MARKING SCHEME

JUNIOR CERTIFICATE EXAMINATION 2005

MATHEMATICS – HIGHER LEVEL – PAPER 1

GENERAL GUIDELINES FOR EXAMINERS

- 1. Penalties of three types are applied to candidates' work as follows:
 - Blunders mathematical errors/omissions (-3)
 - Slips- numerical errors (-1)
 - Misreadings (provided task is not oversimplified) (-1).

Frequently occurring errors to which these penalties must be applied are listed in the scheme. They are labelled: B1, B2, B3,..., S1, S2,..., M1, M2,...etc. These lists are not exhaustive.

- 2. When awarding attempt marks, e.g. Att(3), note that
 - any *correct, relevant* step in a part of a question merits at least the attempt mark for that part
 - if deductions result in a mark which is lower than the attempt mark, then the attempt mark must be awarded
 - a mark between zero and the attempt mark is never awarded.
- 3. Worthless work is awarded zero marks. Some examples of such work are listed in the scheme and they are labelled as W1, W2,...etc.
- 4. The phrase "hit or miss" means that partial marks are not awarded the candidate receives all of the relevant marks or none.
- 5. The phrase "and stops" means that no more work is shown by the candidate.
- 6. Special notes relating to the marking of a particular part of a question are indicated by an asterisk. These notes immediately follow the box containing the relevant solution.
- 7. The sample solutions for each question are not intended to be exhaustive lists there may be other correct solutions.
- 8. Unless otherwise indicated in the scheme, accept the best of two or more attempts even when attempts have been cancelled.
- 9. The *same* error in the *same* section of a question is penalised *once* only.
- 10. Particular cases, verifications and answers derived from diagrams (unless requested) qualify for attempt marks at most.
- 11. A serious blunder, omission or misreading results in the attempt mark at most.
- 12. Do not penalise the use of a comma for a decimal point, e.g. €5.50 may be written as €5,50.

rt (a) rt (b) rt (c)	10 marks 20 marks 20 marks	Att 3 Att 6 Att 7
Part (a)	10 marks	Att 3
Æ	U is the universal set. P and Q are two subsets of U. Copy the Venn diagram into your answerbook and shade in the set $(P \cup Q)'$.	

B1 Shades $(P \cup Q)$ correctly.

Slips (-1)

S1 Shades $(P \cap Q)'$ correctly.

Attempts (3 marks)

- A1 Shades any region other than those mentioned above.
- A2 Copies diagram with no shading.

Р	art (b)	20 (10,10) marks	Att (3,3)
(i)	X	Light travels at a speed of approximately (2.9×10^5) km / se	ec.
		How many kilometres will light travel in 8 minutes?	
		Express your answer in the form $a \times 10^{n}$,	•
		where $n \in \mathbb{N}$ and $1 \le a < 10$.	
(ii)	Ŕ	A tourist paid \$4620 to a travel agent for a	1
		holiday in Ireland, where $\in 1 = \$1 \cdot 32$.	
		The cost to the travel agent of organising the	U
		holiday was €2985.	Π
		Calculate, in euro, the profit made by the	
		travel agent.	-

(b) (i)		10 marks			Att 3
	(i)	Distance travelled = $(2 \cdot 9 \times 10^5) \times 60 \times 8$ = $1 \cdot 392 \times 10^8$.	or	equivalent	

- B1 Correct answer but no work shown (\mathbb{A}) .
- B2 Not in scientific notation, e.g. 13.92×10^7 or 139200000.
- B3 Any decimal error.
- B4 Any error in handling indices.
- B5 Error in conversion of minutes to seconds.

Slips (-1)

S1 Numerical errors to max of 3.

Attempts (3 marks)

- A1 Indicates some knowledge of indices, e.g. evaluates $10^5 = 100000$.
- A2 Arrives at 1.392 or 13.92 and stops or some correct use of indices.
- A3 States $1 \min = 60$ secs.
- A4 Some knowledge of distance, speed and time formula.

Worthless (0)

- W1 Incorrect answer and no work shown.
- W2 Attempts to add or subtract but shows no knowledge of indices.

(ii)
$$\$4620 = \pounds \left(\frac{4620}{1.32}\right)$$

= $\pounds 3500$
Profit made = $\pounds 3500 - \pounds 2985$
= $\pounds 515$

- B1 Correct answer, but no work shown (\mathscr{K}) .
- B2 Multiplies by 1.32 instead of divides.
- B3 Error in decimal point.
- B4 Leaves profit in \$.

Slips (-1)

- S1 Numerical errors to max of 3.
- S2 Leaves as €3500 €2985.

Attempts (3 marks)

A1 Some relevant work.

Worthless (0)

- W1 Incorrect answer and no work shown.
- W2 $$4620 \pm 1.32$ and stops.

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each error in decimal point.
- B3 Error in precedent.
- B4 Mathematical errors.

Slips (-1)

- S1 Numerical errors to max of 3.
- S2 Error in rounding to the nearest whole number e.g. 5.9 to 5.

Attempts (3 marks)

A1 Some correct rounding to nearest whole number.

Worthless (0)

(i) Evaluate
$$\left(\frac{5.9 + \sqrt[3]{27.24}}{3.06}\right)^2 = \left(\frac{8.9088627}{3.06}\right)^2 = (2.911393)^2 = 8.4762094 \cong 8.48$$

* Accept correct answer and no work shown.

* Do not penalise same error if already penalised in **Estimate** above.

Blunders (-3)

- B1 Each error in decimal point.
- B2 Error in precedent.
- B3 Mathematical errors.

Slips (-1)

- S1 Numerical errors to max of 3.
- S2 Failure to round off or incorrect rounding off or rounding off too soon.
- S3 Answer given as 8.47 with no work shown.

Attempts (2 marks)

A1 Some correct calculation done.

Worthless (0)

W1 Incorrect answer and no work shown but **note:** S3 above.

(c) (ii) 5 marks Att 2
(ii)
$$2\sqrt{18} - 4\sqrt{9} - 3\sqrt{50} + 2\sqrt{100} = 6\sqrt{2} - 12 - 15\sqrt{2} + 20 = 8 - 9\sqrt{2}$$

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each error in distributive law.
- B3 Each error handling surds.
- B4 Not in the form $a + b\sqrt{2}$.

Slips (-1)

S1 Numerical errors to max of 3.

Attempts (2 marks)

- A1 Some relevant effort at multiplying.
- A2 Shows some knowledge of handling surds.

Worthless (0)

W1 Uses calculator.

QUESTION 2

Part (a)		Att 4
Part (b)	20 marks	Att 6
Part (c)	20 marks	Att 7
Part (a)	10(5,5) marks	Att (2,2)
(i)	Write down the reciprocal of $\frac{7}{2}$.	
(ii)	Find the value of this reciprocal, correct to 2 decimal places.	

(a) (i)	5 marks	Att 2
(i)	$\frac{2}{7}$ or $\frac{1}{\frac{7}{2}}$	

Blunders (-3)

B1 Writes reciprocal of 2.

B2 Writes reciprocal of 7.

Worthless (0) W1 Answer = 3.5 or equivalent.

(a) (ii)	5 marks	Att 2
(ii)	$0.285 \cong 0.29.$	

* Accept answer consistent with part (i).

Blunders (-3)

B1 Incorrect division.

Slips (-1)

S1 Failure to round off or incorrect rounding off i.e. $3\frac{1}{2}$ or $3.5 \neq 3.50$.

Attempts (2 marks)

A1 Some correct calculation done.

	Part (b)	20 (10,10) marks	Att (3,3)
(i)	There a	are 25 000 fish in a fish farm.	
	The nu	mber of fish in the farm increases by 40% each year.	
	Ŕ	How many fish will be in the farm at the end of 3 years?	
(ii)	The mo	onthly line rental on Peter's mobile phone	
	amoun	ts to €12 · 70.	
	During	May, the duration of his calls	
	is 1 hr	41 mins and 50 secs.	-
	Calls a	re charged at 0.6 cent per second.	
	Ŕ	Calculate Peter's total bill for May.	

(b) (i)		10 marks	Att 3
(i)	$Y_1 = 25000 \times 1.40 = 35000$ $Y_2 = 35000 \times 1.40 = 49000$ $Y_3 = 49000 \times 1.40 = 68600$	or	$Y_1 = 25000$ $Y_2 = 35000$ $Y_3 = 49000$ Total = 49000 +	$I_1 = 0.40 \times 25000 = 10000$ $I_2 = 0.40 \times 35000 = 14000$ $I_3 = 0.40 \times 49000 = 19600$ -19600 = 68600

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each error in decimal point.
- B3 Stops at 49000.
- B4 Mathematical error e.g. 40% taken as some incorrect fraction.
- B5 Subtracts instead of adds increase.
- B6 Uses 0.60 instead of 1.40.
- B7 Each incorrect substitution into correct formula.

Slips (-1)

- S1 Numerical errors to max of 3.
- S2 Leaves as 49000 + 19600 or 49000×1.40 .

Attempts (3 marks)

A1 $40\% = \frac{40}{100}$ and stops.

- A2 Writes down formula and stops.
- A3 Ignores cumulating, leading to 55000 as answer.

Worthless (0)

(ii) 1 hr 41 min and 50 sec = 3600 + 2460 + 50= 6110 sec Cost of calls = $\notin (6110 \times 0.6 \setminus 100)$ = $\notin 36.66$ Total bill for May = $\notin 36.66 + \notin 12.70$ = $\notin 49 \cdot 36$

* Candidates may present other correct methods.

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each error in decimal point.
- B3 Mathematical errors.
- B4 Error in conversion of units of time, apply once only.
- B5 Error in conversion of units of money.
- B6 Stops at €36.66.

Slips (-1)

- S1 Numerical errors to max of 3.
- S2 Leaves as €36.66 + €12.70.

Attempts (3 marks)

- A1 States 1 hr = 60 min or similar.
- A2 Any correct relevant step.

Worthless (0)

Part (c)	20 (15,5) marks	Att (5,2)
(i)	The standard	rate of income tax is 20% and the higher rate is 42%).
		Sheila has tax credits of $\notin 2700$ for the year and a point of $\notin 22000$.	a standard rate cut-off
		She has a gross income of €45 000 for the year.	
		Calculate the total tax payable by Sheila for t	the year.
	(ii)	Tony pays tax at the same rates as Sheila.	
		Tony has tax credits of €2900 for the year and h	as the same standard
		rate cut-off point as Sheila.	
		His total tax payable amounts to €13680 for the	year.
		Calculate Tony's gross income for the year.	

(c) (i)			15 marks		Att 5
(i)	Tax @ 20% on €22 000	=	€4400		
	Tax @ 42% on €23 000	=	€9660		
	Total Tax	=	€14060		
	Tax Credits	=	€2700		
	Tax Due	=	€14060 - €2700	= €11360	

* Candidates may present other correct methods.

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each error in decimal point.
- B3 Mathematical error, e.g. 20% or 42% taken as some incorrect fraction may incur 2 blunders.
- B4 20% of some incorrect figure or 42% of some incorrect figure may incur 2 blunders.
- B5 Incorrect total tax based on candidate's figure or no total tax.
- B6 Mishandles the tax credit.
- B7 Stops at €14060.

Slips (-1)

S1 Numerical errors to max of 3.

Attempts (5 marks)

- A1 Correct calculation of 20% or 42% and stops.
- A2 Any correct relevant step.

(c) (ii)	5 marks	Att 2
(ii)	Total tax payable = €13680	
	Tax credits = €2900 _4	2% = €12180
	Total tax = €16580	1% = €290
	Tax (a) $20\% = €4400$ 10	$00\% = \underline{€29000}$
	Tax @ 42% = €16580 - €4400 = €12180	
	Tony's Gross = <u>€29000</u> + €22000 = ÷	€51,000

* Candidates may present other correct methods.

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each error in decimal point.
- B3 Mathematical error, e.g. 20% or 42% taken as some incorrect fraction.
- B4 20% of some incorrect figure or 42% of some incorrect figure.
- B5 Adds 20% tax rather than subtracts.
- B6 Mishandles the tax credit.
- B7 Stops at €29000.

Slips (-1)

- S1 Numerical errors to max of 3.
- S2 Leaves as €29000 + €22000.

Attempts (2 marks)

- A1 Correct calculation of 20% or 42% and stops.
- A2 Any correct relevant step, e.g. some correct calculation on candidate's figures.

QUESTION 3				
Part (a)	a) 10 marks			
Part (b)	20 marks	Att 7		
Part (c)	20 marks	Att 8		
Part (a)	10 marks	Att 3		

Write $\sqrt[3]{16}$ in the form 2^k , $k \in \mathbf{Q}$. Ø

(a)	10 marks	Att 3
	$\sqrt[3]{16} = (2^4)^{\frac{1}{3}} = 2^{\frac{4}{3}}$	

 $2^{1\cdot33}$ or similar with no work shown merits 7 marks. *

Blunders (-3)

Correct answer, but no work shown (\mathbb{A}) . B1

B2 Each different error in laws of indices.

B3 Error in sign of index.

Answer not given in form 2^k where $k \in Q$, but **note:** may incur other blunders also. B4

Slips (-1)

Numerical errors to max of 3. **S**1

Attempts (3 marks)

- Some correct work with the indices. $2^{1.3}$ with no work shown. A1
- A2

Worthless (0)

W1 Uses calculator to get an answer of 2.5198421 or similar with no work shown.

Р	art (b)		20 (10,5,5) marks	Att (3,2,2)
(i)	Factoris	se	$3x^2 + 8x - 3$	
(ii)	Ŕ	Factorise	$3p-c+3pc-c^2.$	
(iii)	Ŕ	Simplify	$(2x-1)^2 - (x-1)^2.$	

(b) (i)		10 marks		Att 3
(i)	Round Brackets:	0ľ	Big 'X':	
			3x -1	
			x +3	
	(3x-1)(x+3)		(3x-1)(x+3)	
Check	(i) $3x^2$ term	(ii) - 3 term	(iii) middle term	

* Accept correct answer and no work $-no \ll$.

* Accept any correct method.

Blunders (-3)

- B1 Incorrect factors of $3x^2$.
- B2 Incorrect factors of 3.
- B3 Incorrect middle term.
- B4 Leaves answer as:

3x -1 +3

B5 Each error in use of quadratic formula.

B6 Uses formula to get $x = \frac{1}{3}$ and x = -3 but fails to form factors.

Attempts (3 marks)

- A1 Any correct factors of $3x^2$ or 3.
- A2 Some correct substitution into correct quadratic formula.
- A3 Writes down correct quadratic formula and stops.

c)

(ii)
$$3p - c + 3pc - c^2$$

= $1(3p - c) + c(3p - c) + c(3p - c)(1 + c)$

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each different error in sign.
- B3 Stops after first step, i.e. 1(3p c) + c(3p c) or similar.

B4 Answer given as (3p - c) + (1 + c) but answer such as (3p - c) and (1 + c) merits 5 marks. Attempts (2 marks)

A1 Some effort at factorising – groups off or pairs.

(b) (iii)	5 m	Att 2	
	(iii) = $[(2x - 1) - (x - 1)] [(2x - 1) + (x - 1)]$	$(2x - 1)^2 - (x - 1)^2$ or $(2x - 1)(2x - 1) - (2x - 1)(2x - 1)$	(x - 1)(x - 1)
	= (2x - 1 - x + 1) (2x - 1 + x - 1) = (x) (3x - 2) = 3x ² - 2x	$= (4x^{2} - 4x + 1) - (x^{2} - 4x^{2} + 1) - (x^{2} - 4x^{2} - 4x + 1) - (x^{2} - 4x^{2} - $	$x^2 - 2x + 1) + 2x - 1$

Blunders (-3)

- B1 Correct answer but no work shown (\mathscr{L}).
- B2 Error in index or sign.
- B3 Term omitted or incorrect.
- B4 Stops at [(2x 1) (x 1)][(2x 1) + (x 1)].
- B5 Incorrect factorisation of one term.
- B6 Fails to simplify.

Slips (-1)

S1 Numerical errors to max of 3.

Attempts (2 marks)

- A1 Some correct relevant work.
- A2 Indicates some knowledge of the difference of two squares.

Worthless (0)

W1 Incorrect answer and no work shown but note A1.

Р	art (c)	Att (2,2,2,2)			
A bo	ox of drir	king chocolate powder costs €3 · 60.			
(i)	If the b	ox contains x grams of powder,			
	write a	n expression in x to represent			
	the cos	of 1 gram of the powder.			
	During	a promotion, the manufacturer adds in to the box an ext	ra 30 grams of powder.		
	The cos	t of the box of drinking chocolate remains at $\in 3 \cdot 60$.			
(ii)	Write an expression in x to represent the cost of 1 gram of the powder during the				
	promotion.				
	Each gram of powder, in this case, now costs 1 cent less.				
(iii)	Write a	n equation in x to represent the above information.			
(iv)	Ŕ	Solve this equation to find how many grams of powde	r are in the box		
		during the promotion.			
(c) (i)	5 marks	Att 2		

	5 mark	15	Att 2
(i)	$\frac{3\cdot 6}{x}$		

B1 Cost of 1 gram of powder e.g. $\frac{x}{3.6}$.

Attempts (2 marks)

A1 Gives answer as 3.6 (x)

A2 Any correct relevant step, e.g. trial and error – award once only i.e. in (i) & (ii).

Worthless (0)

W1 Gives answer as $3.6 \pm x$.

(c) (ii)	5 marks	Att 2
(ii)	$\frac{3 \cdot 6}{x + 30}$	

Blunders (-3)

B1 Cost per gram inverted, e.g. $\frac{x+30}{3.6}$, but do not penalise if already blundered in (i) above.

B2 Uses x - 30.

Attempts (2 marks)

A1 Gives answer as 3.6 (x + 30).

(c) (iii)	5 marks	Att 2
(iii)	$\frac{3.6}{x} - \frac{3.6}{x+30} = 0.01 \text{ or equivalent.}$	

* Accept candidate's answer from (i) and (ii) above. *Blunders* (-3)

B1 Sign error in setting up equation, e.g. $\frac{3.6}{x+30} - \frac{3.6}{x} = 0.01$.

B2 Expression not equal to 0.01 or equivalent.

Attempts (2 marks)

A1 Incorrect expression but uses data from (i) & (ii).

Slips (-1)

S1 Writes correct expression with required terms.

(c) (iv)	5 marks	Att 2
(iv)	$\frac{3.6}{x} - \frac{3.6}{x+30} = 0.01$	
	$\frac{3.6(x+30) - 3.6(x)}{(x)(x+30)} = 0.01$	
	3.6x + 108 - 3.6x = 0.01(x)(x + 30)	
	$0.01x^2 + 0.3x - 108 = 0$	
	$x^2 + 30x - 10800 = 0$	
	$(x-90)(x+120) = 0 \qquad x=90.$	Grams during promotion $= 120$.

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each different error in distributive law.
- B3 Errors in balancing equation.
- B4 Mathematical / sign errors.
- B5 Correct factors and stops.
- B6 Incorrect factors.
- B7 Errors using quadratic formula.

Slips (-1)

- S1 Numerical errors to a max of 3.
- S2 Leaves answer as 90.

Attempts (2 marks)

A1 No quadratic due to previous errors merits attempt at most.

	QUESTION 4	
Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 6
Part (c)	20 marks	Att 7
Part (a)	10 marks	Att 3
Ŕ	Let <i>f</i> be the function $f: x \to x^2 + x - 7$, $x \in \mathbf{R}$.	
	Find $f(-3)$.	
(a)	10 marks	Att 3
	$f(-3) = (-3)^2 + (-3) - 7$ = 9 - 3 - 7 = - 1	

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each different error in distributive law / sign.
- B3 Each term omitted or incorrect but note A2.

Slips (-1)

S1 Numerical slips to a max of 3.

Attempts (3 marks)

- A1 Some effort at substitution and stops.
- A2 No quadratic or substitutes positive number e.g. 3. Oversimplification.

Worthless (0)

Part	(b) 20 (10,10) marks	Att (3,3)	
Helen b	sys stamps costing 48 cent and 60 cent.		
She buys a total of 50 stamps costing $\notin 25 \cdot 68$.			
(i)	Taking x to be the number of 48 cent stamps and y to be the m	umber	
	of 60 cent stamps, write down two equations in x and y to repr	resent this information.	
(ii)	\swarrow Solve the equations to find the number of each type of sta	mp that	
	Helen has purchased.		

(b) (i)		1	0 marks			Att 3
(i)	x + y =	50	and	48x + 60y	=	2568

- B1 One correct equation only.
- B2 Fails to convert to cent / euro.

Attempts (3 marks)

A1 Incorrect equation such as x + y = 2568 or 48x + 60y = 50.

A2 Any correct relevant step e.g. 48x.

(b) (ii)		10 marks		Att 3	
(ii)	$ \begin{array}{c} 60x + 60y = 3000 \\ \underline{48x + 60y = 2568} \end{array} $	12x = 432	x = 36 and	<i>y</i> = 14	

- * No need to state type stamps values of x and y sufficient.
- * Accept candidate's solution of his/her simultaneous equations even if negative x / y.
- * Trial and error with correct verification in both equations merits 10 marks.

Blunders (-3)

- B1 Each different error in balancing equation or signs.
- B2 Mathematical error, e.g. 108x = 5568.
- B3 Calculates the value of x or y correctly and stops.

Slips (-1)

- S1 Finds x = 36 but substitutes some other value of x to find y e.g. x = -36.
- S2 Numerical slips to a max. of 3.

Attempts (3 marks)

- A1 Some correct relevant work, e.g. 48x + 48y = 2400 and stops.
- A2 Writes x in terms of y or vice-versa, e.g. y = 50 x.
- A3 Correct graphical solution.

Note: x = 36 and y = 14 without work shown merits 7 marks.

Part (c)

(i) \swarrow Express in its simplest form:

$$\frac{1}{x-1} + \frac{1}{x+1}.$$

(ii)

Hence, or otherwise, solve the equation:

$$\frac{1}{x-1} + \frac{1}{x+1} = 3.$$

Express your answer in the form $a \pm b\sqrt{10}$, where $a, b \in \mathbf{Q}$.

(c) (i)	15 marks	Att 5
(i)	$\frac{1(x+1)+1(x-1)}{(x-1)(x+1)} = \frac{x+1+x-1}{(x-1)(x+1)} = \frac{2x}{(x-1)(x+1)}$	

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Incorrect common denominator or mishandles common denominator.
- B3 Each different error in distributive law.
- B4 Mathematical / sign errors.

Slips (-1)

S1 Numerical errors to a max of 3.

Attempts (5 marks)

- A1 Correct denominator and stops.
- A2 Leaves out denominator e.g. 1(x + 1) + 1(x 1).
- A3 1(x+1) or similar and stops.

Worthless (0)

W1 Adds to get $\frac{2}{2x}$.

(ii)	$\frac{2x}{(x-1)(x+1)} = 3$
	2x = 3(x - 1)(x + 1)
	$2x = 3x^2 - 3$
	$3x^2 - 2x - 3 = 0$
	$x = \frac{2 \pm \sqrt{4 + 36}}{2 \pm \sqrt{40}} = \frac{2 \pm \sqrt{40}}{2 \pm \sqrt{40}}$
	6 6
	$r = 2 \pm 2\sqrt{10}$
	$x = \frac{6}{6}$
	$x = \frac{1}{2} \pm \frac{1}{2} \sqrt{10}$
	5 5

* Accept correct solution of candidate's quadratic from part (i).

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each different error in distributive law.
- B3 Errors in balancing equation.
- B4 Each error in formula, e.g. + b $\pm \sqrt{\text{etc.}}$
- B5 Each different incorrect substitution into formula but **note** b = 2; $c = 3 \rightarrow 1$ Blunder.
- B6 Mathematical error in sign, e.g. -4(3)(-3) = -36.
- B7 Mathematical error in squaring, e.g. $(-2)^2 = -4$ or similar.
- B8 Ignores a minus in square root, e.g. $\sqrt{-36}$ taken as $\sqrt{36}$.

Slips (-1)

- S1 Failure to round off or rounds off incorrectly, once or twice.
- S2 Numerical errors to max of 3.
- S3 Answer not in required form subject to note under solution box.

Attempts (2 marks)

- A1 Incorrect relevant formula with some correct substitution.
- A2 Correct formula and stops.
- A3 Some effort at completing the square.
- A4 Solves linear equation arising from answer in part (i).

Worthless (0)

W1 Some attempt at factorising.

QUESTION 5

Part (a)	10 marks	Att 3
Part (b)	20 marks	Att 7
Part (c)	20 marks	Att 7

Part (a)	10 marks	Att 3
Seven shirts and two A sweater costs the s	sweaters cost €202 · 50. ame as four shirts. st of one shirt.	THE CONTROL

(a)	10 marks	Att 3
$x = \cos t \text{ of a shirt} 4x = \cos t \text{ of sweater}$	or $x = \cot \text{ of shirt}$ $y = \cot \text{ of sweater}$	
	$7x + 2y = \bigcirc 202$	$\cdot 50 \qquad 4x = y \Longrightarrow 4x - y = 0$
$7x + 2(4x) = \pounds 202 \cdot 50$ $7x + 8x = \pounds 202 \cdot 50$ $15x = \pounds 202 \cdot 50$ $x = \pounds 13 \cdot 50$	-	$7x + 2y = \pounds 202 \cdot 50$ 8x - 2y = 0 $15x = \pounds 202 \cdot 50$ $x = \pounds 13 \cdot 50$

* Accept non algebraic solution with work shown.

Blunders (-3)

- B1 Correct answer, but no work shown (\$\varnothing).
- B2 Each different error in distributive law / sign.
- B3 Each term omitted or incorrect.
- B4 Each different error in balancing equation.
- B5 Mathematical error.

Slips (-1)

S1 Numerical slips to a max of 3.

Attempts (3 marks)

- A1 Some correct relevant work, e.g. one correct multiplication.
- A2 Writes $x = \cos t$ of shirt or similar and stops.
- A3 Writes 1 sweater = 4 shirts and stops.

Worthless (0)

In a school of 430 students, 250 students study History, 240 students study Geography. Let *x* represent the number of students who study neither History nor Geography. The number of students who study both History and Geography is 3 times the number who study neither of these subjects.

(i)	Ø	Represent this information on a Venn diagram.
-----	---	---

- (ii) \swarrow Write down and simplify an expression in *x* for the total number of students in the school.
- (iii)
 Use this expression to find the number of students who study neither
 History nor Geography.

* Allow omission of 430 or box on diagram.

Blunders (-3)

- B1 Each element incorrectly placed or omitted.
- B2 $\#(H \cap G) \neq 3x$.
- B3 Each different error for # (H \ G) or # (G \ H).

Attempts (2 marks)

A1 Any one correct value filled in.

Worthless (0)

W1 Venn diagram but none of the required values filled in.

(ii) 250 - 3x + 3x + 240 - 3x + x= 250 + 240 - 3x + x= 490 - 2x

* Accept work consistent with part (i). *Blunders (-3)*

B2 Each element incorrect or omitted.

Attempts (3 marks)

A1 Any one correct value written down.

(b) (iii)	5 marks	Att 2
(iii)	490 - 2x = 430 - 2x = -60 x = 30	

Accept work consistent with part (ii).

Blunders (-3)

*

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each different error in distributive law / sign.
- B3 Each term omitted or incorrect.
- B4 Each different error in balancing equation.

Slips (-1)

S1 Numerical slips to a max of 3.

Attempts (2 marks)

A1 Some correct relevant work.

Worthless (0)

Let *f* be the function $f: x \to x^2 + bx + c$, $x \in \mathbf{R}$ and $b, c \in \mathbf{Z}$.

The graph of *f* cuts the *x* axis at the points where x = -3 and x = 2.

(i) \swarrow Find the value of b and the value of c.

(ii) *E* Find the value of x for which f(x) = f(x + 2).

	(c) (i)	15 marks	Att 5
	(i) Cuts x as $(-3)^2 + b(-3) + c = 0$ 9 - 3b + c = 0 - 3b + c = -9	$ is \Rightarrow y = 0 (2)^2 + b(2) + c = 0 4 + 2b + c = 0 2b + c = -4 $	2b + c = -4 3b - c = 9 5b = 5 b = 1 and c = -6
Blur	nders (-3)	Γ	r = -3 $r + 3 = 0$
B1	Correct answers, but no wor	k shown (Æ).	$\begin{array}{c} x \\ x = 2 \end{array} \qquad \begin{array}{c} x + 3 \\ x - 2 = 0 \end{array}$
B2	Each different error in balan	cing equation or signs.	(x+3)(x-2)=0
B3	Calculates the value of b or	<i>c</i> correctly and stops.	$x^2 + x - 6 = 0$
Atto	mats (5 marks)		b = 1 and $c = -6$

Attempts (5 marks)

A1 Substitutes some correct value for x or f(x).

(c) (ii)	5 marks	Att 2
(ii)	$x^{2} + x - 6 = (x + 2)^{2} + (x + 2) - 6$	
	$x^2 + x - 6 = x^2 + 4x + 4 + x + 2 - 6$	
	$x^2 + x - 6 = x^2 + 5x$	
	-4x = 6	
	x = -1.5	

Blunders (-3)

- B1 Correct answer, but no work shown (\ll).
- B2 Each different error in distributive law / sign.
- B3 Each term omitted or incorrect.
- B4 Each different error in balancing equation.

Slips (-1)

S1 Numerical slips to a max of 3.

Attempts (2 marks)

A1 Some correct relevant work, e.g. one correct multiplication.

Part (a)	10 marks	Att 3
Part (b)	25 marks	Att 9
Part (c)	15 marks	Att 6

Part (a)	10 marks	Att 3

 \swarrow Find the solution set of the inequality: $6-2x \le 12, x \in \mathbb{R}$.

(a)		10 marks	Att 3
$6 - 2x \le 12 - 2x \le 12 - 6 - 2x \le 6 x \ge -3$	or	equivalent	

Blunders (-3)

- B1 Correct answer, but no work shown (\mathscr{L}) .
- B2 Each different error in balancing equation.
- B3 Mishandles inequality, e.g. $-2x \le 6 \implies x \le -3$.

Slips (-1)

S1 Numerical errors to a max of 3.

Attempts (3 marks)

- A1 Solves equation 6 2x = 12 to get x = -3.
- A2 Tests for one correct value of x and stops.
- A3 Any correct balancing equation and stops.

Let f be the function $f: x \to 5 - 3x - 2x^2$ and g be the function $g: x \to -2x - 1$.

 \swarrow Using the same axes and scales, draw the graph of f

and the graph of *g*, for $-3 \le x \le 2$, $x \in \mathbf{R}$.

(b) Quadratic Grap	h	20	0 marks			1	Att 7
$f(x) = 5 - 3x - 2x^2$							
$f(-3) = 5 - 3(-3) - 2(-3)^2 = 5 + 9 - 18 = -4 \qquad f(0) = 5 - 3(0) - 2(0)^2 = 5 + 0 - 0 = 5$							
f(-2) = 5	5 - 3(-2) -2(-2)	$)^2 = 5 + 6 -$	8 = 3	f(1) = 5 -	3(1) -2(1)	$^{2} = 5 - 3 - 2$	c = 0
f(-1) = f(-1)	5 - 3(-1) -2(-1)	f(2) = 5 -	3(2) -2(2)	$^2 = 5 - 6 - 8$	s = - 9		
			or				_
x	- 3	- 2	- 1	0	1	2	
5	5	5	5	5	5	5	
-3x	9	6	3	0	- 3	- 6	
$-2x^2$	- 18	- 8	- 2	0	- 2	- 8	
f(x)	- 4	3	6	5	0	- 9	1
	•	•	•	•	•	•	4

Values for quadratic graph

Blunders (-3)

- B1 Each incorrect f(x) or missing f(x) without work.
- B2 *x* row added in, i.e. top row, or adds in extra row.
- B3 Omits -3x or 5 row (-3 for each omitted).
- B4 Treating the domain as -3 < x < 2, can incur 2 Blunders if both omitted.
- B5 Each different blunder which yields an incorrect row (full or part), e.g. $(-2x)^2$ for $-2x^2$.
- B6 Avoids square for some (not all) values.
- B7 Mathematical errors in tots, e.g. -18 + 14 = 4, but apply once only.
- B8 Uses graph of $f: x \to 2x^2 + 3x 5$.

Slips (-1)

S1 Numerical slips to a max. of 3.

Attempts (7 marks)

- A1 Omits $2x^2$ or does not treat as x^2 (Treats as linear expression).
- A2 Correct or partly correct table / values but no graph drawn.

(b) Linear	r Graph		5	marks			1	Att 2
			g(x) =	- 2 <i>x</i> - 1				
<i>g</i> ((-3) = -2(-3) -	1 = 6 - 1 =	= 5	g(0) = -2((0) - 1 = 0	- 1 = - 1		
<i>g</i> ((-2) = -2(-2) -	1 = 4 - 1 =	= 3	g(1) = -2(1) - 1 = -2	- 1 = - 3		
<i>g</i> ((-1) = -2(-1) -	1 = 2 - 1 =	: 1	g(2) = -2(2) - 1 = -4	- 1 = - 5		
				or				
	x	- 3	- 2	- 1	0	1	2	
	- 2x	6	4	2	0	- 2	- 4	
	- 1	- 1	- 1	- 1	- 1	- 1	- 1	
	g(x)	5	3	1	- 1	- 3	- 5	

Values for linear graph

- * Table not necessary Accept any two correct values (may be on graph)
- * Do not penalise same error if already penalised on quadratic graph table.

Blunders (-3)

B1 g(x) = 2x - 1 and continues correctly (oversimplifies).

B2 -1 row treated as +1 or -1x

Attempts (2 marks)

A1 One value only calculated, but no graph drawn.

Graph of $f: x \rightarrow 5 - 3x - 2x^2$ and $g: x \rightarrow -2x - 1$

- B1 Points not joined to form a reasonable graph.
- B2 (x, y) plotted as (y, x), but apply once only, or reverses axes.
- B3 Scale not reasonably uniform, once.
- B4 Each different blunder in plotting points from candidate's table / values.
- B5 Each point omitted, if graph does not go reasonably close to where point should be.
- B6 Points joined with straight lines.

Slips (-1)

S1 Graphs not on same axes and scales.

Attempts (7 marks)

A1 Scaled axis drawn.

Part (c)			15 (5,5,5) marks	Att (2,2,2)
	Use your gra	phs fror	n part (b) to estimate:	
	(i)	Ŕ	the maximum value of $f(x)$	
	(ii)	Ŕ	the values of x for which $f(x) = g(x)$	
	(iii)	Ŕ	the range of values of x for which $f(x) \ge g(x)$.	
(a) (b)			5 marks	A 44 Q

(c) (i)	5 marks	Att 2
(i)	Maximum value of $f(x) = 6.1$	

* Accept answer consistent with candidate's curve (within tolerance of ± 0.3).

Blunders (-3)

- B1 No indication on graph.
- B2 *x* value of maximum only.
- B3 Correct indication on graph but no value given or value outside tolerance.

Slips (-1)

S1 Gives coordinates of maximum point rather than maximum value.

Attempts (2 marks)

A1 Point indicated on graph only.

Worthless (0)

W1 Answer inconsistent with candidate's graph.

(c) (ii)				5 marks				Att 2	
(ii)	x	=	1.5	and	x	=	-2		

Accept answer consistent with candidate's graph (within tolerance of ± 0.3)

Blunders (-3)

*

- B1 No indication on graph.
- B2 One correct value only.
- B3 Correct indication on graph but no values given.
- B4 Gives answer as $-2 \le x \le 1.5$ or similar.

Slips (-1)

S1 Gives coordinates of points of intersection rather than *x* values.

Attempts (2 marks)

A1 5 - $3x - 2x^2 = -2x - 1$ even if completes correctly.

Worthless (0)

W1 Answer inconsistent with candidate's graph.

(c) (iii)		5 marks		Att 2
(iii)	$f(x) \ge g(x)$	\rightarrow	$-2 \leq x \leq 1 \cdot 5.$	

* Accept answer consistent with candidate's graph (within tolerance of ± 0.3)

* Indication on graph in part (ii) suffices for part (iii).

* Correct indication only in part (ii) merits attempt of 2 marks in part (iii).

Blunders (-3)

- B1 No indication on graph.
- B2 Correct indication on graph but no values given subject to second asterisk above.
- B3 No inequality i.e. answers for f(x) = g(x).

Slips (-1)

- S1 One inequality written incorrectly.
- S2 Omits equal sign in the inequality, -2 < x < 1.5.

Attempts (2 marks)

A1 5 - $3x - 2x^2 \ge -2x - 1$ and no other work

Worthless (0)

W1 Answer inconsistent with candidate's graph.