

JUNIOR CERTIFICATE EXAMINATION 2006 MATHEMATICS - HIGHER LEVEL - PAPER 2 MARKING SCHEME

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips- numerical errors (-1)
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €.50 may be written as €,50.

QUESTION 1

Part (a)	10 marks	Att 3
Part (b)	20 (5,5,10) marks	Att 2,2,3
Part (c)	20 (10,10) marks	Att 3,3

Part (a)		10 marks	Att 3
The height and t	he diameter of a solid	cylinder are both 9 cm	in length.
	1 6 (1 1 1	1 . 1	1

Sind the volume of the cylinder correct to one decimal place.

(a)	10 marks	Att 3
(a)	Volume of cylinder = πr^2 h = $\pi (4.5)^2 .9 = 182.25\pi \approx 572.6$ cm ³	

Blunders (-3)

- B1 Correct answer with no work shown (hand)
- B2 Incorrect substitution into correct formula
- B3 Incorrect squaring
- B4 Incorrect relevant volume formula or inappropriate value of π
- B5 Answer in terms of π

Slips (-1)

- S1 Arithmetic slips
- S2 Answer not in required form

Attempts (3)

- A1 Correct formula with some substitution
- A2 Correct radius

Worthless (0)

W1 Surface area(s)

Part	(b) 20 (5,5,10) marks	Att(2,2,3)
(i)	The perimeter of a square lawn is 96 m. \swarrow Find the area of the lawn in m ² .	
(ii)	A garden roller, in the shape of a cylinder, has a diameter of 75 cm and is 1 m wide as shown in the diagram.	ζ,
	Calculate the curved surface area of the roller in m^2 correct to one decimal place.), 75 cm
(iii)	\swarrow What percentage of the lawn will be rolled when the roller has correvolutions?	ompleted 9

(b) (i)		5 mark	KS	Att 2
(i)	Length of side: $\frac{96}{4} = 24$ m				
	Area of lawn	=	24^{2} =	576 m^2 .	

- B1 Correct answer with no work shown (hand)
- B2 Incorrect relevant area formula
- B3 Perimeter divided by 4 neither indicated nor implied
- B4 Incorrect squaring

Slips (-1)

S1 Arithmetic slips

- A1 Length of one side of square only
- A2 Correct area formula but no substitution

Att 2

(ii) Curved Surface Area = $2\pi x (0.375) x (1) = 2.356 \approx 2.4 \text{ m}^2$.

Blunders (-3)

- B1 Correct answer with no work shown (hand)
- B2 Incorrect substitution into correct formula
- B3 Incorrect relevant area formula
- B4 Measurements not converted to same units
- B5 Answer in terms of π or inappropriate value of π

Slips (-1)

- S1 Arithmetic errors
- S2 Answer not in required form
- S3 Incorrect round off/ failure to round off

Attempts (2)

- A1 Correct radius indicated
- A2 1 m = 100 cm and/or 75 cm = .75 m

Worthless (0)

W1 Volume of cylinder

(b) (iii)	10 marks			Att 3		
(iii)	% completed	=	$\frac{9 \times 2 \cdot 4}{576} \times 100$	=	3.75%	

* Accept candidates answers from (i) and (ii) for (iii)

Blunders (-3)

- B1 Correct answer with no work shown (hand)
- B2 Calculations for one revolution only
- B3 Calculations inverted
- B4 Fraction calculated as a decimal, but percentage not found

Slips (-1)

S1 Arithmetic errors

Attempts (3) A1 CSA x 9

(c) (i)	10 marks	Att 3	Att 3
(i)	Volume each cone = $\frac{1}{3}\pi r^2 h = \frac{1}{3}\pi 4^2 6 =$	32π cm ³	

- B1 Correct answer with no work shown (hand)
- B2 Incorrect substitution into correct formula
- B3 Incorrect relevant formula
- B4 Incorrect squaring

 $\begin{array}{ll} \textit{Misreading}(-1) \\ \text{M1} & \text{h} = 3 \end{array}$

Slips (-1) S1 Arithmetic slips

- A1 Correct formula with some substitution
- A2 Diagram with r and/ or h shown correctly

Att 3 16π = (ii) Time = 180 s 4π 45

Blunders (-3)

- Correct answer with no work shown (hand) **B**1
- B2: Ratio not simplified
- Ratio inverted **B**3
- Use of 32π or answer not halved from (c)(i) B4

Slips (-1)

Arithmetic slips **S**1

Attempts (3)

A1 Identifies half the volume of one cone

QUESTION 2

Part (a)	10 marks	Att 3
Part (b)	25 (5,5,5,10) marks	Att(2,2,2,3)
Part (c)	15 marks	Att 5
Part (a)	10 marks	Att 3
(a) $a(4, -6)$ and $b(6, -2)$	2) are two points.	
\swarrow Write $ ab $ in s	urd form.	

(a)	10 marks	Att 3
$ ab = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	-	
$=\sqrt{(6-4)^2 + (-2-6)^2}$		
$\sqrt{2^2 + 4^2}$		
$=\sqrt{4+16} \sqrt{20}$		

Blunders (-3)

- B1 Correct answer with no work shown (hand)
- B2 Incorrect relevant formula
- B3 Mixes both x and y in substitution
- B4 Squares incorrectly

Slips (-1)

- S1 Arithmetic slips
- S2 One incorrect substitution into x or y

- A1 Correct formula and stops
- A2 Some attempt at difference of y's and /or difference of x's

5 marks

 $= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{-1 + 3}{2}, \frac{2 + 4}{2}\right) = \left(\frac{2}{2}, \frac{6}{2}\right) = (1, 3)$

- B1 Correct answer with no work shown (\mathscr{L})
- B2 Incorrect midpoint formula and continues
- B3 Mixes both x and y in substitution
- B4 Substitutes correctly but midpoint not found

Slips (-1)

(b) (i)

т

Blunders (-3)

(i)

- S1 One incorrect sign after substitution
- S2 One incorrect substitution
- S3 Arithmetic errors

Attempts (2)

- A1 Writes midpoint formula with or without some substitution
- A2 Correct graphical solution

(b) (i	ii)	5 marks	Att 2
(ii)	slope of $pr = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 2}{3 - 1} = \frac{4}{2}$	$\frac{2}{4}$ or $\frac{1}{2}$	

Blunders (-3)

- B1 Correct answer with no work shown (\mathscr{L})
- B2 Incorrect slope formula and continues
- B3 Mixes both *x* and *y* in substitution
- B4 Substitutes correctly but slope not found

Slips (-1)

- S1 One incorrect sign after substitution
- S2 One incorrect substitution
- S3 Arithmetic errors

Attempts (2)

- A1 Writes slope formula with or without some substitution
- A2 Some attempt at difference of *y*'s and /or difference of *x*'s

Att 2

(i)

(ii)

p(-1, 2) and r(3, 4) are two points.

Ľ

Ľ

(iii) 🖉

Z

Find *m*, the midpoint of [*pr*].

Find the slope of *pr*.

(iv) The equation of the line K is x - 2y = 0.

Find *n*, the point of intersection of *L* and *K*.

Find the equation of the line L, the perpendicular bisector of [pr].

(b) (iii)		5 marks	Att 2
(iii)	Equation of L	y-3=-2(x-1)	

* Accept candidates answers from b(i) and b(ii)

Blunders (-3)

- B1 Correct answer with no work shown (\mathscr{L})
- B2 Incorrect relevant formula and continues
- B3 Switches both x and y in substitution
- B4 Substitutes correctly for x and y but no slope
- B5 Use of incorrect point and/or incorrect slope

Slips (-1)

- S1 Arithmetic errors
- S2 One incorrect substitution of *x* or *y*

Attempts (2)

A1 Correct line formula

(b) ((iv)	10 marks	Att 3
(iv)	$y-3 = -2x + 2 \Longrightarrow 2x + y = 5$		
	$2x + y = 5 \implies 4x + 2y = 10$ $\frac{x - 2y = 0}{5x = 10} \implies x = 2$		
	$2 - 2y = 0 \Longrightarrow y = 1$		

- * (2,1) without work Att 3 subject to below
- * Accept $(2,1) \in L$ and $(2,1) \in K$ shown in each case.

Blunders (-3)

- B1 Error in manipulation of equations
- B2 Transposition error
- B3 No substitution for second value

Slips (-1)

S1 Arithmetic slips

- A1 Any correct step and stops
- A2 Graphical solution correct

Part (c)	15 marks	Att 5
Ŕ	Prove that the opposite sides and opposite angles of a parallelogram are respectively equal in measure.	
(c)	15 marks	Att 5
Given: To prove:	a = bcd $abcd$ $(i) < bad = < bcd and < adc = < abc $	
(<i>ii)</i> $ ab = dc $ and $ ad = bc $ Step 1	
Construct	ion: Join ac Step2	
Proof: Ta <da <da ac</da </da 	aking triangles adc and abc $ac = < acb $ (alternate angles since ad parallel to bc) $ca = < bac $ (alternate angles since ab parallel to dc)Step 3common to both triangles	
\Rightarrow ASA	\Rightarrow Both triangles are congruent Step 4	
$\begin{vmatrix} \Rightarrow (i) & ab \\ (ii) & < a \\ \Rightarrow & < bad \\ or & \angle a \\ \end{vmatrix}$	$\begin{vmatrix} = dc & and ad = bc & corresponding sides \\ dac + < bac = < acb + < dca \\ = < bcd . Similarly ∠ adc = ∠ abc & Step 5 \\ dc = ∠ abc . Similarly < bad = < bcd \\ \end{vmatrix}$	
* Som	e steps may be partially indicated on diagram	

- B1 Each step incorrect or omitted
- B2 Each step incomplete

Attempts (5)

A1 Diagram with parallelogram drawn, and diagonal indicated

Worthless (0)

- W1 Wrong Theorem
- W2 Parallelogram and nothing else

QUESTION 3

Part (a)	10 (5,5) marks	Att (2,2)
Part (b)	20 (10,5,5) marks	Att (3,2,2)
Part (c)	20 (10,10) marks	Att (3,3)

Part	(a)	10 (5 , 5) marks	Att (2,2)
(a)	The triangle <i>abc</i> has $ ab = ac $. The line <i>mn</i> is parallel to <i>bc</i> and $ \angle nmb = 115^{\circ}$	a	
Ŕ	Find $ \angle abc $ and $ \angle bac $.		

(a)5 marksAtt 2(a)
$$|\angle nma| = 180^{\circ} - 115^{\circ} = 65^{\circ}$$
 $|\angle abc|$ $= |\angle nma| = 65^{\circ}$ or $|\angle abc| + |\angle nmb| = 180^{\circ} \Rightarrow |\angle abc| = 65^{\circ}$

Blunders (-3)

- B1 Correct answer with no work shown (\mathscr{L})
- B2 Use of 360° instead of 180°

Slips (-1) S1 Arithmetic slip

Attempts (2)

- A1 Indicates $|\angle nmb| + |\angle nma| = 180^{\circ}$
- A2 115[°] correctly marked in diagram

Worthless (0)

W1 Use of 90° instead of 180°

(a) (ii)

 $|ab| = |ac| \implies |\angle abc| = |\angle acb|$ $|\angle bac| = 180^{\circ} - (65^{\circ} + 65^{\circ}) = 50^{\circ}$

* Accept answer from above for this section

Blunders (-3)

- B1 Correct answer with no work shown (\mathscr{L})
- B2 Sum of angles in triangle $\neq 180^{\circ}$

Slips (-1)

S1 Arithmetic slip

Worthless(0)

W1 Assuming Δabc right angled triangle

- B1 Each step incorrect or omitted
- B2 Each step incomplete

- A1 Triangle with exterior angle drawn
- A2 Indicates sum of angles in a triangle equals 180[°]

(b)(ii)

10 (5,5) marks

Att (2,2)

(ii) $x^{\circ} = 40^{\circ} + 72^{\circ}$	$y^{\circ} + y^{\circ} + x^{\circ} = 2y^{\circ} + x^{\circ} = 180^{\circ}$	
$x^{\circ} = 112^{\circ}$	$\Rightarrow 2 y^{\circ} + 112^{\circ} = 180^{\circ} \Rightarrow 2y^{\circ} = 68^{\circ} \Rightarrow y = 34^{\circ}$	

Blunders (-3)

- B1 Correct answer with no work shown (\mathscr{A})
- B2 $x = 68^{\circ}$
- B3 Sum of angles in triangle $\neq 180^{\circ}$
- B4 Incorrectly indicates equal angles in isosceles triangle

Slips (-1)

S1 Arithmetic slips

Attempts (2)

- A1 Indicates sum of angles in triangle equals 180° once only
- A2 Recognition of equal angles in isosceles triangle

* Accept constructions with tolerance of 2 mm

- B1 Each incorrect side
- B2 Inserting right angles between two sides
- B3 Correct triangle but no construction lines

Attempts(3)

A1 No triangle but one correct length drawn

Worthless (0)

W1 Triangle drawn with no correct length

(c) (ii) Incircle	10 marks	Att 3
(ii)	Incircle	

- * Accept constructions with tolerance of 2mm
- * If candidate draws a separate correct triangle for (c)(ii), then accept this for construction of incircle.
- * 4 marks: One angle bisected correctly
- * 7 marks: Two angles correctly bisected

Blunders (-3)

B1 Incentre indicated but incircle not drawn

- A1 Effort at bisecting any angle
- A2 Triangle and incircle drawn with no construction shown
- A3 Circumcircle drawn with construction lines shown

QUESTION 4

Part Part Part	t (a) t (b) t (c)	10 marks 20 marks 20 (5,5,10) marks	Att 3 Att 7 Att(2,2,3)
Part	t (a)	10 marks	Att 3
	<i>abcd</i> is a cyclic quadrilateral.		
Ľ	Given that $ \angle dab = 73^\circ$ and		a 73° b
	$ \angle abc = 84^{\circ},$		
	find $ \angle adc $ and $ \angle bcd $.		d C

(a)	10 marks	Att 3
(a)	$\left \angle adc \right + 84^{\circ} = 180^{\circ}$	
	$\left \angle adc \right = 96^{\circ} \qquad \left \angle bcd \right = 107^{\circ}$	

Blunders (-3)

- B1 Correct answer with no work shown (\mathscr{A})
- B2 Uses 360° instead of 180°
- B3 Sum of opposite angles = 90°
- B4 One angle found only

Slips (-1)

S1 Arithmetic error

Attempts (3)

- A1 Indicates sum of angles in cyclic quadrilateral = 360°
- A2 Indicates sum of opposite angles in cyclic quadrilateral = 180° in measure

Worthless (0) W1 $|\angle adc| = 84^\circ \text{ or } 73^\circ$ Prove that in a right-angled triangle, the square of the length of the side opposite to the right angle is equal to the sum of the squares of the lengths of the other two sides.

* Some steps may be partially indicated on diagram

Blunders (-3)

B1 Each step incorrect or omitted

B2 Each step incomplete

Attempts (7)

A1 Diagram with perpendicular indicated

* Some steps may be indicated partially on diagram

Blunders(-3)

- B1 Each step incorrect or omitted
- B2 Each step incomplete

Attempts(7)

A1 Diagram only

(c)	20 (5,5,10) marks	Att (2,2,3)
	A circle, centre o, has a radius of length 17.	
	[<i>lk</i>] is a chord of length 30.	
	<i>m</i> is a point on [<i>lk</i>] and <i>lk</i> is perpendicular to <i>mo</i> .	
(i) <i>Æ</i>	Write down the length of $[km]$, giving a reason for your answer.	
(ii)	\swarrow Calculate $ om $.	
(iii)	\swarrow Find the area of the triangle <i>klo</i> .	

(c) (i	i) 5 marks	Att 2
(i)	$ km = \frac{1}{2} kl = 15$	
	Diameter/radius/line through centre/om perpendicular to chord bisects the chord	
Blun	ders (-3)	

B1 Correct answer with no work shown (\mathscr{L})

B2 Reason not given

Slips (-1)

S1 Arithmetic slip

Attempts (2)

A1 Some use of $\frac{1}{2}$

(c) (ii)		5 marks		Att 2
(ii)	$17^2 = 15^2 + om ^2$	$\Rightarrow om ^2 = 64$	$\Rightarrow om = 8$	

Blunders (-3)

- B1 Correct answer with no work shown (\mathscr{L})
- B2 Pythagoras incorrect
- B3 Incorrect squaring
- B4 $|om|^2 = 64$ and stops
- B5 Use of 30 rather than 15

Slips (-1)S1 Arithmetic slipAttempts (2)A1 Pythagoras indicated

(c) (iii)	10 marks	Att 3
(iii)	Area $=\frac{1}{2} kl om = \frac{1}{2}.30.8 = 120$	

- B1 Correct answer with no work shown (\mathscr{A})
- B2 Incorrect relevant formula
- B3 Incorrect substitution into correct formula

Slips (-1)

S1 Arithmetic slips

Attempts (3)

A1 Correct formula with some substitution

Worthless (0)

W1 Assuming angle at centre = 90°

QUESTION 5

Part	(a)	10 marks	Att 3
Part	(b)	20 (5,15) marks	Att (2,5)
Part	(c)	20 (10,10) marks	Att (3,3)
Part	(a)	10 marks	Att 3
Ľ	Without using a calc	ulator or the tables, construct the angle A such	ch that
		$\tan A = \frac{3}{4}.$	

- * Tolerance of 2mm
- * Measure each side to check ratio
- * Measure for right angle (need not be specifically marked)
- * Check that relevant angle marked A

Blunders (-3)

- B1 Angle A not indicated
- B2 Incorrect use of ratio

Attempts (3)

- A1 Draws one side of length 3 or 4
- A2 Indicates 3 as 'opposite' and /or 4 as 'adjacent'
- A3 Indicates hypotenuse = 5
- A4 States any correct trig. Ratio
- A5 Pilot diagram

Worthless (0)

W1 Triangle with no length indicated

- B1 Correct answer with no work shown (\mathscr{L})
- B2 $|\angle bac|$ not obtuse
- B3 Incorrect substitution into correct formula
- B4 Incorrect relevant formula
- B5 Reads tables incorrectly or uses calculator in incorrect mode
- B6 Early rounding off which affects answer
- B7 Incorrect ratio for Sine function

Slips (-1)

- S1 Arithmetic slips
- S2 Slip reading tables (e.g. wrong column)
- S3 Fails to distinguish between degrees and minutes and degrees in decimal format
- S4 Not rounded off

Attempts (2,5)

- A1 Sum of angles in triangle equals 180°
- A2 Correct formula with some substitution

Part (c)

20 (10,10) marks

Att 3,3

(c) (i) 10 marks Att 3
(i)
$$|\angle dfe| = 77^{\circ}$$

 $\frac{Sin77^{\circ}}{80} = \frac{Sin38^{\circ}}{|ef|} \Rightarrow |ef| = \frac{80Sin38^{\circ}}{Sin77} = \frac{80(0.61566)}{0.97437}$
 $|ef| = 50.5 \approx 51$ m

- B1 Correct answer with no work shown (\mathscr{L})
- B2 Incorrect ratio in use of Sine Rule
- B3 Error in cross multiplication
- B4 Reads wrong page of tables or uses calculator in incorrect mode
- B5 Early rounding off which affects answer

Misreading(-1)

M1 |df| found

Slips (-1)

- S1 Arithmetic slips
- S2 Slip reading tables (e.g. wrong column)

Attempts (3)

- A1 Sine Rule substituted
- A2 $|\angle dfe| = 77^{\circ}$
- A3 Indicates sum of angles of triangle = 180°

Worthless (0)

W1 Treats triangle as right angled

(c) (ii)

10 marks

Att 3

* Accept candidates answer from (c)(i)

Blunders (-3)

- B1 Correct answer with no work shown (\mathscr{A})
- B2 Incorrect ratio for *Sin* function
- B3 Error in cross multiplication
- B4 Reads wrong page of tables or uses calculator in incorrect mode
- B5 Incorrect ratio for Sine Rule

Slips (-1)

- S1 Arithmetic slips
- S2 Slip reading tables (e.g. wrong column)

- A1 Indicates use of *h* in a ratio
- A2 Indicates use of (c)(i) answer in a ratio
- A3 Indicates use of h in a right angled triangle
- A4 Finds value of another acute angle and stops
- A5 Any correct trig. Ratio or states Pythagoras

QUESTION 6				
Part (a)	10 marks	Att 3		
Part (b)	20 (10,10) marks	Att (3,3)		
Part (c)	20 (5,10,5) marks	Att (2,3,2)		

Part	(a) 10 marks	Att 3
Ľ	Draw a pie chart to indicate how a lottery prize could be divided	
	in the ratio of $3:2:1$.	

- * Allow a tolerance of 5° in chart *Blunders (-3)*
- B1 Correct answer with no work shown (\mathscr{L})
- B2 Sum of angles $\neq 360^{\circ}$
- B3 Divisor other than 6
- B4 Each incorrect plot

Slips (-1)

S1 Arithmetic slips

Attempts (3)

- A1 Use of 360 indicated or implied
- A2 Circle drawn

Worthless (0)

W1 Bar chart

Part (b)			20 (10,10)	marks		Att	(3,3)	
The marks	he marks obtained by 25 candidates in an exam are as follows:							
25	85	55	74	60				
54	48	41	79	81				
88	74	38	57	65				
76	98	42	50	59				
68	79	20	64	45				
(i)	Complete the fo	llowing fre	quency table	2.				
			·		·1			
N	Marks	0 - 40	40 60	60 - 80	80 - 100			
Num	ber of Students							
[Not	[Note: 40 – 60 means 40 or more but less than 60, etc.]							
(ii)	(ii) \ll Taking mid-interval values, calculate the student mean mark							

(b)	(i)
$\langle \sim \rangle$	(-)

10 marks

Att 3

(i)	Marks	0 - 40	40 - 60	60 - 80	80 - 100
	Number of Students	3	9	9	4

Blunders (-3)

- B1 Omits any number
- B2 Cumulative frequencies

Attempts (3)

- A1 One entry correct
- A2 No entry correct but sum of entries = 25

Worthless(0)

W1 No correct entry and sum of entries $\neq 25$

(b) (ii)

Att 3

(ii)	Mean	=	$\frac{20\times3+50\times9+70\times9+90\times4}{25}$	=	60	

* Accept candidates work from (b) (i)

Blunders (-3)

- B1 Correct answer with no work shown (\mathscr{A})
- B2 Division by 4
- B3 Division by sum of mid interval
- B4 Use of value other than mid interval values
- B5 Consistently adds mid interval value to frequency instead of multiplying

Slips (-1)

S1 Arithmetic slips to max of -3

- A1 Some or all mid intervals identified
- A2 One correct multiplication in numerator
- A3 Indicates division by 25
- A4 Sum of frequencies divided by 4 or sum of mid intervals divided by 4

Part (c)

20 (5,10,5) marks

Att (2,3,2)

The cumulative frequency table below shows the times in minutes that 100 Olympic athletes

completed the marathon after the winner crossed the line.

Time in Minutes	< 2	< 5	< 7	< 9	< 11
Number of Athletes	10	25	55	70	100

(i) Complete the following frequency table.

Time in Minutes	0-2	2-5	5-7	7-9	9-12
Number of Athletes	1				

[Note: 2 – 5 means 2 or more but less than 5, etc.]

(ii) Draw a histogram to illustrate the data in the frequency table.

(iii) \swarrow In which class interval does the 63rd athlete to finish lie?

(c) (i) 5 marks					Att 2		
(i)	Time in Minutes 0-2 2-5 5-7 7-9 9-12					9-12	
	Number of Athletes	10	15	30	15	30	

Attempts (2)

- A1 Any one value filled correctly into table
- A2 Any indication of subtraction of frequencies
- A3 Cumulative 'cumulative ' table

Worthless (0)

W1 Copies table and stops

- * Accept candidate's work from (c)(i)
- * No penalty for vertical scale instead of area scale

- B1 Incorrect base scale
- B2 Incorrect transfer of frequency to histogram
- B3 Draws a trend graph from (c) (i)
- B4 Each rectangle omitted

(c) (i	ii) 5 marks	Att 2
(iii)	$10 + 15 + 30 = 55$ Thus 55^{th} athlete in the 5-7 interval	
	$10+15+30+15 = 70$ Thus 70^{th} athlete in 7-9 interval	
	\Rightarrow 63 rd athlete in the 7 – 9 class interval.	
*	Accept answer consistent with candidate's work	
*	Accept answer clearly identified on graph	

Blunders (-3)

- B1 Correct answer with no work shown (\mathscr{L})
- B2 Chooses incorrect interval with work

Attempts (2)

A1 Adds a number of frequencies