8 had travelled to both Spain and Italy, while x had travelled to France and Italy only.
 4 teenagers had travelled to all three countries.
Twice as many had never travelled to any of these destinations as had travelled to France and Italy only.
(i) Represent the above information on a Venn diagram.
(ii) Find the number of teenagers who had travelled to France only.

Part (b) (i) 10 marks

Att 3
C=70

Special Case Marking

Blunders (-3)

B1 Each incorrectly placed or missing cardinal number from above
Attempts (3 marks)
A1 Any one correct item in above
A2 Draws Venn diagram of three intersecting circles and stops
(b) (ii)
(ii)

$$
\begin{aligned}
& 26+(18-x)+x+(20-x)+2 x=70 \text { or equivalent } \\
& 64+x=70 \\
& x=70-64 \\
& x=6
\end{aligned}
$$

Number who travelled to, France only $\quad 18-6=12$
Accept candidates' answers from above even if generates fraction and/or negative answer, but see A 1 below

Blunders (-3)

B1 Correct answer, but no work shown (s).
B2 Each different error in forming equation
B3 Each different error in balancing equation
B4 Fails to find number who travelled to 'France only'
B5 Mathematical error
Slips (-1)
S1 Numerical errors to a max of 3

Attempts (3 marks)
A1 Answer consistent with incorrect Venn diagram work at (i), but oversimplified
Worthless (0)
W1 Incorrect answer and no work shown
(c) (i) A merchant buys tea for $€ 3 \cdot 29$ per kg and then sells it at a profit of 60% of the cost price to a customer in England.
The exchange rate is $£ 1$ (sterling) $=€ 1 \cdot 46$.
L Calculate the selling price of the tea in $£$ sterling, correct to two decimal places.
(ii) The exchange rate changes to $£ 1$ (sterling) $=€ 1 \cdot 50$. The selling price, in sterling, remains the same.
25 Calculate the merchant's percentage profit in this case, correct to the nearest whole number.
(c) (i) 10 marks

(i) $\begin{aligned} & \text { I } \\ & € 3 \cdot 29 \times 1 \cdot 6=€ 5 \cdot 264 \\ & \frac{€ 5 \cdot 264}{1.46}=£ 3 \cdot 605=£ 3 \cdot 61 \end{aligned}$ or $\begin{aligned} & 60 \%=€ 1 \cdot 974 \\ & € 3 \cdot 29+€ 1 \cdot 974=€ 5 \cdot 264 \\ & \frac{€ 5 \cdot 264}{1 \cdot 46}=£ 3 \cdot 605 \approx £ 3 \cdot 61 \end{aligned}$	II Works in $£$ sterling from start $\frac{€ 3 \cdot 29}{1 \cdot 46}=£ 2 \cdot 2534$ $£ 2 \cdot 2534 \times 1 \cdot 6=£ 3 \cdot 6054=£ 3 \cdot 61$ or 60% of $£ 2 \cdot 2534=£ 1 \cdot 352$ $\begin{aligned} \text { Selling price } & =£ 1 \cdot 352+£ 2 \cdot 2534 \\ & =£ 3 \cdot 6054 \approx £ 3 \cdot 61 \end{aligned}$

* Candidates may offer other correct versions

Blunders (-3)

B1 Correct answer, but no work shown (S)
B2 Each error in decimal point
B3 Incorrect fraction for 60%
B4 Error in exchange rate e.g. multiplies to get $£$ sterling
B5 Mishandle profit e.g. subtracts or fails to add
B6 Mixes or works with two currencies - each time.
B7 Leaves answer as $€ 5 \cdot 26$ or $€ 5 \cdot 264$, fails to convert.

Slips (-1)

S1 Numerical errors to a max of 3
S2 Early rounding off that affects answer - each time. Note: needs 4 decimal points in intermediate stages
S3 Fails to round off or rounds off incorrectly
Attempts (3 marks)
A1 Finds 60% of $€ 3 \cdot 29$ with work and stops
A2 Write 60% as a fraction/ decimal and stops
A3 Calculates the exchange rate for $€ 1$ and stops -with work

Worthless (0)

W1 Incorrect answer and no work shown

New rate New income $\begin{aligned} & £ 3 \cdot 61 \times 1 \cdot 50=€ 5 \cdot 415 \\ & \text { Pr ofit }=€ 5 \cdot 415-€ 3 \cdot 29 \\ & \% \text { Pr ofit }=\frac{2 \cdot 125}{3 \cdot 29} \times 100=64 \cdot 58 \% \approx 65 \% \end{aligned}$	Sterling $\frac{€ 3 \cdot 29}{1 \cdot 5}=£ 2 \cdot 193$ New Pr ofit $=£ 3 \cdot 61-£ 2 \cdot 193=£ 1 \cdot 416$ $\% \text { Pr ofit }=\frac{1 \cdot 416}{2 \cdot 193} \times 100=64 \cdot 56 \% \approx 65 \%$

* Accept candidates' answer from part (i)
* Candidates may offer other correct versions
* Do not penalise the same error again in this section but see B6

Blunders (-3)

B1 Correct answer, but no work shown (2)
B2 Each error in decimal point
B3 Error in handling exchange rate
B4 Calculates \% of incorrect figure
B5 Fails to calculate $\%$, stops at $\frac{2 \cdot 125}{3 \cdot 29} \times 100$ or equivalent
B6 Mixes or works with two currencies - each time.
B7 Error in finding new profit
Slips (-1)
S1 Numerical errors to a max of 3
S2 Early rounding off that affects answer - each time
S3 Fails to round off or rounds off incorrectly
Attempts (3 marks)
A1 Correctly converts $£ 3.61$ or $€ 3 \cdot 29$ using the new rate and stops - with work shown
Worthless (0)
W1 Incorrect answer and no work shown

QUESTION 3

Part (a)	10 marks	Att (2,2)
Part (b)	20 marks	Att $(3,3)$
Part (c)	20 marks	Att (3,3)

Part (a)
5,5 marks
Att 2,2

	(i)	Simplify
	$(64)^{3 / 2}$.	
	(ii)	Simplify

(a)(i)

I	I marks	Att 2
$(64)^{\frac{3}{2}}=\left(64^{\frac{1}{2}}\right)^{3}=8^{3}$	II	III
	$(64)^{\frac{3}{2}}=\left(64^{3}\right)^{\frac{1}{2}}=262144^{\frac{1}{2}}=512$	Calculator
$($ or $)=2^{9}$		
$($ or $)=512$		

* Accept correct answer without work, no (\$)
* Accept $8^{3}, 2^{9}$ or 512 for full marks

Blunders (-3)
B1 Each index error
B2 Finds 8 (I) or 262144 (II) only and stops
Attempts (2 marks)
A1 Writes $\frac{3}{2}=1.5$
A2 Some correct work with indices
Worthless (0)
W1 $\frac{64 \times 3}{2}$

I
$(64)^{\frac{2}{3}}=\left(64^{\frac{1}{3}}\right)^{2}=4^{2}$

II	
$(64)^{\frac{2}{3}}=\left(64^{2}\right)^{\frac{1}{3}}=4096^{\frac{1}{3}}=16$	III
	$64^{0.66}=15.56$ accept

(or) $=2^{4}$
(or) $=16$

* Accept correct answer without work no (\&)
* Accept $4^{2}, 2^{4}$ and 16 for full marks.

Blunders (-3)
B1 Each index error
B2 Finds 4 (I) or 4096 (II) only and stops
Slip (-1)
S1 Uses 0.6 or 0.7 in calculator - gives 12.125 and 18.38 respectively
Attempts (2 marks)
A1 Writes $\frac{2}{3}=0.6$ or 0.7
A2 Some correct work with indices
Worthless (0)
W1 $\frac{64 \times 2}{3}$
(b) Let the cost of a meal for an adult be $€ x$ and the cost of a meal for a child be $€ y$.

The cost of a meal for 3 adults and 2 children amounts to $€ 125$.
The cost of a meal for 2 adults and 3 children amounts to $€ 115$.
(i) Write down two equations in x and y to represent this information.
(ii) Solve these equations to find the cost of an adult's meal and the cost of a child's meal.
(b) (i) 10 marks
(i)

$$
\begin{aligned}
& 3 x+2 y=125 \\
& 2 x+3 y=115 \\
& \hline
\end{aligned}
$$

* One correct equation merits 7 marks

Blunders (-3)
B1 One correct equation only and stops
B2 Incorrect or missing term, once per equation
B3 Mathematical error

Attempts (3 marks)
A1 Writes $3 x$ and /or $2 x$ only
A2 Writes $2 y$ and/or $3 y$ only
(ii)

$$
\begin{array}{cc}
\hline 3 x+2 y=125 \times-2 & -6 x-4 y=-250 \\
2 x+3 y=115 \times 3 & 6 x+9 y=345 \\
& 5 y=95 \\
y=19 \\
& 3 x+2(19)=125 \\
3 x=125-38 \\
& 3 x=87 \\
& x=29
\end{array}
$$

Cost of adult's meal $=€ 29$
Cost of child's meal $=€ 19$

* Accept candidates answers from (i) even if leads to negative values
* No standard work but verifies correct values in both equations accept for 10 marks

Blunders (-3)

B1 Correct answer, but no work shown (L)
B2 Each different error in balancing equations e.g. fails to multiply across completely
B3 Mathematical error
B4 Calculates the value of either x or y correctly and stops
B5 Substitutes for incorrect variable at final step
Slips (-1)
S1 Numerical errors to a max of 3
S2 Finds $y=19$ but substitutes some other value eg $1 \cdot 9$

Attempts (3 marks)

A1 Some correct relevant work
A2 $5 x=125 x=25$ or similar, oversimplified
A3 Writes x in terms of y or vice versa and stops
Worthless (0)
W1 Incorrect answer and no work shown
(c) (i) Express in its simplest form:

$$
\frac{1}{2 x-3}-\frac{1}{2 x+3}
$$

(ii) Hence, or otherwise, solve the equation:

$$
\frac{1}{2 x-3}-\frac{1}{2 x+3}=\frac{6}{7}, x \in \mathbf{Z}
$$

Part (c)(i)

10 marks

Att 3

(i) $\quad \frac{1}{(2 x-3)}-\frac{1}{(2 x+3)}=\frac{1(2 x+3)-1(2 x-3)}{(2 x-3)(2 x+3)}=\frac{2 x+3-2 x+3}{(2 x-3)(2 x+3)}=\frac{6}{(2 x-3)(2 x+3)}$

* Accept common denominator as $(2 x-3)(2 x+3)$ - penalise incorrect multiplication in part c(ii)

Blunders (-3)

B1 Correct answer, but no work shown (S)
B2 Incorrect common denominator or mishandles common denominator
B3 Each different error in distributive law
B4 Mathematical/sign errors
B5 Fails to add like terms in simplified numerator

Slips (-1)

S1 Numerical slips to a max of 3

Attempts (3 marks)

A1 Correct common denominator and stops
A2 Leaves out denominator
Worthless (0)
W1 Incorrect answer and no work shown
W2 Subtracts to get $\frac{0}{-6 x}$

$$
\begin{aligned}
& \frac{6}{(2 x-3)(2 x+3)}=\frac{6}{7} \\
& \frac{6}{4 x^{2}-9}=\frac{6}{7} \\
& 24 x^{2}-54=42 \\
& 24 x^{2}=96 \\
& x^{2}=4 \text { or } x^{2}-4=0 \\
& x= \pm 2 \quad \begin{array}{ll}
\\
& (x-2)(x+2)=0 \\
& x=2 \text { or } x=-2
\end{array} \\
& \begin{array}{ll}
\\
& \text { or }
\end{array} \\
& \hline
\end{aligned}
$$

* If part (i) mishandled but correct common denominator in (ii) award attempt (3marks) for (i) - assuming 0 at part (i)

Blunders (-3)

B1 Correct answer, but no work shown (s)
B2 Incorrect common denominator e.g. error in multiplying out
B3 Each different error in balancing the equation
B4 Mathematical/sign errors
B5 Incorrect factors
B6 Incorrect roots from factors
B7 Stops at $x^{2}=4$ or equivalent. Max loss after this point is 3 marks

Slips (-1)

S1 Numerical errors to a max of 3
S2 Only finds one solution
Attempts (3 marks)
A1 Multiplies out common denominator correctly and stops
A2 Solves a linear equation
A3 Carries down answer from (i)
Worthless (0)
W1 Incorrect answer and no work shown

QUESTION 4

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 8
Part (a)	10 marks	Att 3
Les Express in its simplest form:		

Part (a)
10 marks
Att 3
$2 x-[3-(4-3 x)]+6=2 x-[3-4+3 x]+6=2 x-3+4-3 x+6=7-x$
$2 x-[3-(4-3 x)]+6=2 x-3+(4-3 x)+6=2 x-3+4-3 x+6=7-x$

Blunders (-3)

B1 Correct answer, but no work shown (S)
B2 Each different error in distributive law
B3 Treats as an equation but award full marks if Left Hand Side is $7-x$
B4 Order of operation error if affects answer
B5 Mathematical error e.g. gives $2 x-3+4-3 x+6$ as $6 x$, or similar, but if happens after $7-x$ no penalty

Slips (-1)
S1 Numerical slips to a max of 3

Misreading (-1)

M1 Copies incorrectly but does not oversimplify
Attempts (3 marks)
Note: There must be some work of merit to award attempt
A1 Simplifies/removes one bracket and stops
A2 Substitutes a number for x and calculates value of expression
Worthless (0)
W1 Incorrect answer and no work shown
(i) Solve $x^{2}-4 x-8=0$, giving your answer in the form $a \pm a \sqrt{b}$, where $a, b \in \mathbf{N}$.
(ii) Factorise $9 x^{2}-16 y^{2}$.
(iii) The length of one side of a rectangle is $x+4$.

The area of the rectangle is $x^{2}+16 x+48$.
2. Find an expression in x for the length of the other side.

Part (b)(i)
$\boldsymbol{x}^{2}-4 \boldsymbol{x}-8=0$
$\boldsymbol{a}=1 \quad \boldsymbol{b}=-4 \quad \boldsymbol{c}=-8$
(i)
$\frac{-\boldsymbol{b} \pm \sqrt{\boldsymbol{b}^{2}-4 \boldsymbol{a} \boldsymbol{c}}}{2 \boldsymbol{a}}=\frac{-(-4) \pm \sqrt{(-4)^{2}-4.1 .-8}}{2.1}=\frac{4 \pm \sqrt{16+32}}{2}=\frac{4 \pm \sqrt{48}}{2}$
$=\frac{4 \pm 4 \sqrt{3}}{2}=2 \pm 2 \sqrt{3}$
Can be done by completing the square

Blunders (-3)

B1 Correct answer, but no work shown (S)
B2 Each error in quadratic formula
B3 Each different incorrect substitution but $b=4$ and $c=8 \rightarrow$ one blunder
B4 Mathematical error in sign e.g. (-4.1.-8) as -32
B5 Mathematical error in squaring $(-4)^{2}$ as -8 or similar
B6 Ignores a minus in square root e.g. $\sqrt{-48}$ taken as $\sqrt{48}$
B7 Error in handling surds or no work with surds
B8 Invalid cancelling answer given as $2 \pm 4 \sqrt{3}$ or similar
B9 Stops at $\frac{4 \pm 4 \sqrt{3}}{2}$ (not in required form) or correct decimal answer
Slips (-1)
S1 Numerical errors to a max of 3

Attempts (3 marks)

A1 Correct formula or incorrect relevant formula with some correct substitution and stops
Worthless (0)
W1 Incorrect answer and no work shown
W2 Tries to factorise
(ii) $9 x^{2}-16 y^{2}=(3 x-4 y)(3 x+4 y)$

* Accept correct answer and no work - no () .

Blunders (-3)
B1 Errors in sign. e.g. $(3 x+4 y)(3 x+4 y)$
B2 Stops at $3 \boldsymbol{x}(3 \boldsymbol{x}+4 \boldsymbol{y})-4 \boldsymbol{y}(3 \boldsymbol{x}+4 \boldsymbol{y})$.
B3 Incorrect factorisation of one term, e.g. $(3 x-16 y)(3 x+16 y)$.
B4 Answer given as $(3 x-4 y)+(3 x+4 y)$, but $(3 x-4 y)$ and $(3 x+4 y)$ merits full marks
Attempts (2 marks)
A1 Any correct factors of $9 x^{2}$ and / or $16 y^{2}$.
A2 $(9 x-16 y)(9 x+16 y)$.
A3 Indicates some knowledge of the difference of two squares

Part (b)(iii)

5 marks
Att 2
(iii)
$x^{2}+16 x+48=(x+4)(x+12)$
$(x+12)$ other side
or By formula, roots to find factors
or
$x^{2}+16 x+48 \div(x+4)=(x+12)$

Blunders (-3)

B1 Correct answer, but no work shown (\&)
B2 Incorrect other factor of $\boldsymbol{x}^{2}+16 x+48$ with work shown
B3 Each different error in indices and signs when dividing.
B3 Each term omitted or incorrect when dividing
B4 Each error in multiplication/subtraction when dividing
B5 Stops at roots when using quadratic formula
Note: If uses formula for solving a quadratic equation, apply blunders (-3) as in part $b(i)$
Attempts (2 marks)
A1 States area $=1 b$
A2 Some effort at factorising
A3 Indicates division
A4 Pick a specific value for x to find other side - not in terms of x
Worthless (0)
W1 Incorrect answer and no work shown
(c) A farmer must feed bales of hay to his cattle for a total of 90 days.

He feeds the cattle 540 bales of hay over a number of days.
Their average consumption over this period is x bales per day.
(i) Write an expression in x for the number of days taken to consume the 540 bales.
If the average consumption is increased by 1 bale per day, then the cattle consume 300 bales in the remaining days.
(ii) Write an expression in x for the number of days taken to consume the 300 bales.
(iii) Using the above information, write an equation in x.
(iv) Solve this equation to find the value of x and the number of days taken to consume the first 540 bales.

Part (c)(i)

5 marks
Att 2
(i) $\frac{540}{x}$

Blunders (-3)

B1 \quad Number of days $=\frac{\boldsymbol{x}}{540}$
Attempts (2 marks)
A1 Gives answer as $540 . x$
A2 Any correct relevant step, e.g. trial and error, award once only in (i) and (ii)e.g. $\frac{540}{90}=6$
Part (c)(ii)
5 marks
Att 2
(ii) $\frac{300}{x+1} \quad$ or $90-\frac{540}{x}$

Blunders (-3)
B1 Inverts e.g. $\frac{x+1}{300}$ but do not penalised if already blundered in (i)
B2 Uses $x-1$
B3 Sign error in $90-\frac{540}{x}$
Attempts (2 marks)
A1 Gives answer as $300(x+1)$
(iii) $\frac{540}{x}+\frac{300}{x+1}=90 \quad$ or equivalent

* Accept candidate's answer from (i) and (ii) above
* If no work, or no work of merit, at parts (i) and/or (ii) but states above, award Att 2 and Att 2 from parts (i) and/or (ii) here
Blunders (-3)
B1 Sign error in setting up equation has $\frac{540}{x}-\frac{300}{x+1}=90$
B2 Expression not equal to 90

Slips (-1)

S1 Writes correct expression with required terms but no equal sign

Attempts (2 marks)

A1 Incorrect expression but uses data from (i) and (ii)
A2 $\frac{540}{x}+90-\frac{540}{x}=90$

Part (c)(iv)

(iv)

$$
\begin{aligned}
& \quad \frac{540}{x}+\frac{300}{x+1}=90 \\
& 540(x+1)+300 x=90\left(x^{2}+x\right) \\
& 540+540 x+300 x=90 x^{2}+90 x \\
& 90 x^{2}-750 x-540=0 \\
& 3 x^{2}-25 x-18=0 \\
& (3 x+2)(x-9)=0 \\
& x=9 \\
& \\
& \hline \frac{540}{9}=60 \\
& \text { Number of days }=
\end{aligned}
$$

Blunders (-3)
B1 Correct answer, but no work shown (S)
B2 Mathematical/sign error
B3 Each different error in distributive law
B4 Each different error in balancing equation
B5 Correct factors and stops
B6 Incorrect factors
B7 Errors using quadratic formula - see question 4(b) (i)
Slips (-1)
S1 Numerical errors to a max of 3
S2 Leaves answer as 9
Attempts (2 marks)
A1 No quadratic due to previous errors merits attempt at most
Worthless (0)
W1 Incorrect answer and no work shown

QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 8

Part (a)
10 marks
Att 3
(a) The temperature on Sunday is x°.

The temperature rose by 3° each day for the next two days.
The temperature then dropped by 4° each day for the next three days.
Lerive an expression in x for the temperature on the fifth day (i.e. Friday).

Part (a)

10 marks
Att 3

(a) | Sunday | $=x^{\circ}$ |
| :--- | :--- |
| Monday | $=x^{\circ}+3^{\circ}$ |
| Tuesday | $=x^{\circ}+3^{\circ}+3^{\circ}=x^{\circ}+6^{\circ}$ |
| Wednesday | $=x^{\circ}+6^{\circ}-4^{\circ}=x^{\circ}+2^{\circ}$ |
| Thursday | $=x^{\circ}+2^{\circ}-4^{\circ}=x^{\circ}-2^{\circ}$ |
| Friday | $=x^{\circ}-2^{\circ}-4^{\circ}=x^{\circ}-6^{\circ}$ |

or
$x^{\circ}+2\left(3^{\circ}\right)-3\left(4^{\circ}\right)=x^{\circ}+6^{\circ}-12^{\circ}=x^{\circ}-6^{\circ}$

* Uses a specific value for x° on Sunday and gives the correct value for Friday, attempt
(3) only, however if rewrites Friday value as a correct expression in x° accept for full mark

Blunders (-3)

B1 Correct answer, but no work shown (S)
B2 Each day omitted or incorrect
B3 Mathematical error
B4 Fails to simplify

Slips (-1)
S1 Numerical errors to max of 3
Attempts (3 marks)
A1 Takes a particular value for x see note above *
A2 Special cases $3+3-4-4-4=-6$ or $3 x, 6 x, 2 x,-2 x,-6 x$
Worthless (0)
W1 Incorrect answer and no work shown
(b) Let f be the function $f: x \rightarrow 35 x-5 x^{2}$.

Draw the graph of f for $0 \leq x \leq 7, x \in \mathbf{R}$.

Part (b)
20 marks
Att 7

	x	0	1	2	3	4	5		6	7	
	$f(x)$	0	30	50	60	60	50		30	0	
$f(x)=35 x-5 x^{2}$											
$\boldsymbol{f}(0)=35(0)-5(0)^{2}=0$				$f(1)=35(1)-5(1)^{2}=30$							
$f(2)=35(2)-5(2)^{2}=50$				$f(3)=35(3)-5(3)^{2}=60$							
$\boldsymbol{f}(4)=35(4)-5(4)^{2}=60$				$f(5)=35(5)-5(5)^{2}=50$							
$f(6)=35(6)-5(6)^{2}=30$				$f(7)=35(7)-5(7)^{2}=0$							
x	0	1	2		3	4		5		6	7
35x	0	35	70		105	140		175		210	245
$-5 x^{2}$	0	-5	-20		-45	-80		-125		-180	-245
$f(x)$	0	30	50		60	60		50		30	0

Values for quadratic graph

Blunders (-3)

B1 Each incorrect $f(x)$ without work.
B2 x row added in, i.e. top row, or adds in extra row.
B3 Treating the domain as $0<x<7$, can incur 2 Blunders if both omitted.
B4 Each different blunder which yields an incorrect row (full or part), eg. $5(-x)^{2}$ or $(-5 x)^{2}$ for $-5 x^{2}$.
B5 Avoids square for some (not all) values. See Attempts below
B6 Mathematical errors in tots, e.g. 105-45=-60, but apply once only.
B7 Uses graph of $\boldsymbol{f}: \boldsymbol{x} \rightarrow 5 \boldsymbol{x}^{2}-35 \boldsymbol{x}$, avoids $-5 x^{2}$ or graph of $7 x-x^{2}$

Slips (-1)

S1 Numerical errors to a max. of 3.

Attempts (7 marks)

A1 Omits $-5 x^{2}$ or does not treat as $5 x^{2}$, linear expression
A2 Correct or partly correct table / values but no graph drawn.

Height (metres)

Plotting the quadratic graph

* Accept candidate's values from the table.

Blunders (-3)
B1 Points not joined to form a reasonable graph or 'flat top'.
B2 (x, y) plotted as (y, x), but apply once only, or reverses axes.
B3 Scale not reasonably uniform can apply to each axis
B4 Each different blunder in plotting points from candidate's table / values.
B5 Each point omitted
B6 Points joined with straight lines.
Attempts (7 marks)
A1 Scaled axes drawn.
(c) The formula for the height, y metres, of a ball above ground level, x seconds after it is fired vertically into the air, is given by:

$$
y=35 x-5 x^{2}
$$

Use your graph from part (b) to estimate:
(i) the maximum height reached by the ball
(ii) the height of the ball after $5 \cdot 5$ seconds.

On two occasions the ball is 20 metres above the ground.
(iii) Use your graph from part (b) to estimate the two times when this occurred.

* Note: If graph is linear award at most attempts marks $(2,2,2,0)$ in (c)

Part (c)(i)
5 marks
Att 2
(i) Max at $x=3.5 \mathrm{~s} \quad f: 3.5 \rightarrow 61 \mathrm{~m}$

Accept answer consistent with candidates curve tolerance ± 2 but must be greater than 60 , see B4
Blunders (-3)
B1 No indication on graph
B2 Indication on graph but no value given or value outside tolerance
B3 x (time) value of maximum only
B4 Answer 60 if not already penalised for 'flat top' in part (b), graph

Slips (-1)

S1 Gives coordinates of maximum rather than maximum values
Attempts (2marks)
A1 Point indicated on graph only
Worthless (0)
W1 Answer inconsistent with candidate's graph
Part (c)(ii)
5 marks
Att 2
(ii) $x=5.5 \mathrm{~s} \quad f: 5.5 \rightarrow 41 \mathrm{~m}$

Accept answer consistent with candidates curve tolerance ± 2
Blunders (-3)
B1 No indication on graph
B2 Indication on graph but no value given or value outside tolerance
Attempt (2)
A1 Finds from function only
Part (c)(iii) $10(5,5)$ marks
Att (2, 2)
(iii) $f(x)=20 \mathrm{~m} \quad \rightarrow \quad x=0.6 \mathrm{~s}$ and $x=6.4 \mathrm{~s}$

* Accept answer consistent with candidates curve tolerance $\pm 0 \boxed{ }$

Blunders (-3)

B1 No indication on graph, each value
B2 Indication on graph but no value given or value outside tolerance, each time
Attempts (2 marks)
A1 Correctly solves $f(x)=20$ by formula (Att $2+\operatorname{Att} 2)$

QUESTION 6

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 8

Part (a)
10 marks
Att 3
(a) Given that:

$$
v^{2}=u^{2}+2 a s .
$$

Write s in terms of v, u and a.

Part (a)

 10 marksAtt 3

$v^{2}=u^{2}+2 a s$
$v^{2}-u^{2}=2 a s$
$\frac{v^{2}-u^{2}}{2 a}=s$
$s=\frac{v^{2}-u^{2}}{2 a}$ or $s=\frac{u^{2}-v^{2}}{-2 a}$ or $s=\frac{v^{2}}{2 a}-\frac{u^{2}}{2 a}$ or equivalent

Blunders (-3)

B1 Correct answer, but no work shown (2).
B2 Each different transposition error
B3 Stops at $-\boldsymbol{s}=\frac{\boldsymbol{u}^{2}-\boldsymbol{v}^{2}}{2 \boldsymbol{a}}$
B4 Replaces u, v and/or a by a numerical value - each variable replaced, and then solves correctly
B5 Mathematical error
Slips (-1)
S1 Stops at $2 \boldsymbol{s}=\frac{\boldsymbol{v}^{2}-\boldsymbol{u}^{2}}{\boldsymbol{a}}$
Misreadings (-1)
M1 Solves correctly for a
Attempts (3 marks)
A1 Solves correctly for u or v
A2 Assigns numerical values to a, u and v to find s correctly
A3 Any correct transposition and stops
(i) Factorise $2 l-k l+k m-2 m$.
(ii) Factorise $6 x^{2}-19 x+10$.
(iii) Factorise $17 x-5 x^{2}$.

Part (b)(i)
10 marks
Att 3
(i)

$$
\begin{aligned}
& 2 l-k l+k m-2 m=l(2-k)-m(2-k)=(l-m)(2-k) \\
& 2 l-k l+k m-2 m=2 l-2 m+k m-k l=2(l-m)-k(l-m)=(2-k)(l-m)
\end{aligned}
$$

Blunders (-3)

B1 Correct answer, but no work shown (2).
B2 Each different error in sign when factorising and/or regrouping
B3 Stops at $l(2-k)-m(2-k)$ or similar e.g. $l(2-k)-m(-k+2)$
B4 Answer givens as $(l-m)+(2-k)$ but $(l-m)$ and (2-k)merits full marks
B5 Error in factors $l(2-k)+m(k-2)$ given as $(2-k)(l+m)$ or similar
Attempts (3 marks)
A1 Some effort at regrouping
A2 Stops at $l(2-k)+m(k-2)$ or similar
Worthless (0)
W1 Incorrect answer and no work shown

(ii) Round Brackets: $\begin{aligned} & 6 x^{2}-19 x+10 \\ & =(3 x-2)(2 x-5) \end{aligned}$	Big \mathbf{X} $\begin{aligned} & 6 x^{2}-19 x+10 \\ & 3 x \\ & 2 x \\ & 2 x \\ & =(3 x-2)(2 x-5) \end{aligned}$	Guide Number $\begin{aligned} & 6 x^{2}-19 x+10 \quad \text { GN }=+60 \\ & =6 x^{2}-15 x-4 x+10 \\ & =3 x(2 x-5)-2(2 x-5) \\ & =(2 x-5)(3 x-2) \end{aligned}$

* No hand (es)

Blunders (-3)

B1 Incorrect factors of $6 x^{2}$.
B2 Incorrect factors of +10
B3 Incorrect middle term
B4 Leaves as

$$
\text { or } 3 x(2 x-5)-2(2 x-5)
$$

B5 Gives factors as $(3 x-2)+(2 x-5)$ but $(3 x-2)$ and ($2 x-5$) merits full marks
B6 Each error in quadratic formula -see Q4 (b) (i)
B7 Each different mathematical error when using the quadratic formula
B8 Uses formula to get $x=\frac{2}{3}$ and $x=\frac{5}{2}$ and stops
B9 Incorrect factors from roots
Attempts (2 marks)
A1 Any correct factors of $6 x^{2}$ or +10
A2 States correct quadratic formula and stops
A3 Correct, Guide Number, and stops
Part (b)(iii)
5 marks
Att 2
(iii) $17 x-5 x^{2}=x(17-5 x)$

Note: If uses quadratic formula see Q4 (b) (i)
Blunders (-3)
B1 Distribution or sign error e.g. has $x\left(17-5 x^{2}\right)$
B2 Finds one factor only e.g. (17-5x)
B3 States as $x+(17-5 x)$, but x and (17-5x) merits full marks
Attempts (2 marks)
A1 Any correct factors of $17 x$ or $-5 x^{2}$
A2 States correct quadratic formula and stops
(c) Let f be the function $f: x \rightarrow 1-3 x$ and g be the function $g: x \rightarrow 1-x^{2}$.
(i) Find $f(-2)$ and $g(5)$.
(ii) Express $f(x+1)$ in the form $a x+b, a$ and $b \in \mathbf{Z}$.
(iii) Solve for $x: f(x+1)=f(-2)+g(5)$.

Part (c)(i)

$(5,5)$ marks
Att 2,2
(i) $\quad f(-2)=1-3(-2)=7 \quad g(5)=1-(5)^{2}=1-25=-24$

Slips and blunders apply to each calculation

Blunders (-3)

B1 Correct answer without any work (s) each part
B2 Each different mathematical error e.g. 5^{2} as 10
B3 Sign error
Slips (-1)
S1 Numerical errors to a max of 3, each part
Attempts (2 marks)
A1 Stops at $f(-2)=1-3(-2)$
A2 Stops at $g(5)=1-5^{2}$
Worthless (0)
W1 Incorrect answer and no work shown - each part
W2 Solves $f(x)=2$ and/or $g(x)=5$ - each part
Part (c)(ii)
5 marks
Att 2
(ii) $\quad f(x+1)=1-3(x+1)=1-3 x-3=-3 \mathrm{x}-2$

Blunders (-3)

B1 Correct answer without any work ()
B2 Distribution error
B3 Sign error
B4 Mathematical error
Slips (-1)
S1 Numerical errors to a max of 3

Attempts (2marks)

A1 Special case, lets $x=$ numerical value and finds $f(x+1)$ correctly
A2 $f(x+1)=f(x)+1=2-3 x$ or $f(x+1)=f(x)+f(1)$ found correctly

Worthless (0)

W1 Incorrect answer and no work shown
W2 Solves $f(x)=x+1$

```
(iii) \(\quad-3 x-2=7+(-24)\)
\(-3 x=7-24+2\)
\(-3 x=-15\)
\(x=5\)
```

* Accept candidates answers from parts (i) and (ii)

Blunders (-3)
B1 Correct answer without any work (es)
B2 Each different error balancing equation
B3 Sign errors
Slips (-1)
S1 Numerical errors to max of 3

Attempts (2 marks)
A1 Any correct substitution in given equation

Worthless (0)
W1 Incorrect answer and no work shown

